
SEISCOPE OPTIMIZATION TOOLBOX MANUAL

Ludovic Métivier
ludovic.metivier@ujf-grenoble.fr

code version 1.0 - SVN revision 3873 - July 2014

SEISCOPE Consortium
http://seiscope2.osug.fr

1

http://seiscope2.osug.fr

SEISCOPE Project

2

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

Legal statement

Copyright 2013-2016 SEISCOPE II project, All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the SEISCOPE project nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

Warranty Disclaimer:
THIS SOFTWARE IS PROVIDED BY THE SEISCOPE PROJECT AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
SEISCOPE PROJECT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Acknowledgments

The SEISCOPE OPTIMIZATION TOOLBOX codes have been developed in the framework of
the SEISCOPE and SEISCOPE II consortia and we thank the sponsors of these projects. We
also thank the French National Center for Scientific Research (CNRS) for his support. Access to
the high performance computing facilities of the meso-center CIMENT (Univ. Grenoble Alpes,
Fr, https://ciment.ujf-grenoble.fr/) provided the required computer resources to develop this
package

3

SEISCOPE Project

Conditions of use

The SEISCOPE OPTIMIZATION TOOLBOX code is provided open-source (see Legal State-
ment). Please refer to the two following articles in any study or publications for which this
code has been used

• Full Waveform Inversion and the truncated Newton method: Quantitative imaging of
complex subsurface structures, 2014, Geophysical Prospecting, L. Métivier, R. Brossier,
S. Operto, J. Virieux, DOI: 10.1111/1365-2478.12136, Métivier et al. (2014)

• Full Waveform Inversion and the Truncated Newton Method, L.Métivier, R.Brossier,
J.Virieux, S.Operto, 2013, SIAM J. Sci. Comput, 35(2), B401-B437, Métivier et al.
(2013)

4

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

Contents

1 Introduction 6

2 An overview of the routines in the toolbox 7

2.1 Preconditioned steepest descent: PSTD . 7

2.2 Preconditioned nonlinear conjugate gradient: PNLCG 8

2.3 Quasi-Newton l-BFGS method: LBFGS . 8

2.4 Quasi-Newton preconditioned l-BFGS method: PLBFGS 9

2.5 Truncated Newton method: TRN . 9

2.6 Preconditioned truncated Newton method: PTRN 10

3 Installation 11

3.1 Compilation . 11

3.2 Compiling and running the test programs . 12

4 How to use the optimization routines? 14

4.1 Preconditioned Steepest Descent: PSTD . 14

4.2 Preconditioned nonlinear conjugate gradient: PNLCG 18

4.3 Quasi-Newton l-BFGS method: LBFGS . 22

4.4 Quasi-Newton preconditioned l-BFGS method: PLBFGS 26

4.5 Truncated Newton method: TRN . 30

4.6 Preconditioned truncated Newton method: PTRN 35

5 Technical details 41

5.1 Writing intermediate values of x . 41

5.2 Linesearch algorithm . 41

5.3 Nonlinear conjugate gradient . 44

5.4 Practical issues for the truncated Newton method 44

5

SEISCOPE Project

1 Introduction

The SEISCOPE OPTIMIZATION TOOLBOX is a library of optimization routines developed
in FORTRAN 90 for solving unconstrained and bound constrained nonlinear large-scale mini-
mization problems. Six optimization methods are implemented.

1. The (preconditioned) steepest descent.

2. The (preconditioned) nonlinear conjugate gradient.

3. The l-BFGS method.

4. The preconditioned l-BFGS method.

5. The truncated Newton method.

6. The preconditioned truncated Newton method.

The library is self-consistent: no other existing FORTRAN libraries are needed to use the code.
All the routines of the SEISCOPE OPTIMIZATION TOOLBOX are implemented in a reverse
communication framework to facilitate their use.

This manual is organized as follows:

• In Section 2, we give a quick overview of the different optimization methods available in
the SEISCOPE OPTIMIZATION TOOLBOX. References to detailed presentation of the
algorithms which are implemented are given.

• In Section 3, we present how to install the SEISCOPE OPTIMIZATION TOOLBOX.
For each of the optimization routines, a simple test case is provided. The correspond-
ing programs should be used as templates for using the SEISCOPE OPTIMIZATION
TOOLBOX routines.

• In Section 4, we present in details how to use each of the optimization routines.

• In Section 5, additional information on some technical points are given.

The information contained in the manual is redundant: there is no many differences in the
use of the different routines. However, we prefer repeating the information. The user can
directly read the part corresponding to the routine he wants to use without having to real all
the documentation about the other routines.

6

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

2 An overview of the routines in the toolbox

The routines implemented in the SEISCOPE OPTIMIZATION TOOLBOX are designed to
solve unconstrained and bound constrained nonlinear minimization problems, under the general
form

min
x∈Ω

f(x) (2.1)

where

Ω =
n∏

i=1

[ai, bi] ⊂ Rn n ∈ N (2.2)

All the routines belong to the class of local descent algorithms. From an initial guess x0, a
sequence of iterates is built following the recurrence

xk+1 = xk + αk∆xk, (2.3)

where

• αk is a steplength;

• ∆xk is a descent direction.

The recurrence (2.3) is repeated until convergence is reached (in a certain sense). The steplength
αk is computed through a linesearch process which is the same for all the routines in the TOOL-
BOX. This linesearch process satisfies the Wolfe conditions: this ensures that from an arbitrary
initial guess, convergence toward a local minimum will be obtained, provided f(x) is bounded
(and sufficiently smooth) (Nocedal and Wright, 2006). The satisfaction of the bound con-
straints is ensured through the projection of each iterate within the feasible domain Ω in the
linesearch process.

The computation of the descent direction differs from one routine to the other. The different
routines which are implemented in the SEISCOPE OPTIMIZATION TOOLBOX are presented
in the following.

2.1 Preconditioned steepest descent: PSTD

The preconditioned steepest descent uses the following descent direction

∆xk = −Pk∇f(xk), (2.4)

where

• ∇f(xk) is the gradient of the function f(xk) at point xk;

• Pk is an arbitrary preconditioning matrix.

Following the reverse communication implementation ot the SEISCOPE OPTIMIZATION
TOOLBOX, the information the user has to provide to the solver for using the PSTD rou-
tine is thus

7

SEISCOPE Project

• the cost function f(xk) for a given xk;

• the gradient of the cost function ∇f(xk) for a given xk;

• the gradient of the cost function multiplied by the preconditioner Pk∇f(xk) for a given
xk where Pk is the preconditioner

Note that if the user does not have any preconditioner at hand, the use of the identity is
possible. The method thus reduces to a standard steepest-descent method.

2.2 Preconditioned nonlinear conjugate gradient: PNLCG

The preconditioned nonlinear conjugate gradient method uses the following descent direction

∆xk = −Pk∇f(xk) + βk∆xk−1, (2.5)

where

• ∇f(xk) is the gradient of the function f(xk) at point xk;

• Pk is an arbitrary preconditioning matrix;

• βk is computed following the formula of Dai and Yuan (1999).

Following the reverse communication implementation of the SEISCOPE OPTIMIZATION
TOOLBOX, the information the user has to provide to the solver for using the PNLCG routine
is thus

• the cost function f(xk) for a given xk;

• the gradient of the cost function ∇f(xk) for a given xk;

• the gradient of the cost function multiplied by the preconditioner Pk∇f(xk) for a given
xk where Pk is the preconditioner

Note again that if the user does not have preconditioner at hand, the use of the identity is
possible. The method thus reduce to a standard nonlinear conjugate gradient method.

2.3 Quasi-Newton l-BFGS method: LBFGS

The l-BFGS method uses the following descent direction

∆xk = −Qk∇f(xk), (2.6)

where

• ∇f(xk) is the gradient of the function f(xk) at point xk;

• Qk is the l-BFGS approximation of the inverse Hessian operator H(xk)−1 = ∇2f(xk)−1

(more details on this approximation can be found in Byrd et al. (1995); Nocedal and
Wright (2006)).

8

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

Following the reverse communication implementation ot the SEISCOPE OPTIMIZATION
TOOLBOX, the information the user has to provide to the LBFGS routine is thus

• the cost function f(xk) for a given xk;

• the gradient of the cost function ∇f(xk) for a given xk.

The l-BFGS approximation Qk is directly determined by the LBFGS routine. No specific action
of the user is requested to compute it.

2.4 Quasi-Newton preconditioned l-BFGS method: PLBFGS

The preconditioned l-BFGS method uses the following descent direction

∆xk = −Q̃k∇f(xk), (2.7)

where

• ∇f(xk) is the gradient of the function f(xk) at point xk;

• Q̃k is the l-BFGS approximation of the inverse Hessian operator H(xk)−1 = ∇2f(xk)−1

computed from an initial estimation Pk of H(xk)−1 (more details on this approximation
can be found in Byrd et al. (1995); Nocedal and Wright (2006)).

Following the reverse communication implementation ot the SEISCOPE OPTIMIZATION
TOOLBOX, the information the user has to provide to the LBFGS routine is thus

• the cost function f(xk) for a given xk;

• the gradient of the cost function ∇f(xk) for a given xk;

• the preconditioned gradient of the cost function P0∇f(x0) at the first iteration;

• the multiplication of a given vector v by a preconditioning matrix Pk provided by the
user: Pkv.

The only difference with the LBFGS routine is that an additional information Pk on the inverse
Hessian approximation is inserted in the computation of Qk. For the user, this amounts to a
preconditioning operation, since this information is taken into account by multiplying a vector
by Pk. This can drastically enhance the convergence of the conventional l-BFGS algorithm.

2.5 Truncated Newton method: TRN

The truncated Newton method computes an approximate solution of the linear system

H(xk)∆xk = −∇f(xk), (2.8)

where

9

SEISCOPE Project

• ∇f(xk) is the gradient of the function f(xk) at point xk;

• H(xk) is the Hessian operator H(xk) = ∇2f(xk).

This approximate solution of the linear system is computed through a matrix-free conjugate
gradient algorithm. The stopping criterion for this system is

‖H(xk)∆xk +∇f(xk)‖ ≤ ηk‖∇f(xk)‖; (2.9)

where ηk is a forcing term which depends on the gradient current and previous value (see
Eisenstat and Walker (1994); Métivier et al. (2013) for more details).

Following the reverse communication implementation of the SEISCOPE OPTIMIZATION
TOOLBOX, the information the user has to provide to the TRN routine is thus

• the cost function f(xk) for a given xk;

• the gradient of the cost function ∇f(xk) for a given xk;

• the multiplication of a given vector v by the Hessian matrix H(xk): H(xk)v.

2.6 Preconditioned truncated Newton method: PTRN

The preconditioned truncated Newton method computes an inexact solution of the linear sys-
tem

PkH(xk)∆xk = −Pk∇f(xk), (2.10)

where

• ∇f(xk) is the gradient of the function f(xk) at point xk;

• H(xk) is the Hessian operator H(xk) = ∇2f(xk);

• Pk is a preconditioning matrix.

This inexact solution of the linear system is computed through a matrix-free conjugate gradient
algorithm. The stopping criterion for this system is

‖H(xk)∆xk +∇f(xk)‖ ≤ ηk‖∇f(xk)‖, (2.11)

where ηk is a forcing term which depends on the gradient current and previous value (see
Eisenstat and Walker (1994); Métivier et al. (2013) for more details).

Following the reverse communication implementation ot the SEISCOPE OPTIMIZATION
TOOLBOX, the information the user has to provide to the PTRN routine is thus

• the cost function f(xk) for a given xk;

• the gradient of the cost function ∇f(xk) for a given xk;

• the multiplication of a given vector v by the preconditioner Pk: Pkv;

• the multiplication of a given vector v by the Hessian matrix H(xk): H(xk)v.

10

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

3 Installation

To install the SEISCOPE OPTIMIZATION TOOLBOX, the user first has to decompress the
file SEISCOPE OPTIMIZATION TOOLBOX.tgz. This is achieved through the command

tar -xvzf SEISCOPE OPTIMIZATION TOOLBOX.tgz

This command will create the following directories

OPTIMIZATION

COMMON

DOC

PSTD

PNLCG

LBFGS

PLBFGS

TRN

PTRN

lib

Makefile

Makefile.inc

00README

00LEGAL STATEMENT

The SEISCOPE OPTIMIZATION TOOLBOX is used as a static library. This means that
the set of routines are gathered in a file *.a after the compilation. This library has to be
linked by the program calling the routines from the SEISCOPE OPTIMIZATION TOOLBOX.
Examples are provided in the sequel for generating small test programs.

3.1 Compilation

For compiling the library and generate the file libSEISCOPE OPTIM.a, the user first has to open
the file Makefile.inc and define which compiler should be used. This is done by editing the
first lines of Makefile.inc. The default compiler is ifort:

FC = ifort

Different compilation options can be chosen by modifying the macro OPTF. The default option is

11

SEISCOPE Project

FLAG = -O3 -assume byterecl.

Once this is done, the user simply has to type in the terminal the command

make lib

This will generate the file libSEISCOPE OPTIM.a in the directory ./lib. It is possible to
remove all compiled files (objects and library files) by typing the command

make clean

3.2 Compiling and running the test programs

Once the library has been compiled, the test programs can be compiled and executed. For each
optimization method, the test directory is organized as follows:

method

lib

kernel

test

run

bin

src

test.f90

Makefile

The source code of the test program is in the file test.f90. The test consists in the minimiza-
tion of the 2D Rosenbrock function.

f(x1, x2) = (1− x1)2 + 100(x2 − x2
1)2 (3.1)

This function is famous in the optimization community as an example of a non-convex function
with a global minimum in a narrow flat shaped valley. The convergence to this global minimum
is difficult. The source code of the Rosenbrock function is in

OPTIMIZATION/COMMON/test/rosenbrock.f90.

The function Rosenbrock(x,fcost,grad) computes the cost function and its gradient at point
x and return their values in fcost and grad respectively.

The function Rosenbrock Hess(x,d,Hd) computes the product of the vector d by the Hessian
operator H(x) and return the value in Hd.

To compile the test program, the Makefile in the directory OPTIMIZATION/method /test/src
has to be edited. As for the compilation of the library, the compiler as to be defined by editing

12

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

the first line of the Makefile. The default one is mpif90:

CXX = mpi90

Again, different compilation options can be chosen by modifying the macro FLAGS. The de-
fault option is

FLAG = -O3 -assume byterecl -warn noalign.

Once this is done, the compilation is done by typing

make

in the directory OPTIMIZATION/method /test/src. This will automatically create the test
object files and link them to the library. The result of the compilation is the executable file

OPTIMIZATION/method /test/bin/test.bin

The compiled files (objects and executable files) can be removed by typing the command

make clean

in the directory OPTIMIZATION/method /test/src. To run the executable file, the use has
to move to the directory OPTIMIZATION/method /test/run and type the command

../bin/test bin

The output on the console should be (for the PSTD algorithm)

END OF TEST
FINAL iterate is : 1.000495 1.000981
See the convergence history in iterate ST.dat

13

SEISCOPE Project

4 How to use the optimization routines?

All the routines of the SEISCOPE OPTIMIZATION TOOLBOX are implemented in a reverse
communication form. The function f(x) is minimized in a loop in which at each iteration, the
solver from the SEISCOPE OPTIMIZATION TOOLBOX is called. In return, a communication
FLAG tells the user the action he has to perform. These actions can be listed as:

• compute the cost function;

• compute the gradient;

• apply the preconditioner;

• apply the Hessian operator.

To use the optimization routines of the SEISCOPE OPTIMIZATION TOOLBOX, we recom-
mend the user to use the test files in the directory of each optimization routines as template
files. We describe in details these templates files in the following subsections.

4.1 Preconditioned Steepest Descent: PSTD

4.1.1 Variables declaration

The first step for using the PSTD method is to declare the inputs and outputs of the function.

1. Include the header file optim.h to declare the data structure optim which will contain
most of the information required by PSTD.

2. Declare the integer n, dimension of the problem (2.1).

3. Declare the real fcost, the cost function f computed at x.

4. Declare the vector x, the unknown x ∈ Rn of the minimization problem (2.1).

5. Declare the vector grad, which corresponds to the gradient of the cost function f at x:
∇f(x) ∈ Rn.

6. Declare the vector grad preco, which corresponds to the preconditioned gradient of the
cost function f at x: P∇f(x) ∈ Rn.

7. Declare the data structure optim.

8. Declare the chain of character of length 4 FLAG. This is the flag for the reverse commu-
nication between the PSTD routine and the user.

14

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

implicit none
include ’ optim type . h ’

integer : : n ! dimension o f the problem
real : : f c o s t ! c o s t f u n c t i o n v a l u e
real , dimension (:) , allocatable : : x ! current p o i n t
real , dimension (:) , allocatable : : grad ! current g r a d i e n t
real , dimension (:) , allocatable : : g rad preco ! p r e c o n d i t i o n e d g r a d i e n t
type (optim type) : : optim ! data s t r u c t u r e f o r the o p t i m i z e r
character∗4 : : FLAG ! communication FLAG

Declaration of the FORTRAN variables.

4.1.2 Initialization

The second step consists in initializing the problem.

1. Set the dimension n of the problem, n should be chosen such that n ≥ 1.

2. Initialize the communication flag to ’INIT’.

3. Set the maximum number of nonlinear iteration that can be performed optim%niter max.

4. Set the tolerance parameter for the stopping criterion optim%conv. The stopping criterion
which is implemented by default is

(f(x)/f(x0) < optim%conv) OR (optim%niter ≥ optim%niter max) . (4.1)

This means that the flag ’CONV’ will be returned to the user when this condition is
met. However, the user can define his own convergence criterion, as he defines himself
the convergence loop (see next section).

5. Set the flag for printing output: if optim%print flag is set to 1 the output files containing
information on the convergence history are created. No output files are created otherwise.

6. Set the flag for using/not using bound constraints: if optim%bound is set to 1, bound
constraints are used. If optim%bound is set to 0, no bound constraints are imposed.

7. If bound constraints have been activated, then the user must set additional variables.
First, allocate the vectors optim%ub and optim%lb for respectively “upper bounds” and
“lower bounds”. The size of this vectors has to be equal to the dimension of the opti-
mization problem n. Then set optim%ub and optim%lb with the corresponding bound
constraints values. Each component i of these vectors define upper and lower bounds for
the component xi of the unknown. Finally, set the tolerance optim%threshold. This
value gives the tolerance with which the bound constraints are satisfied. In practice, we
enforce the condition

optim%lbi + optim%threshold ≤ xi ≤ optim%ubi − optim%threshold (4.2)

15

SEISCOPE Project

8. Set the level of of information in the output file iterate ST.dat: if optim%debug is set
to true then information concerning the linesearch process will be printed, otherwise, if
it is set to false, the file iterate ST.dat will contain only the convergence history (see
5.2.5 for more details).

9. Define the initial guess: the unknown x has to be allocated and initialized to a specific
value.

10. VERY IMPORTANT: compute the cost function and the gradient corresponding to the
initial guess and store the result in fcost and grad.

11. VERY IMPORTANT: multiply the gradient by the preconditioner and store the result
in grad preco. Note that if no preconditioner is available, you simply have to copy grad
in grad preco. This means that the preconditioner is identity. In this case the PSTD
method is a standard steepest descent method (without preconditioning).

It is very important that fcost, grad and grad preco are initialized to the values correspond-
ing to the initial guess x on the first call to the solver PSTD.

n=2 ! dimension
FLAG=’INIT ’ ! f i r s t f l a g
optim%niter max =10000 ! maximum i t e r a t i o n number
optim%conv=1e−8 ! t o l e r a n c e f o r the s t o p p i n g c r i t e r i o n
optim%debug=. f a l s e . ! l e v e l o f d e t a i l s f o r output f i l e s
optim%p r i n g f l a g=1 ! p r i n t in format ion
optim%bound=1 ! a c t i v a t i o n o f bound c o n s t r a i n t s
allocate (optim%ub(n)) ! a l l o c a t e upper bound
allocate (optim%lb (n)) ! a l l o c a t e lower bound
ub (:)=40 . ! s e t upper bound
lb (:)=−40. ! s e t lower bound
optim%thre sho ld=1e−2 ! s e t t o l e r a n c e f o r bound c o n s t r a i n t s

allocate (x (n) , grad (n) , g rad preco (n)) ! a l l o c a t i o n
x (1)=1.5 ! s e t i n i t i a l p o i n t
x (2)=1.5

ca l l Rosenbrock (x , f c o s t , grad) ! i n i t i a l c o s t and g r a d i e n t
grad preco (:)= grad (:) ! no p r e c o n d i t i o n i n g

Initialization.

4.1.3 Minimization within the reverse communication loop

The third step consists in performing the minimization within the reverse communication loop.

1. Define the while loop. In the chosen example, the loop is terminated when the conver-
gence criterion is satisfied (or the maximum number of iteration has been reached), in
this case the communication flag is ’CONV’. The loop is also terminated when the flag
returned by the PSTD solver is ’FAIL’, which indicates that the linesearch process has
failed in finding a suitable steplength in the current descent direction.

16

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

2. At each iteration of the while loop, call the PSTD routine. On first call, the flag is set
to ’INIT’, the unknown x is initialized to the initial guess x0, and the variables fcost,
grad and grad preco contain respectively f(x0), ∇f(x0) and P0∇f(x0).

3. On return of the call to the PSTD routine, if the communication flag is ’GRAD’ then
the value of x has been modified. Compute the cost function f(x) and the gradient
∇f(x) at this new point in the variables fcost and grad. If the user wants, he can also
apply a preconditioner to the gradient value. In this case, the value Pk∇f(x) is stored in
grad preco. Note that the preconditioner can change throughout the iterations.

do while ((FLAG. ne . ’CONV’) . and . (FLAG. ne . ’ FAIL ’))
ca l l PSTD(n , x , f c o s t , grad , grad preco , optim ,FLAG)
i f (FLAG. eq . ’GRAD’) then

! compute c o s t and g r a d i e n t at p o i n t x
ca l l Rosenbrock (x , f c o s t , grad)
! no p r e c o n d i t i o n i n g
grad preco (:)= grad (:)

endif
enddo

Reverse communication loop.

4.1.4 End of the loop and output file

At the end of the reverse communication loop, either convergence has been reached and the
communication flag is ’CONV’, or the linesearch has failed and the communication flag is
’FAIL’. In both cases, the vector x contains the last value of the minimization sequence (2.3),
the best approximation to the solution of the minimization problem that can be found using
PSTD.

The convergence history is written in the file iterate ST.dat. This file contains a remainder
of the optimization settings: convergence criterion and maximum number of iteration. He also
presents the initial cost without normalization and the initial norm of the gradient. Then, it
presents on 7 columns the convergence history.

• Column 1 is for the nonlinear iteration number.

• Column 2 is for the non normalized cost function value.

• Column 3 is for the norm of the gradient.

• Column 4 is for the relative cost function value (normalized by the initial value, on the
first iteration this value is then always equal to 1).

• Column 5 is for the size of the steplength taken.

• Column 6 is for the number of linesearch iteration for determining the steplength.

• Column 7 is for the total number of gradient computation.

17

SEISCOPE Project

∗∗
STEEEPEST DESCENT ALGORITHM

∗∗
Convergence c r i t e r i o n : 1 .00E−08
Niter max : 10000
I n i t i a l co s t i s : 5 .65E+01
I n i t i a l norm grad i s : 4 .75E+02

∗∗
Niter fk | | gk | | fk / f0 alpha n l s ngrad

0 5 .65E+01 4 .75E+02 1 .00E+00 1 .00E+00 0 0
1 2 .74E+01 2 .45E+02 4 .86E−01 9 .77E−04 10 11
2 7 .93E−01 4 .69E+01 1 .40E−02 9 .77E−04 0 12
3 2 .08E−01 2 .04E+01 3 .68E−03 9 .77E−04 0 13
4 8 .38E−02 8 .15E+00 1 .48E−03 9 .77E−04 0 14
5 6 .49E−02 3 .39E+00 1 .15E−03 9 .77E−04 0 15
6 6 .15E−02 1 .40E+00 1 .09E−03 9 .77E−04 0 16
7 6 .10E−02 5 .98E−01 1 .08E−03 9 .77E−04 0 17
8 6 .08E−02 2 .97E−01 1 .08E−03 9 .77E−04 0 18
9 6 .08E−02 2 .07E−01 1 .08E−03 9 .77E−04 0 19

10 6 .07E−02 1 .88E−01 1 .08E−03 9 .77E−04 0 20

Output file iterate ST.dat.

4.2 Preconditioned nonlinear conjugate gradient: PNLCG

4.2.1 Variables declaration

The first step for using the PNLCG method is to declare the inputs and outputs of the function.

1. Include the header file optim.h to declare the data structure optim which will contain
most of the information required by PNLCG.

2. Declare the integer n, dimension of the problem (2.1).

3. Declare the real fcost, the cost function f computed at x.

4. Declare the vector x, the unknown x ∈ Rn of the minimization problem (2.1).

5. Declare the vector grad, which corresponds to the gradient of the cost function f at x:
∇f(x) ∈ Rn.

6. Declare the vector grad preco, which corresponds to the gradient of the cost function f
at x multiplied by the preconditioner: Pk∇f(x) ∈ Rn.

7. Declare the data structure optim.

8. Declare the chain of character of length 4 FLAG. This is the flag for the reverse commu-
nication between the PNLCG routine and the user.

implicit none
include ’ optim type . h ’

integer : : n ! dimension o f the problem
real : : f c o s t ! c o s t f u n c t i o n v a l u e
real , dimension (:) , allocatable : : x ! curren t p o i n t
real , dimension (:) , allocatable : : grad ! g r a d i e n t
real , dimension (:) , allocatable : : g rad preco ! p r e c o n d i t i o n e d g r a d i e n t
type (optim type) : : optim ! data s t r u c t u r e
character∗4 : : FLAG ! communication FLAG

18

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

Declaration of the FORTRAN variables.

4.2.2 Initialization

The second step consists in initializing the problem.

1. Set the dimension n of the problem, n should be chosen such that n ≥ 1.

2. Initialize the communication flag to ’INIT’.

3. Set the maximum number of nonlinear iteration that can be performed optim%niter max.

4. Set the tolerance parameter for the stopping criterion optim%conv. The stopping criterion
which is implemented by default is

(f(x)/f(x0) < optim%conv) OR (optim%niter ≥ optim%niter max) . (4.3)

This means that the flag ’CONV’ will be returned to the user when this condition is
met. However, the user can define his own convergence criterion, as he defines himself
the convergence loop (see next section).

5. Set the flag for printing output: optim%print flag is set to 1 the output files containing
information on the convergence history are created. No output files are created otherwise.

6. Set the level of of information in the output file iterate CG.dat: if optim%debug is set
to true then information concerning the linesearch process will be printed, otherwise, if
it is set to false, the file iterate ST.dat will contain only the convergence history (see
5.2.5 for more details).

7. Set the flag for using/not using bound constraints: if optim%bound is set to 1, bound
constraints are used. If optim%bound is set to 0, no bound constraints are imposed.

8. If bound constraints have been activated, then the user must set additional variables.
First, allocate the vectors optim%ub and optim%lb for respectively “upper bounds” and
“lower bounds”. The size of this vectors has to be equal to the dimension of the opti-
mization problem n. Then set optim%ub and optim%lb with the corresponding bound
constraints values. Each component i of these vectors define upper and lower bounds for
the component xi of the unknown. Finally, set the tolerance optim%threshold. This
value gives the tolerance with which the bound constraints are satisfied. In practice, we
enforce the condition

optim%lbi + optim%threshold ≤ xi ≤ optim%ubi − optim%threshold (4.4)

9. Define the initial guess: the unknown x has to be allocated and initialized to a specific
value.

10. VERY IMPORTANT: compute the cost function and the gradient corresponding to the
initial guess and store the result in fcost and grad

19

SEISCOPE Project

11. VERY IMPORTANT: multiply the gradient by the preconditioner and store the result
in grad preco. Note that if no preconditioner is available, you simply have to copy grad
in grad preco. This means that the preconditioner is identity. In this case the PNLCG
method is a standard nonlinear conjugate gradient (without preconditioning).

It is very important that fcost, grad and grad preco are initialized to the values corresponding
to the initial guess x on the first call to the solver PNLCG.

n=2 ! dimension
FLAG=’INIT ’ ! f i r s t f l a g
optim%niter max =10000 ! maximum i t e r a t i o n number
optim%conv=1e−8 ! t o l e r a n c e f o r the s t o p p i n g c r i t e r i o n
optim%debug=. f a l s e . ! l e v e l o f d e t a i l s f o r output f i l e s
optim%p r i n g f l a g=1 ! p r i n t in format ion
optim%bound=1 ! a c t i v a t i o n o f bound c o n s t r a i n t s
allocate (optim%ub(n)) ! a l l o c a t e upper bound
allocate (optim%lb (n)) ! a l l o c a t e lower bound
ub (:)=40 . ! s e t upper bound
lb (:)=−40. ! s e t lower bound
optim%thre sho ld=1e−0 ! s e t t o l e r a n c e f o r bound c o n s t r a i n t s

allocate (x (n) , grad (n) , g rad preco (n)) ! a l l o c a t i o n
x (1)=1.5 ! s e t i n i t i a l p o i n t
x (2)=1.5

ca l l Rosenbrock (x , f c o s t , grad) ! i n i t i a l c o s t and g r a d i e n t
grad preco (:)= grad (:) ! no p r e c o n d i t i o n i n g

Initialization.

4.2.3 Minimization within the reverse communication loop

The third step consists in performing the minimization within the reverse communication loop.

1. Define the while loop. In the chosen example, the loop is terminated when the con-
vergence criterion is satisfied. In this case the communication flag is ’CONV’. The loop
is also terminated when the flag returned by the PNLCG solver is ’FAIL’, which indi-
cates that the linesearch process has failed in finding a suitable steplength in the current
descent direction.

2. At each iteration of the while loop, call the PNLCG routine. On first call, the flag is set
to ’INIT’, the unknown x is initialized to the initial guess x0, and the variables fcost,
grad and grad preco contain respectively f(x0), ∇f(x0) and P0∇f(x0).

3. On return of the call to the PNLCG routine, if the communication flag is ’GRAD’ then
the value of x has been modified. Compute the cost function f(x) and the gradient ∇f(x)
at this new point in the variables fcost and grad. The user also has the possibility of
using his preconditioner. To do so he has to compute Pk∇f(x) and store it in the variable
grad preco. Note that the preconditioner can change throughout the iterations. If no
preconditioner is available, the user has to copy the gradient value ∇f(x) in grad preco.
In this case, the PNLCG method is equivalent to a nonlinear conjugate gradient method.

20

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

do while ((FLAG. ne . ’CONV’) . and . (FLAG. ne . ’ FAIL ’))
ca l l PNLCG(n , x , f c o s t , grad , grad preco , optim ,FLAG)
i f (FLAG. eq . ’GRAD’) then

! compute c o s t and g r a d i e n t at p o i n t x
ca l l Rosenbrock (x , f c o s t , grad)
! no p r e c o n d i t i o n i n g in t h i s t e s t : s imply copy grad in
! grad preco
grad preco (:)= grad (:)

endif
enddo

Reverse communication loop.

4.2.4 End of the loop and output file

At the end of the reverse communication loop, either convergence has been reached and the
communication flag is ’CONV’, or the linesearch has failed and the communication flag is
’FAIL’. In both cases, the vector x contains the last value of the minimization sequence (2.3),
the best approximation to the solution of the minimization problem that can be found using
the PNLCG.

The convergence history is written in the file iterate PC.dat. This file contains a remainder
of the optimization settings: convergence criterion and maximum number of iteration. He also
presents the initial cost without normalization and the initial norm of the gradient. Then, it
presents on 7 columns the convergence history.

• Column 1 is for the nonlinear iteration number.

• Column 2 is for the non normalized cost function value.

• Column 3 is for the norm of the gradient.

• Column 4 is for the relative cost function value (normalized by the initial value, on the
first iteration this value is then always equal to 1).

• Column 5 is for the size of the steplength taken.

• Column 6 is for the number of linesearch iteration for determining the steplength.

• Column 7 is for the total number of gradient computation.

21

SEISCOPE Project

∗∗
NONLINEAR CONJUGATE GRADIENT ALGORITHM

∗∗
Convergence c r i t e r i o n : 1 .00E−08
Niter max : 10000
I n i t i a l co s t i s : 5 .65E+01
I n i t i a l norm grad i s : 4 .75E+02

∗∗
Niter fk | | gk | | fk / f0 alpha n l s ngrad

0 5 .65E+01 4 .75E+02 1 .00E+00 1 .00E+00 0 0
1 2 .74E+01 2 .45E+02 4 .86E−01 9 .77E−04 10 11
2 4 .65E+00 1 .21E+02 8 .22E−02 4 .88E−04 1 13
3 9 .28E−02 9 .19E+00 1 .64E−03 4 .88E−04 0 14
4 6 .54E−02 2 .07E+00 1 .16E−03 4 .88E−04 0 15
5 6 .40E−02 2 .49E−01 1 .13E−03 4 .88E−04 0 16
6 6 .39E−02 1 .89E−01 1 .13E−03 4 .88E−04 0 17
7 6 .39E−02 2 .56E−01 1 .13E−03 4 .88E−04 0 18
8 6 .39E−02 3 .41E−01 1 .13E−03 4 .88E−04 0 19
9 6 .36E−02 8 .47E−01 1 .13E−03 4 .88E−04 0 20

10 6 .31E−02 1 .19E+00 1 .12E−03 4 .88E−04 0 21

Output file iterate CG.dat.

4.3 Quasi-Newton l-BFGS method: LBFGS

4.3.1 Variables declaration

The first step for using the LBFGS method is to declare the inputs and outputs of the function.

1. Include the header file optim.h to declare the data structure optim which will contain
most of the information required by LBFGS.

2. Declare the integer n, dimension of the problem (2.1).

3. Declare the real fcost, the cost function f computed at x.

4. Declare the vector x, the unknown x ∈ Rn of the minimization problem (2.1).

5. Declare the vector grad, which corresponds to the gradient of the cost function f at x:
∇f(x) ∈ Rn.

6. Declare the data structure optim.

7. Declare the chain of character of length 4 FLAG. This is the flag for the reverse commu-
nication between the LBFGS routine and the user.

implicit none
include ’ optim type . h ’

integer : : n ! dimension o f the problem
real : : f c o s t ! c o s t f u n c t i o n v a l u e
real , dimension (:) , allocatable : : x ! curren t p o i n t
real , dimension (:) , allocatable : : grad ! curren t g r a d i e n t
type (optim type) : : optim ! data s t r u c t u r e
character∗4 : : FLAG ! communication FLAG

Declaration of the FORTRAN variables.

22

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

4.3.2 Initialization

The second step consists in initializing the problem.

1. Set the dimension n of the problem, n should be chosen such that n ≥ 1.

2. Initialize the communication flag to ’INIT’.

3. Set the maximum number of nonlinear iteration that can be performed optim%niter max.

4. Set the tolerance parameter for the stopping criterion optim%conv. The stopping criterion
which is implemented by default is

(f(x)/f(x0) < optim%conv) OR (optim%niter ≥ optim%niter max) . (4.5)

This means that the flag ’CONV’ will be returned to the user when this condition is
met. However, the user can define his own convergence criterion, as he defines himself
the convergence loop (see next section).

5. Set the flag for printing output: optim%print flag is set to 1 the output files containing
information on the convergence history are created. No output files are created otherwise.

6. Set the level of of information in the output file iterate LB.dat: if optim%debug is set
to true then information concerning the linesearch process will be printed, otherwise, if
it is set to false, the file iterate LB.dat will contain only the convergence history (see
5.2.5 for more details).

7. Set the maximum number of pairs of vectors which will be used to compute the l-BFGS
approximation of the inverse Hessian. This is the variable optim%l. Usual choices for l
go from 3 to 40.

8. Set the flag for using/not using bound constraints: if optim%bound is set to 1, bound
constraints are used. If optim%bound is set to 0, no bound constraints are imposed.

9. If bound constraints have been activated, then the user must set additional variables.
First, allocate the vectors optim%ub and optim%lb for respectively “upper bounds” and
“lower bounds”. The size of this vectors has to be equal to the dimension of the opti-
mization problem n. Then set optim%ub and optim%lb with the corresponding bound
constraints values. Each component i of these vectors define upper and lower bounds for
the component xi of the unknown. Finally, set the tolerance optim%threshold. This
value gives the tolerance with which the bound constraints are satisfied. In practice, we
enforce the condition

optim%lbi + optim%threshold ≤ xi ≤ optim%ubi − optim%threshold (4.6)

10. Define the initial guess: the unknown x has to be allocated and initialized to a specific
value.

11. VERY IMPORTANT: compute the cost function and the gradient corresponding to the
initial guess and store the result in fcost and grad

23

SEISCOPE Project

It is very important that fcost, and grad are initialized to the values corresponding to the
initial guess x on the first call to the solver LBFGS.

n=2 ! dimension
FLAG=’INIT ’ ! f i r s t f l a g
optim%niter max =10000 ! maximum i t e r a t i o n number
optim%conv=1e−8 ! t o l e r a n c e f o r the s t o p p i n g c r i t e r i o n
optim%debug=. f a l s e . ! l e v e l o f d e t a i l s f o r output f i l e s
optim%l =20 ! maximum number o f s t o r e d p a i r s used f o r

! the l−BFGS approximation
optim%p r i n g f l a g=1 ! p r i n t in format ion
optim%bound=1 ! a c t i v a t i o n o f bound c o n s t r a i n t s
allocate (optim%ub(n)) ! a l l o c a t e upper bound
allocate (optim%lb (n)) ! a l l o c a t e lower bound
ub (:)=40 . ! s e t upper bound
lb (:)=−40. ! s e t lower bound
optim%thre sho ld=1e−2 ! s e t t o l e r a n c e f o r bound c o n s t r a i n t s

allocate (x (n) , grad (n) , g rad preco (n)) ! a l l o c a t i o n
x (1)=1.5 ! s e t i n i t i a l p o i n t
x (2)=1.5

ca l l Rosenbrock (x , f c o s t , grad) ! i n i t i a l c o s t and g r a d i e n t

Initialization.

4.3.3 Minimization within the reverse communication loop

The third step consists in performing the minimization within the reverse communication loop.

1. Define the while loop. In the chosen example, the loop is terminated when the con-
vergence criterion is satisfied. In this case the communication flag is ’CONV’. The loop
is also terminated when the flag returned by the LBFGS solver is ’FAIL’, which indi-
cates that the linesearch process has failed in finding a suitable steplength in the current
descent direction.

2. At each iteration of the while loop, call the LBFGS routine. On first call, the flag is set
to ’INIT’, the unknown x is initialized to the initial guess x0, and the variables fcost
and grad contain respectively f(x0) and ∇f(x0).

3. On return of the call to the LBFGS routine, if the communication flag is ’GRAD’ then
the value of x has been modified. Compute the cost function f(x) and the gradient ∇f(x)
at this new point in the variables fcost and grad.

do while ((FLAG. ne . ’CONV’) . and . (FLAG. ne . ’ FAIL ’))
ca l l LBFGS(n , x , f c o s t , grad , optim ,FLAG)
i f (FLAG. eq . ’GRAD’) then

! compute c o s t and g r a d i e n t at p o i n t x
ca l l Rosenbrock (x , f c o s t , grad)

endif
enddo

24

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

∗∗
l−BFGS ALGORITHM

∗∗
Convergence c r i t e r i o n : 1 .00E−08
Niter max : 10000
I n i t i a l co s t i s : 5 .65E+01
I n i t i a l norm grad i s : 4 .75E+02

∗∗
Niter fk | | gk | | fk / f0 alpha n l s ngrad

0 5 .65E+01 4 .75E+02 1 .00E+00 1 .00E+00 0 0
1 2 .74E+01 2 .45E+02 4 .86E−01 9 .77E−04 10 11
2 2 .12E+00 7 .47E+01 3 .75E−02 9 .77E−01 3 15
3 1 .67E−01 1 .75E+01 2 .96E−03 9 .77E−01 0 16
4 6 .37E−02 5 .76E−01 1 .13E−03 9 .77E−01 0 17
5 6 .36E−02 1 .89E−01 1 .12E−03 9 .77E−01 0 18
6 6 .35E−02 1 .94E−01 1 .12E−03 9 .77E−01 0 19
7 6 .33E−02 5 .40E−01 1 .12E−03 9 .77E−01 0 20
8 6 .28E−02 1 .06E+00 1 .11E−03 9 .77E−01 0 21
9 6 .15E−02 2 .00E+00 1 .09E−03 9 .77E−01 0 22

10 5 .86E−02 3 .31E+00 1 .04E−03 9 .77E−01 0 23

Output file iterate LB.dat.

Reverse communication loop.

4.3.4 End of the loop and output file

At the end of the reverse communication loop, either convergence has been reached and the
communication flag is ’CONV’, or the linesearch has failed and the communication flag is
’FAIL’. In both cases, the vector x contains the last value of the minimization sequence (2.3),
the best approximation to the solution of the minimization problem that can be found using
LBFGS.

The convergence history is written in the file iterate LB.dat. This file contains a remainder
of the optimization settings: convergence criterion and maximum number of iteration. He also
presents the initial cost without normalization and the initial norm of the gradient. Then, it
presents on 7 columns the convergence history.

• Column 1 is for the nonlinear iteration number.

• Column 2 is for the non normalized cost function value.

• Column 3 is for the norm of the gradient.

• Column 4 is for the relative cost function value (normalized by the initial value, on the
first iteration this value is then always equal to 1).

• Column 5 is for the size of the steplength taken.

• Column 6 is for the number of linesearch iteration for determining the steplength.

• Column 7 is for the total number of gradient computation.

25

SEISCOPE Project

4.4 Quasi-Newton preconditioned l-BFGS method: PLBFGS

4.4.1 Variables declaration

The first step for using the PLBFGS method is to declare the inputs and outputs of the
function.

1. Include the header file optim.h to declare the data structure optim which will contain
most of the information required by PLBFGS.

2. Declare the integer n, dimension of the problem (2.1).

3. Declare the real fcost, the cost function f computed at x.

4. Declare the vector x, the unknown x ∈ Rn of the minimization problem (2.1).

5. Declare the vector grad, which corresponds to the gradient of the cost function f at x:
∇f(x) ∈ Rn.

6. Declare the vector grad preco, which corresponds to the gradient of the cost function f
at x multiplied by the preconditioner: Pk∇f(x) ∈ Rn. This structure is used only at the
first iteration.

7. Declare the data structure optim.

8. Declare the chain of character of length 4 FLAG. This is the flag for the reverse commu-
nication between the PLBFGS routine and the user.

implicit none
include ’ optim type . h ’

integer : : n ! dimension o f the problem
real : : f c o s t ! c o s t f u n c t i o n v a l u e
real , dimension (:) , allocatable : : x ! curren t p o i n t
real , dimension (:) , allocatable : : grad ! curren t g r a d i e n t
type (optim type) : : optim ! data s t r u c t u r e f o r the o p t i m i z e r
character∗4 : : FLAG ! communication FLAG

Declaration of the FORTRAN variables.

4.4.2 Initialization

The second step consists in initializing the problem.

1. Set the dimension n of the problem, n should be chosen such that n ≥ 1.

2. Initialize the communication flag to ’INIT’.

3. Set the maximum number of nonlinear iteration that can be performed optim%niter max.

26

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

4. Set the tolerance parameter for the stopping criterion optim%conv. The stopping criterion
which is implemented by default is

(f(x)/f(x0) < optim%conv) OR (optim%niter ≥ optim%niter max) . (4.7)

This means that the flag ’CONV’ will be returned to the user when this condition is
met. However, the user can define his own convergence criterion, as he defines himself
the convergence loop (see next section).

5. Set the flag for printing output: optim%print flag is set to 1 the output files containing
information on the convergence history are created. No output files are created otherwise.

6. Set the level of of information in the output file iterate PLB.dat: if optim%debug is set
to true then information concerning the linesearch process will be printed, otherwise, if
it is set to false, the file iterate LB.dat will contain only the convergence history (see
5.2.5 for more details).

7. Set the maximum number of pairs of vectors which will be used to compute the l-BFGS
approximation of the inverse Hessian. This is the variable optim%l. Usual choices for l
go from 3 to 40. item Set the flag for using/not using bound constraints: if optim%bound
is set to 1, bound constraints are used. If optim%bound is set to 0, no bound constraints
are imposed.

8. If bound constraints have been activated, then the user must set additional variables.
First, allocate the vectors optim%ub and optim%lb for respectively “upper bounds” and
“lower bounds”. The size of this vectors has to be equal to the dimension of the opti-
mization problem n. Then set optim%ub and optim%lb with the corresponding bound
constraints values. Each component i of these vectors define upper and lower bounds for
the component xi of the unknown. Finally, set the tolerance optim%threshold. This
value gives the tolerance with which the bound constraints are satisfied. In practice, we
enforce the condition

optim%lbi + optim%threshold ≤ xi ≤ optim%ubi − optim%threshold (4.8)

9. Define the initial guess: the unknown x has to be allocated and initialized to a specific
value.

10. VERY IMPORTANT: compute the cost function and the gradient corresponding to the
initial guess and store the result in fcost and grad

11. VERY IMPORTANT: apply the preconditioner ONLY AT FIRST ITERATION on the
gradient; grad preco should contain P0∇f(x0) at initialization. This has to be done
only at initialization. The preconditioning operations within the loop need not act on
the gradient grad.

It is very important that fcost, grad and grad preco are initialized to the values corresponding
to the initial guess x on the first call to the solver PLBFGS.

27

SEISCOPE Project

n=2 ! dimension
FLAG=’INIT ’ ! f i r s t f l a g
optim%niter max =10000 ! maximum i t e r a t i o n number
optim%conv=1e−8 ! t o l e r a n c e f o r the s t o p p i n g c r i t e r i o n
optim%debug=. f a l s e . ! l e v e l o f d e t a i l s f o r output f i l e s
optim%l =20 ! maximum number o f s t o r e d p a i r s used f o r

! the l−BFGS approximation
optim%p r i n g f l a g=1 ! p r i n t in format ion
optim%bound=1 ! a c t i v a t i o n o f bound c o n s t r a i n t s
allocate (optim%ub(n)) ! a l l o c a t e upper bound
allocate (optim%lb (n)) ! a l l o c a t e lower bound
ub (:)=40 . ! s e t upper bound
lb (:)=−40. ! s e t lower bound
optim%thre sho ld=1e−2 ! s e t t o l e r a n c e f o r bound c o n s t r a i n t s

allocate (x (n) , grad (n) , g rad preco (n)) ! a l l o c a t i o n
x (1)=1.5 ! s e t i n i t i a l p o i n t
x (2)=1.5

ca l l Rosenbrock (x , f c o s t , grad) ! i n i t i a l c o s t and g r a d i e n t
grad preco (:)= grad (:) ! no p r e c o n d i t i o n i n g

Initialization.

4.4.3 Minimization within the reverse communication loop

The third step consists in performing the minimization within the reverse communication loop.

1. Define the while loop. In the chosen example, the loop is terminated when the con-
vergence criterion is satisfied. In this case the communication flag is ’CONV’. The loop
is also terminated when the flag returned by the PLBFGS solver is ’FAIL’, which indi-
cates that the linesearch process has failed in finding a suitable steplength in the current
descent direction.

2. At each iteration of the while loop, call the PLBFGS routine. On first call, the flag is set
to ’INIT’, the unknown x is initialized to the initial guess x0, and the variables fcost,
grad and grad preco contain respectively f(x0), ∇f(x0) and P0∇f(x0).

3. On return of the call to the PLBFGS routine, if the communication flag is ’GRAD’ then
the value of x has been modified. Compute the cost function f(x) and the gradient ∇f(x)
at this new point in the variables fcost and grad.

4. On return of the call to the PLBFGS routine, if the communication flag is ’PREC’ then
the user has the possibility of applying his preconditioner. To do so, the user must
multiply the vector optim%q plb by the preconditioner Pk, and store the result directly
in optim%q plb. The old value of optim%q plb does not have to be stored. If nothing
is done at this stage, the PLBFGS method is equivalent to the LBFGS method (no
preconditioning is applied). Note that the preconditioner can change throughout the
iterations.

28

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

do while ((FLAG. ne . ’CONV’) . and . (FLAG. ne . ’ FAIL ’))
ca l l PLBFGS(n , x , f c o s t , grad , grad preco , optim ,FLAG)
i f (FLAG. eq . ’GRAD’) then

ca l l Rosenbrock (x , f c o s t , grad)
endif
i f (FLAG. eq . ’PREC’) then

! app ly p r e c o n d i t i o n i n g to optim%q p l b
! i f noth ing i s done , PLBFGS i s e q u i v a l e n t to LBFGS
optim%q plb (:)= optim%q plb (:)

endif
enddo

Reverse communication loop.

4.4.4 End of the loop and output file

At the end of the reverse communication loop, either convergence has been reached and the
communication flag is ’CONV’, or the linesearch has failed and the communication flag is
’FAIL’. In both cases, the vector x contains the last value of the minimization sequence (2.3),
the best approximation to the solution of the minimization problem that can be found using
PLBFGS.

The convergence history is written in the file iterate PLB.dat. This file contains a remainder
of the optimization settings: convergence criterion and maximum number of iteration. He also
presents the initial cost without normalization and the initial norm of the gradient. Then, it
presents on 7 columns the convergence history.

• Column 1 is for the nonlinear iteration number.

• Column 2 is for the non normalized cost function value.

• Column 3 is for the norm of the gradient.

• Column 4 is for the relative cost function value (normalized by the initial value, on the
first iteration this value is then always equal to 1).

• Column 5 is for the size of the steplength taken.

• Column 6 is for the number of linesearch iteration for determining the steplength.

• Column 7 is for the total number of gradient computation.

29

SEISCOPE Project

∗∗
PRECONDITIONED l−BFGS ALGORITHM

∗∗
Convergence c r i t e r i o n : 1 .00E−08
Niter max : 10000
I n i t i a l co s t i s : 5 .65E+01
I n i t i a l norm grad i s : 4 .75E+02

∗∗
Niter fk | | gk | | fk / f0 alpha n l s ngrad

0 5 .65E+01 4 .75E+02 1 .00E+00 1 .00E+00 0 0
1 2 .74E+01 2 .45E+02 4 .86E−01 9 .77E−04 10 11
2 2 .12E+00 7 .47E+01 3 .75E−02 9 .77E−01 3 15
3 1 .67E−01 1 .75E+01 2 .96E−03 9 .77E−01 0 16
4 6 .37E−02 5 .76E−01 1 .13E−03 9 .77E−01 0 17
5 6 .36E−02 1 .89E−01 1 .12E−03 9 .77E−01 0 18
6 6 .35E−02 1 .94E−01 1 .12E−03 9 .77E−01 0 19
7 6 .33E−02 5 .40E−01 1 .12E−03 9 .77E−01 0 20
8 6 .28E−02 1 .06E+00 1 .11E−03 9 .77E−01 0 21
9 6 .15E−02 2 .00E+00 1 .09E−03 9 .77E−01 0 22

10 5 .86E−02 3 .31E+00 1 .04E−03 9 .77E−01 0 23

Output file iterate PLB.dat.

4.5 Truncated Newton method: TRN

4.5.1 Variables declaration

The first step for using the TRN method is to declare the inputs and outputs of the function.

1. Include the header file optim.h to declare the data structure optim which will contain
most of the information required by TRN.

2. Declare the integer n, dimension of the problem (2.1).

3. Declare the real fcost, the cost function f computed at x.

4. Declare the vector x, the unknown x ∈ Rn of the minimization problem (2.1).

5. Declare the vector grad, which corresponds to the gradient of the cost function f at x:
∇f(x) ∈ Rn.

6. Declare the data structure optim.

7. Declare the chain of character of length 4 FLAG. This is the flag for the reverse commu-
nication between the TRN routine and the user.

implicit none
include ’ optim type . h ’

integer : : n ! dimension o f the problem
real : : f c o s t ! c o s t f u n c t i o n v a l u e
real , dimension (:) , allocatable : : x ! curren t p o i n t
real , dimension (:) , allocatable : : grad ! curren t g r a d i e n t
type (optim type) : : optim ! data s t r u c t u r e f o r the o p t i m i z e r
character∗4 : : FLAG ! communication FLAG

Declaration of the FORTRAN variables.

30

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

4.5.2 Initialization

The second step consists in initializing the problem.

1. Set the dimension n of the problem, n should be chosen such that n ≥ 1.

2. Initialize the communication flag to ’INIT’.

3. Set the maximum number of nonlinear iteration that can be performed optim%niter max.

4. Set the tolerance parameter for the stopping criterion optim%conv. The stopping criterion
which is implemented by default is

(f(x)/f(x0) < optim%conv) OR (optim%niter ≥ optim%niter max) . (4.9)

This means that the flag ’CONV’ will be returned to the user when this condition is
met. However, the user can define his own convergence criterion, as he defines himself
the convergence loop (see next section).

5. Set the flag for printing output: optim%print flag is set to 1 the output files containing
information on the convergence history are created. No output files are created otherwise.

6. Set the level of of information in the output files iterate TRN.dat and iterate TRN CG.dat:
if optim%debug is set to true then information concerning the linesearch process will be
printed in iterate TRN.dat. In addition, extra information on the convergence of the in-
ner iterations through the conjugate gradient algorithm will be printed in iterate TRN CG.dat
(namely the decrease of the quadratic form associated to the symmetric definite linear sys-
tem). Otherwise, if it is set to false, the files iterate TRN.dat and iterate TRN CG.dat
will contain only the convergence history (see 5.2.5 and 5.4.2 for more details).

7. Set the maximum number of iterations optim%niter CG max for the resolution of the inner
linear system using the matrix-free conjugate gradient algorithm. This linear system is
solved to compute an approximation of the Newton descent direction. item Set the flag
for using/not using bound constraints: if optim%bound is set to 1, bound constraints are
used. If optim%bound is set to 0, no bound constraints are imposed.

8. If bound constraints have been activated, then the user must set additional variables.
First, allocate the vectors optim%ub and optim%lb for respectively “upper bounds” and
“lower bounds”. The size of this vectors has to be equal to the dimension of the opti-
mization problem n. Then set optim%ub and optim%lb with the corresponding bound
constraints values. Each component i of these vectors define upper and lower bounds for
the component xi of the unknown. Finally, set the tolerance optim%threshold. This
value gives the tolerance with which the bound constraints are satisfied. In practice, we
enforce the condition

optim%lbi + optim%threshold ≤ xi ≤ optim%ubi − optim%threshold (4.10)

9. Define the initial guess: the unknown x has to be allocated and initialized to a specific
value.

31

SEISCOPE Project

10. VERY IMPORTANT: compute the cost function and the gradient corresponding to the
initial guess and store the result in fcost and grad

It is very important that fcost, and grad are initialized to the values corresponding to the
initial guess x on the first call to the solver TRN.

n=2 ! dimension
FLAG=’INIT ’ ! f i r s t f l a g
optim%niter max=100 ! maximum i t e r a t i o n number
optim%conv=1e−8 ! t o l e r a n c e f o r the s t o p p i n g c r i t e r i o n
optim%debug=. f a l s e . ! l e v e l o f d e t a i l s f o r output f i l e s
optim%niter max CG=5 ! maximum number o f inner con juga te g r a d i e n t

! i t e r a t i o n s
optim%p r i n g f l a g=1 ! p r i n t in format ion
optim%bound=1 ! a c t i v a t i o n o f bound c o n s t r a i n t s
allocate (optim%ub(n)) ! a l l o c a t e upper bound
allocate (optim%lb (n)) ! a l l o c a t e lower bound
ub (:)=40 . ! s e t upper bound
lb (:)=−40. ! s e t lower bound
optim%thre sho ld=1e−2 ! s e t t o l e r a n c e f o r bound c o n s t r a i n t s

allocate (x (n) , grad (n) , g rad preco (n)) ! a l l o c a t i o n
x (1)=1.5 ! s e t i n i t i a l p o i n t
x (2)=1.5

ca l l Rosenbrock (x , f c o s t , grad) ! i n i t i a l c o s t and g r a d i e n t

Initialization.

4.5.3 Minimization within the reverse communication loop

The third step consists in performing the minimization within the reverse communication loop.

1. Define the while loop. In the chosen example, the loop is terminated when the conver-
gence criterion is satisfied. In this case the communication flag is ’CONV’. The loop is
also terminated when the flag returned by the TRN solver is ’FAIL’, which indicates that
the linesearch process has failed in finding a suitable steplength in the current descent
direction.

2. At each iteration of the while loop, call the TRN routine. On first call, the flag is set to
’INIT’, the unknown x is initialized to the initial guess x0, and the variables fcost and
grad contain respectively f(x0) and ∇f(x0).

3. On return of the call to the TRN routine, if the communication flag is ’GRAD’ then the
value of x has been modified. Compute the cost function f(x) and the gradient ∇f(x)
at this new point in the variables fcost and grad.

4. On return of the call to the TRN routine, if the communication flag is ’HESS’ then the
user is requested for performing one Hessian-vector product for the resolution of the inner
linear system. The vector to multiply is in optim%d. The result of the multiplication of

32

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

this vector by the Hessian operator has to be stored in the varialbe optim%Hd. Be careful
not to modify the value of the vector optim%d.

do while ((FLAG. ne . ’CONV’) . and . (FLAG. ne . ’ FAIL ’))
ca l l TRN(n , x , f c o s t , grad , optim ,FLAG)
i f (FLAG. eq . ’GRAD’) then

ca l l Rosenbrock (x , f c o s t , grad)
e l s e i f (FLAG. eq . ’HESS ’) then

ca l l Rosenbrock Hess (x , optim%d , optim%Hd)
endif

enddo

Reverse communication loop.

4.5.4 End of the loop and output file

At the end of the reverse communication loop, either convergence has been reached and the
communication flag is ’CONV’, or the linesearch has failed and the communication flag is
’FAIL’. In both cases, the vector x contains the last value of the minimization sequence (2.3),
the best approximation to the solution of the minimization problem that can be found using
TRN.

The convergence history is written in the file iterate TRN.dat. This file contains a remainder
of the optimization settings: convergence criterion and maximum number of iterations. He also
presents the initial cost without normalization and the initial norm of the gradient. Then, it
presents on 10 columns the convergence history.

• Column 1 is for the nonlinear iteration number.

• Column 2 is for the non normalized cost function value.

• Column 3 is for the norm of the gradient.

• Column 4 is for the relative cost function value (normalized by the initial value, on the
first iteration this value is then always equal to 1).

• Column 5 is for the size of the steplength taken.

• Column 6 is for the number of linesearch iteration for determining the steplength.

• Column 7 is for the number of conjugate gradient iteration used to compute the descent
direction

• Column 8 is for the forcing term η used to define the stopping criterion for the inner
iterations.

• Column 9 is for the total number of gradient computation.

• Column 10 is for the total number of Hessian-vector products.

33

SEISCOPE Project

∗∗
TRUNCATED NEWTON ALGORITHM

∗∗
Convergence c r i t e r i o n : 1 .00E−08
Niter max : 100
I n i t i a l co s t i s : 5 .65E+01
I n i t i a l norm grad i s : 4 .75E+02
Maximum CG i t e r : 5

∗∗
Niter fk | | gk | | fk / f0 alpha n l s nit CG eta ngrad nhess

0 5 .65E+01 4 .75E+02 1 .00E+00 1 .00E+00 0 0 9 .00E−01 0 0
1 1 .73E+00 7 .19E+01 3 .05E−02 1 .00E+00 0 1 9 .00E−01 2 1
2 6 .94E−02 2 .92E+00 1 .23E−03 1 .00E+00 0 1 8 .43E−01 3 2
3 6 .65E−02 1 .90E−01 1 .18E−03 1 .00E+00 0 1 7 .59E−01 4 3
4 3 .51E−02 3 .14E+00 6 .21E−04 2 .50E−01 2 2 6 .40E−01 7 5
5 3 .35E−02 2 .36E+00 5 .92E−04 2 .50E−01 0 1 9 .00E−01 8 6
6 3 .25E−02 1 .77E+00 5 .76E−04 2 .50E−01 0 1 8 .43E−01 9 7
7 3 .20E−02 1 .33E+00 5 .67E−04 2 .50E−01 0 1 7 .59E−01 10 8
8 3 .17E−02 9 .97E−01 5 .61E−04 2 .50E−01 0 1 7 .52E−01 11 9
9 3 .15E−02 7 .49E−01 5 .58E−04 2 .50E−01 0 1 7 .54E−01 12 10

10 3 .14E−02 5 .62E−01 5 .57E−04 2 .50E−01 0 1 7 .57E−01 13 11

Output file iterate TRN.dat.

Additional information on the convergence of the inner linear system is written in the file
iterate TRN CG.dat. This file contains a remainder of the optimization settings: convergence
criterion, maximum number of iterations, maximum number of iteration for the resolution of
the inner linear systems. He also presents the initial cost without normalization and the initial
norm of the gradient. Then, for each nonlinear iteration, a convergence history of the inner
liner system using the matrix-free conjugate gradient is presented. The number of the nonlinear
iteration appears at the top, as well as the value of the forcing term η for this nonlinear iteration.
Then, the convergence history is presented on 4 columns.

• Column 1 is for the iteration number

• Column 2 is for the value of the quadratic function associated with the linear system,
which is supposed to be symmetric definite. This information is available only if the
option optim%debug is set to true. If it is set to false, only 0 is written as a default
value.

• Column 3 is for the norm of the residuals of the inner system.

• Column 4 is for the relative residuals value. When this value becomes lower than η, the
stopping criterion is satisfied.

34

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

∗∗
TRUNCATED NEWTON ALGORITHM

INNER CG HISTORY
∗∗

Convergence c r i t e r i o n : 1 .00E−08
Niter max : 100
I n i t i a l co s t i s : 5 .65E+01
I n i t i a l norm grad i s : 4 .75E+02
Maximum CG i t e r : 5

∗∗
−−

NONLINEAR ITERATION 0 ETA IS : 9 .00E−01
−−

Iter CG qk norm res norm res / | | gk | |
0 0 .00E+00 4 .75E+02 1 .00E+00
1 0 .00E+00 1 .86E+01 3 .92E−02

−−
NONLINEAR ITERATION 1 ETA IS : 8 .43E−01
−−

Iter CG qk norm res norm res / | | gk | |
0 0 .00E+00 7 .19E+01 1 .00E+00
1 0 .00E+00 5 .83E−01 8 .11E−03

−−
NONLINEAR ITERATION 2 ETA IS : 7 .59E−01
−−

Iter CG qk norm res norm res / | | gk | |
0 0 .00E+00 2 .92E+00 1 .00E+00
1 0 .00E+00 1 .89E−01 6 .49E−02

−−
NONLINEAR ITERATION 3 ETA IS : 6 .40E−01
−−

Iter CG qk norm res norm res / | | gk | |
0 0 .00E+00 1 .90E−01 1 .00E+00
1 0 .00E+00 4 .82E+00 2 .53E+01
2 0 .00E+00 1 .63E−04 8 .55E−04

Output file iterate TRN CG.dat.

4.6 Preconditioned truncated Newton method: PTRN

4.6.1 Variables declaration

The first step for using the PTRN method is to declare the inputs and outputs of the function.

1. Include the header file optim.h to declare the data structure optim which will contain
most of the information required by TRN.

2. Declare the integer n, dimension of the problem (2.1).

3. Declare the real fcost, the cost function f computed at x.

4. Declare the vector x, the unknown x ∈ Rn of the minimization problem (2.1).

5. Declare the vector grad, which corresponds to the gradient of the cost function f at x:
∇f(x) ∈ Rn.

6. Declare the vector grad preco, which corresponds to the gradient of the cost function f
at x multiplied by the preconditioner: Pk∇f(x) ∈ Rn.

7. Declare the data structure optim.

8. Declare the chain of character of length 4 FLAG. This is the flag for the reverse commu-
nication between the TRN routine and the user.

35

SEISCOPE Project

implicit none
include ’ optim type . h ’

integer : : n ! dimension o f the problem
real : : f c o s t ! c o s t f u n c t i o n v a l u e
real , dimension (:) , allocatable : : x ! curren t p o i n t
real , dimension (:) , allocatable : : grad ! curren t g r a d i e n t
real , dimension (:) , allocatable : : g rad preco ! p r e c o n d i t i o n e d current g r a d i e n t
type (optim type) : : optim ! data s t r u c t u r e f o r the o p t i m i z e r
character∗4 : : FLAG ! communication FLAG

Declaration of the FORTRAN variables.

4.6.2 Initialization

The second step consists in initializing the problem.

1. Set the dimension n of the problem, n should be chosen such that n ≥ 1.

2. Initialize the communication flag to ’INIT’.

3. Set the maximum number of nonlinear iteration that can be performed optim%niter max.

4. Set the tolerance parameter for the stopping criterion optim%conv. The stopping criterion
which is implemented by default is

(f(x)/f(x0) < optim%conv) OR (optim%niter ≥ optim%niter max) . (4.11)

This means that the flag ’CONV’ will be returned to the user when this condition is
met. However, the user can define his own convergence criterion, as he defines himself
the convergence loop (see next section).

5. Set the flag for printing output: optim%print flag is set to 1 the output files containing
information on the convergence history are created. No output files are created otherwise.

6. Set the level of of information in the output files iterate PTRN.dat and iterate PTRN CG.dat:
if optim%debug is set to true then information concerning the linesearch process will be
printed in iterate PTRN.dat. In addition, extra information on the convergence of the in-
ner iterations through the conjugate gradient algorithm will be printed in iterate PTRN CG.dat
(namely the decrease of the quadratic form associated to the symmetric definite linear sys-
tem). Otherwise, if it is set to false, the files iterate PTRN.dat and iterate PTRN CG.dat
will contain only the convergence history (see 5.2.5 and 5.4.2 for more details).

7. Set the maximum number of iterations optim%niter CG max for the resolution of the inner
linear system using the matrix-free conjugate gradient algorithm. This linear system is
solved to compute an approximation of the Newton descent direction. item Set the flag
for using/not using bound constraints: if optim%bound is set to 1, bound constraints are
used. If optim%bound is set to 0, no bound constraints are imposed.

36

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

8. If bound constraints have been activated, then the user must set additional variables.
First, allocate the vectors optim%ub and optim%lb for respectively “upper bounds” and
“lower bounds”. The size of this vectors has to be equal to the dimension of the opti-
mization problem n. Then set optim%ub and optim%lb with the corresponding bound
constraints values. Each component i of these vectors define upper and lower bounds for
the component xi of the unknown. Finally, set the tolerance optim%threshold. This
value gives the tolerance with which the bound constraints are satisfied. In practice, we
enforce the condition

optim%lbi + optim%threshold ≤ xi ≤ optim%ubi − optim%threshold (4.12)

9. Define the initial guess: the unknown x has to be allocated and initialized to a specific
value.

10. VERY IMPORTANT: compute the cost function and the gradient corresponding to the
initial guess and store the result in fcost and grad

11. VERY IMPORTANT: multiply the gradient by the preconditioner and store the result
in grad preco. Note that if no preconditioner is available, you simply have to copy grad
in grad preco. This means that the preconditioner is identity. In this case the PTRN
method is a standard TNR method (without preconditioning).

It is very important that fcost, grad and grad preco are initialized to the values correspond-
ing to the initial guess x on the first call to the solver PTRN.

n=2 ! dimension
FLAG=’INIT ’ ! f i r s t f l a g
optim%niter max=100 ! maximum i t e r a t i o n number
optim%conv=1e−8 ! t o l e r a n c e f o r the s t o p p i n g c r i t e r i o n
optim%debug=. f a l s e . ! l e v e l o f d e t a i l s f o r output f i l e s
optim%niter max CG=5 ! maximum number o f inner con juga te g r a d i e n t

! i t e r a t i o n s
optim%p r i n g f l a g=1 ! p r i n t in format ion
optim%bound=1 ! a c t i v a t i o n o f bound c o n s t r a i n t s
allocate (optim%ub(n)) ! a l l o c a t e upper bound
allocate (optim%lb (n)) ! a l l o c a t e lower bound
ub (:)=40 . ! s e t upper bound
lb (:)=−40. ! s e t lower bound
optim%thre sho ld=1e−2 ! s e t t o l e r a n c e f o r bound c o n s t r a i n t s

allocate (x (n) , grad (n) , g rad preco (n)) ! a l l o c a t i o n
x (1)=1.5 ! s e t i n i t i a l p o i n t
x (2)=1.5

ca l l Rosenbrock (x , f c o s t , grad) ! i n i t i a l c o s t and g r a d i e n t
grad preco (:)= grad (:) ! no p r e c o n d i t i o n i n g

Initialization.

37

SEISCOPE Project

4.6.3 Minimization within the reverse communication loop

The third step consists in performing the minimization within the reverse communication loop.

1. Define the while loop. In the chosen example, the loop is terminated when the conver-
gence criterion is satisfied. In this case the communication flag is ’CONV’. The loop is
also terminated when the flag returned by the PTRN solver is ’FAIL’, which indicates that
the linesearch process has failed in finding a suitable steplength in the current descent
direction.

2. At each iteration of the while loop, call the PTRN routine. On first call, the flag is set
to ’INIT’, the unknown x is initialized to the initial guess x0, and the variables fcost,
grad and grad preco contain respectively f(x0), ∇f(x0) and P0∇f(x0).

3. On return of the call to the PTRN routine, if the communication flag is ’GRAD’ then the
value of x has been modified. Compute the cost function f(x) and the gradient ∇f(x) at
this new point in the variables fcost and grad. The user also has the possibility of using
his preconditioner. To do so he has to compute Pk∇f(x) and store it in the variable
grad preco. Note that the preconditioner can change throughout the iterations. If no
preconditioner is available, the user has to copy the gradient value ∇f(x) in grad preco.

4. On return of the call to the PTRN routine, if the communication flag is ’HESS’ then the
user is requested for performing one Hessian-vector product for the resolution of the inner
linear system. The vector to multiply is in optim%d. The result of the multiplication of
this vector by the Hessian operator has to be stored in the variable optim%Hd. Be careful
not to modify the value of the vector optim%d.

5. On return of the call to the PTRN routine, if the communication flag is ’PREC’ then the
user has the possibility of applying his preconditioner. To do so, the user must multiply
the vector optim%residual by the preconditioner, and store the result in optim%residual preco.
Be careful not to modify the value of the variable optim%residual. If no preconditioner is
available, the use has to copy the value of optim%residual into optim%residual preco.
Note that the preconditioner can change throughout the iterations.

do while ((FLAG. ne . ’CONV’) . and . (FLAG. ne . ’ FAIL ’))
ca l l PTRN(n , x , f c o s t , grad , grad preco , optim ,FLAG)
i f (FLAG. eq . ’GRAD’) then

ca l l Rosenbrock (x , f c o s t , grad)
grad preco (:)= grad (:)

e l s e i f (FLAG. eq . ’HESS ’) then
ca l l Rosenbrock Hess (x , optim%d , optim%Hd)

e l s e i f (FLAG. eq . ’PREC’) then
optim%r e s i d u a l p r e c o (:)= optim%r e s i d u a l (:)

endif
enddo

Reverse communication loop.

38

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

∗∗
PRECONDITIONED TRUNCATED NEWTON ALGORITHM

∗∗
Convergence c r i t e r i o n : 1 .00E−08
Niter max : 100
I n i t i a l co s t i s : 5 .65E+01
I n i t i a l norm grad i s : 4 .75E+02
Maximum CG i t e r : 5

∗∗
Niter fk | | gk | | fk / f0 alpha n l s nit CG eta ngrad nhess

0 5 .65E+01 4 .75E+02 1 .00E+00 1 .00E+00 0 0 9 .00E−01 0 0
1 1 .73E+00 7 .19E+01 3 .05E−02 1 .00E+00 0 1 9 .00E−01 2 1
2 6 .94E−02 2 .92E+00 1 .23E−03 1 .00E+00 0 1 8 .43E−01 3 2
3 6 .65E−02 1 .90E−01 1 .18E−03 1 .00E+00 0 1 7 .59E−01 4 3
4 3 .51E−02 3 .14E+00 6 .21E−04 2 .50E−01 2 2 6 .40E−01 7 5
5 3 .35E−02 2 .36E+00 5 .92E−04 2 .50E−01 0 1 9 .00E−01 8 6
6 3 .25E−02 1 .77E+00 5 .76E−04 2 .50E−01 0 1 8 .43E−01 9 7
7 3 .20E−02 1 .33E+00 5 .67E−04 2 .50E−01 0 1 7 .59E−01 10 8
8 3 .17E−02 9 .97E−01 5 .61E−04 2 .50E−01 0 1 7 .52E−01 11 9
9 3 .15E−02 7 .49E−01 5 .58E−04 2 .50E−01 0 1 7 .54E−01 12 10

10 3 .14E−02 5 .62E−01 5 .57E−04 2 .50E−01 0 1 7 .57E−01 13 11

Output file iterate PTRN.dat.

4.6.4 End of the loop and output file

At the end of the reverse communication loop, either convergence has been reached and the
communication flag is ’CONV’, or the linesearch has failed and the communication flag is
’FAIL’. In both cases, the vector x contains the last value of the minimization sequence (2.3),
the best approximation to the solution of the minimization problem that can be found using
PTRN.

The convergence history is written in the file iterate PTRN.dat. This file contains a remainder
of the optimization settings: convergence criterion and maximum number of iterations. He also
presents the initial cost without normalization and the initial norm of the gradient. Then, it
presents on 10 columns the convergence history.

• Column 1 is for the nonlinear iteration number.

• Column 2 is for the non normalized cost function value.

• Column 3 is for the norm of the gradient.

• Column 4 is for the relative cost function value (normalized by the initial value, on the
first iteration this value is then always equal to 1).

• Column 5 is for the size of the steplength taken.

• Column 6 is for the number of linesearch iteration for determining the steplength.

• Column 7 is for the number of conjugate gradient iteration used to compute the descent
direction

• Column 8 is for the forcing term η used to define the stopping criterion for the inner
iterations.

• Column 9 is for the total number of gradient computation.

• Column 10 is for the total number of Hessian-vector products.

39

SEISCOPE Project

Additional information on the convergence of the inner linear systems is written in the file
iterate PTRN CG.dat. This file contains a remainder of the optimization settings: convergence
criterion, maximum number of iterations, maximum number of iteration for the resolution of
the inner linear systems. He also presents the initial cost without normalization and the initial
norm of the gradient. Then, for each nonlinear iteration, a convergence history of the inner
liner system using the matrix-free conjugate gradient is presented. The number of the nonlinear
iteration appears at the top, as well as the value of the forcing term η for this nonlinear iteration.
Then, the convergence history is presented on 4 columns.

• Column 1 is for the iteration number

• Column 2 is for the value of the quadratic function associated with the linear system,
which is supposed to be symmetric definite. This information is available only if the
option optim%debug is set to true. If it is set to false, only 0 is written as a default
value.

• Column 3 is for the norm of the residuals of the inner system.

• Column 4 is for the relative residuals value. When this value becomes lower than η, the
stopping criterion is satisfied.

∗∗
TRUNCATED NEWTON ALGORITHM

INNER CG HISTORY
∗∗

Convergence c r i t e r i o n : 1 .00E−08
Niter max : 100
I n i t i a l co s t i s : 5 .65E+01
I n i t i a l norm grad i s : 4 .75E+02
Maximum CG i t e r : 5

∗∗
−−

NONLINEAR ITERATION 0 ETA IS : 9 .00E−01
−−

Iter CG qk norm res norm res / | | gk | |
0 0 .00E+00 4 .75E+02 1 .00E+00
1 0 .00E+00 1 .86E+01 3 .92E−02

−−
NONLINEAR ITERATION 1 ETA IS : 8 .43E−01
−−

Iter CG qk norm res norm res / | | gk | |
0 0 .00E+00 7 .19E+01 1 .00E+00
1 0 .00E+00 5 .83E−01 8 .11E−03

−−
NONLINEAR ITERATION 2 ETA IS : 7 .59E−01
−−

Iter CG qk norm res norm res / | | gk | |
0 0 .00E+00 2 .92E+00 1 .00E+00
1 0 .00E+00 1 .89E−01 6 .49E−02

−−
NONLINEAR ITERATION 3 ETA IS : 6 .40E−01
−−

Iter CG qk norm res norm res / | | gk | |
0 0 .00E+00 1 .90E−01 1 .00E+00
1 0 .00E+00 4 .82E+00 2 .53E+01
2 0 .00E+00 1 .63E−04 8 .55E−04

Output file iterate TRN.dat.

40

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

5 Technical details

5.1 Writing intermediate values of x

It is possible to follow the construction of the sequence of iterates xk by tracking an additional
flag: ’NSTE’. When the communicator flag is equal to ’NSTE’, this means that a descent
direction and a steplength in this direction has been found. The unknown x has been updated,
and the user may want to print it or save it in a file. This option is available for all the routines
of the SEISCOPE OPTIMIZATION TOOLBOX.

Doing so only requires to add one line in the reverse communication loop. We give an example
for the PSTD algorithm (it is exactly the same for the other algorithms).

do while ((FLAG. ne . ’CONV’) . and . (FLAG. ne . ’ FAIL ’))
ca l l PSTD(n , x , f c o s t , grad , optim ,FLAG)
i f (FLAG. eq . ’GRAD’) then

! compute c o s t and g r a d i e n t at p o i n t x
ca l l Rosenbrock (x , f c o s t , grad)

e l s e i f (FLAG. eq . ’NSTE’) then
write (∗ ,∗) x (:) ! or save i t i n t o d i s k or . . .

endif
enddo

Tracking the sequence of iterates in the reverse communication loop.

5.2 Linesearch algorithm

5.2.1 The Wolfe criterion

The linesearch algorithm which is implemented computes a steplength α which satisfies the
Wolfe criterion. For a given descent direction ∆x, α should satisfy

f(x+ α∆x) ≤ f(x) +m1α∇f(x)T ∆x, (5.1)

and
∇f(x+ α∆x)T ∆x ≥ m2∇f(x)T ∆x (5.2)

where m1 and m2 are scalar parameters. These parameters are set respectively to

m1 = 10−4, m2 = 0.9 (5.3)

This is done in the routines init method.f90, in the variables

optim%m1 and optim%m2.

The initialization of the steplength α is also done in the routines init method.f90. By default,
α is initialized to 1, in the variable

optim%alpha

41

SEISCOPE Project

5.2.2 Linesearch algorithm

The algorithm for computing a steplength α which satisfies the Wolfe conditions is as follows

1. Initialize αmin and αmax to 0.

2. Check if the current value of α satisfies the Wolfe condition. If this is the case stop.

3. If the first condition is not satisfied, then

• αmax = α

• α = 0.5× (αmin + αmax)

• Go back to 2

4. If the second condition is not satisfied, then

• αmin = α

• If αmax = 0 then α = 10× α

• If αmax 6= 0 then α = 0.5× (αmin + αmax)

• Go back to 2

5. If no suitable steplength α has been found after optim%nls max linesearch iterations,
declare a linesearch failure: FLAG is set to ’FAIL’.

Note that each time the algorithm goes through step 2, the computation of ∇f(x + α∆x) is
required.

In addition, the parameter

optim%nls max

is set in the routines init method.f90. By default, it is set to 20 in all the optimization
routines of the SEISCOPE OPTIMIZATION TOOLBOX.

5.2.3 Initialization of the linesearch parameter α

In practice, for reasonably smooth functions, the behavior of the minimization algorithms is as
follows:

• At first nonlinear iteration, the linesearch algorithm can require a certain number of
iterations to converge to a first steplength α which satisfies the Wolfe criterion.

• After the first nonlinear iteration, since the previous value of α is used as a first guess, none
or very few linesearch iterations should be necessary (unless the cost function presents
rapid variations)

42

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

The user may want to speed-up the process to avoid spending to much time in the linesearch
process. To do so, it is possible to modify the initial value for the steplength to a value closer
than the optimal one. This can be done by modifying the variable

optim%alpha

in the routines init method.f90.

In the current version, in order to force the minimization algorithms to converge as far as
they can, a special feature has also be implemented. As stated in the previous section, a line-
search failure is declared whenever no suitable steplength has been found after otim%nls max
linesearch iterations have been performed. However, if the steplength computed after this max-
imum number of linesearch iteration produces a decrease of the misfit function, it is accepted,
even if it does not satisfy the Wolfe criterion. This situation however occurs very rarely to the
best of our knowledge.

5.2.4 Bound constraints: projection into the feasible set

In the SEISCOPE OPTIMIZATION TOOLBOX, we implement a simple method to account
for bound constraints. We want to ensure that the sequence xk stays within the box Ω, defined
as

Ω =
n∏

i=1

[ai; bi] ⊂ Rn, n ∈ N (5.4)

Each time a steplength α is tested within the linesearch process, the corresponding iterate

xk+1 = xk + α∆xk (5.5)

is projected into the feasible set Ω. The Wolfe criterion are then evaluated at the points

x̃k+1 = PΩxk+1 (5.6)

where the component i of PΩz is given by

(PΩz)i =

zi if ai ≤ zi ≤ bi

ai + τ if zi < ai

bi − τ if zi > bi

(5.7)

The parameter τ is the tolerance optim%threshold set by the user.

5.2.5 Output files and debug option

When the debug option optim%debug is set to true, the output files generated by the SEISCOPE
OPTIMIZATION TOOLBOX routines will contain the convergence history of the linesearch
algorithm. At each iteration of the linesearch algorithm, step 3 of the linesearch algorithm will
be identified as failure 1. Step 4 will be identified as failure 2. The different values will
be printed:

• fcost which correspond to f(x+ αk∆x)

43

SEISCOPE Project

• optim%f0 which correspond to f(x0)

• optim%fk which correspond to f(x)

• optim%alpha which correspond to αk

• optim%q0 which correspond to ∇f(x)T ∆x

• optim%q which correspond to ∇f(x+ αk∆x)T ∆x

• optim%m1 which corresponds to m1

• optim%cpt ls which is the counter for the current number of linesearch iterations

5.3 Nonlinear conjugate gradient

Implementation of the nonlinear conjugate gradient differs from the computation of the scalar
parameter βk from (2.5). Standard formulas are Fletcher-Reeves or Polak-Ribière formulas
(see Nocedal and Wright (2006)). However, based on these formulations, the nonlinear con-
jugate gradient requires to satisfy the strong Wolfe condition to ensure global convergence
toward local minima. As we wanted to use the same linesearch procedure for all the routines
within the SEISCOPE OPTIMIZATION TOOLBOX, we decided to implement the nonlinear
conjugate gradient algorithm proposed by Dai and Yuan (1999). This algorithm only requires
the satisfaction of the standard Wolfe conditions to ensure global convergence. Following this
algorithm, the scalar βk is computed from

βk =
∇f(xk)TPk∇f(xk)

(∇f(xk)−∇f(xk−1)T ∆xk−1

. (5.8)

5.4 Practical issues for the truncated Newton method

5.4.1 Choice of η0 for the truncated Newton method

The initial forcing term η0 controls the precision of the inner linear system resolution at the first
nonlinear iteration. The value of η0 is set in the routines init TRN.f90 and init PTRN.f90.
The default value is 0.9

optim%eta=0.9

This initial value is proposed by Eisenstat and Walker (1994). However, smaller values can be
chosen to force the algorithm to solve the inner linear system more accurately at the first non-
linear iteration. This can be interesting when the function to minimize is close to a quadratic
function for instance. For the Rosenbrock function, an initial value

optim%eta=0.1

will speed-up the convergence.

44

SEISCOPE OPTIMIZATION TOOLBOX MANUAL

5.4.2 Output files and debug option

When the debug option optim%debug is set to true, the output files iterate TRN CG.dat and
iterate PTRN CG.dat contain additional information on the decrease of the quadratic function
which is minimized during the conjugate gradient resolution. This quadratic function is

qk(∆x) = ∆xTH(xk)∆x+∇f(xk)T ∆x (5.9)

Since the initial guess for ∆x is systematically 0, at the first inner iteration, we have

qk(∆x) = 0 (5.10)

Then, while the Hessian matrix H(xk) remains definite positive, the quantity qk(∆x) decreases
throughout the inner iteration of conjugate gradient. The decrease rate provides additional
information on the convergence rate of the conjugate gradient. When negative eigenvalues are
detected , the conjugate gradient iterations are stopped.

45

SEISCOPE Project

References

Byrd, R. H., Lu, P., and Nocedal, J. (1995). A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific and Statistical Computing, 16:1190–1208.

Dai, Y. and Yuan, Y. (1999). A nonlinear conjugate gradient method with a strong global convergence
property. SIAM Journal on Optimization, 10:177–182.

Eisenstat, S. C. and Walker, H. F. (1994). Choosing the forcing terms in an inexact Newton method.
SIAM Journal on Scientific Computing, 17:16–32.

Métivier, L., Bretaudeau, F., Brossier, R., Operto, S., and Virieux, J. (2014). Full waveform inversion
and the truncated newton method: quantitative imaging of complex subsurface structures. Geophys-
ical Prospecting, In press.

Métivier, L., Brossier, R., Virieux, J., and Operto, S. (2013). Full Waveform Inversion and the truncated
Newton method. SIAM Journal On Scientific Computing, 35(2):B401–B437.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, 2nd edition.

46

	Introduction
	An overview of the routines in the toolbox
	Preconditioned steepest descent: PSTD
	Preconditioned nonlinear conjugate gradient: PNLCG
	Quasi-Newton l-BFGS method: LBFGS
	Quasi-Newton preconditioned l-BFGS method: PLBFGS
	Truncated Newton method: TRN
	Preconditioned truncated Newton method: PTRN

	Installation
	Compilation
	Compiling and running the test programs

	How to use the optimization routines?
	Preconditioned Steepest Descent: PSTD
	Preconditioned nonlinear conjugate gradient: PNLCG
	Quasi-Newton l-BFGS method: LBFGS
	Quasi-Newton preconditioned l-BFGS method: PLBFGS
	Truncated Newton method: TRN
	Preconditioned truncated Newton method: PTRN

	Technical details
	Writing intermediate values of x
	Linesearch algorithm
	Nonlinear conjugate gradient
	Practical issues for the truncated Newton method

