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ABSTRACT
Modelling methods are nowadays at the heart of any geophysical interpretation
approach. These are heavily relied upon by imaging techniques in elastodynamics
and electromagnetism, where they are crucial for the extraction of subsurface char-
acteristics from ever larger and denser datasets. While high-frequency or one-way
approximations are very powerful and efficient, they reach their limits when complex
geological settings and solutions of full equations are required at finite frequencies.
A review of three important formulations is carried out here: the spectral method,
which is very efficient and accurate but generally restricted to simple earth structures
and often layered earth structures; the pseudo-spectral, finite-difference and finite-
volume methods based on strong formulation of the partial differential equations,
which are easy to implement and currently represent a good compromise between
accuracy, efficiency and flexibility and the continuous or discontinuous Galerkin
finite-element methods that are based on the weak formulation, which lead to more
accurate earth representations and therefore to more accurate solutions, although
with higher computational costs and more complex use. The choice between these
different approaches is still difficult and depends on the applications. Guidelines are
given here through discussion of the requirements for imaging/ inversion.
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1 INTRODUCT I ON

Interpreting geophysical data in complex geological terrains
requires solutions of the partial differential equations govern-
ing the physics of the related field experiments. In seismol-
ogy and exploration geophysics, modelling in various realis-
tic media for various purposes, ranging from risk analysis to
crustal imaging, has promoted studies across a wide range
of analytical, semi-analytical and numerical methods. This
is particularly true in diffusive electromagnetic and seismic
scanning methods, as we consider in this review. Numerical
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methods can be based on an approximation of the partial
differential equations, e.g., the high-frequency approximation
(see Virieux and Lambare (2007) for references), or the one-
way propagation approximation (Claerbout 1985). However,
handling these approximations for forward modelling can bias
image construction when the observed waves are not included
in the approximation we consider.

The need for solutions of the full/complete differential equa-
tions (or the corresponding integral equations) was quickly
recognized. Numerical methods with their discretisation for
geophysical applications were discussed as soon as com-
puters became powerful enough for numerical simulations
in heterogeneous media; e.g., in propagative elastodynam-
ics (Alterman and Karal 1968; Bolt and Smith 1976; Kelly
et al. 1976; Marfurt 1984; Virieux 1984; Dablain 1986;
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Levander 1988) and in diffusive electromagnetism (Cognon
1971; Kuo and Cho 1980; Goldman and Stover 1983;
Oristaglio and Hohmann 1984; Hohmann 1988; Druskin
and Knizhnerman 1988). These methods have their own
limitations that are related to time and space discretiza-
tion. Although these numerical methods were rarely used
on large-scale imaging problems because of their computa-
tional cost, their applications have been intensively discussed
in the context of seismic reverse-time migration and seismic
full waveform inversion (Baysal, Koslo and Sherwood 1983;
Lailly 1983; Whitmore 1983; Gauthier, Virieux and Taran-
tola 1986; Tarantola 1987), as well as for diffusive electro-
magnetic inversion (Constable, Parker and Constable 1987;
Hohmann 1988; Ramm and Somersalo 1989). These studies
form the basis of the current developments in both seismic
and diffusive electromagnetic imaging.

The diversity of the numerical methods in geophysics ques-
tions the relevance and the pertinence of each approach. Some
scientific disciplines appear to have a more focused approach.
For instance, in meteorology and in physical chemistry, the
pseudo-spectral method (which is often referenced as a spec-
tral method in the literature) represents the main approach
used to address the challenging problems of weather predic-
tion and climate change (Haltiner and Williams 1980; Jarraud
and Baede 1985; Fornberg 1998). The complex physical pro-
cesses are put into subgrid phenomenological evolution, such
as the chemical interactions inside clouds. In structural me-
chanics, the finite-element method is the method of choice
(Zienkiewicz and Morgan 1983). Extensions to complex non-
linear rheological behaviours has been preformed with the
distinct/discrete element methods (Toomey and Beans 2000;
Mariotti 2007). The diversity involved in solving geophysi-
cal modelling might, however, reflect the different challenges
in geophysics. These challenges can require different practi-
cal solutions. For instance, to be economically valuable, the
migration of hundreds of thousands of shots of a marine
dataset, needed to obtain a structural image from compres-
sional waves, demands a different way of implementation of
the wave propagation problem than the precise modelling of
surface waves generated by a superficial earthquake.

Methodological efforts over the years have produced so-
phisticated tools that are well tuned for specific purposes.
This intensive exploration of various simulation techniques
comes from our difficulties in trying to understand the Earth’s
interior from propagation, diffusion, or even potential fields.
The challenges here come from

� the different types of data we handle: such as seis-
mic compressional waves in exploration geophysics for

structural images, trapped and surface waves in seismol-
ogy, electric and/or magnetic diffusive fields for crustal
and lithosphere modelling and imaging;

� the various types of media we have to consider: such as
marine environments with a liquid/solid interface, sed-
imentary basins with shallow, very low velocity struc-
tures, foothill complex zones with velocity inversion,
complex topography and resistivity variations of several
orders of magnitude;

� the lack of precise knowledge of the geological
structures;

� the modelling scale: in seismics, a wave can be recorded
after having propagated over hundreds of wavelengths;
in controlled source electromagnetics, the electric and
magnetic fields are recorded over at least five orders of
magnitude and after having diffused over several skin
depths; in exploration, the depth of investigation is sev-
eral kilometres with a resolution of tens to hundreds
of metres; and in global seismology, the investigation
zone is in hundreds of kilometres and the resolution is in
kilometres;

� the computational cost, especially when the modelling
represents just the kernel of a parameter inversion
scheme.

In this review, we provide an overview of some of the
important numerical methods for solving partial differen-
tial equations in the context of continuum mechanics. For
complex heterogeneous media imaging, these local equations
are better suited than integral equation methods (Hohmann
1983). Whatever the approach, we need spatial and time/
frequency discretization for numerical computation. Decom-
position of the unknown fields with curvelets, beamlets or
other similar wavelets, can lead to some mixed representa-
tions; however, we do not discuss these here. We specifi-
cally consider three different ways of finding the numerical
solution:

� The spectral formulation: the partial differential equa-
tions are first formulated in dual spaces, as for example
the space Fourier domain, where partial derivatives are
translated into algebraic forms. The difficult (and not
always possible) step is the expression of the bound-
ary conditions when necessary, as well as the excitation
conditions, in this new space. However, sometimes it can
ease the expression of source excitation, e.g., plane-wave
excitation in magnetotellurics.

� The strong formulation: the partial differential equa-
tions should be verified specifically on discrete points
on which the continuum is interpolated, or their
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integral forms should be satisfied. We will discuss spatial
discretization with spatial global and local supports,
each of which has specific advantages.

� The weak formulation: the partial differential equations
should be verified globally over elements that use a dis-
crete norm for the solution. While this method might
be quite general and can include the strong formulation
by using a specific norm through a Dirac comb (using
operators as distributions), we will restrict ourselves to
the standard Galerkin approach, where the test func-
tions are identical to the basis functions on which the
expected solution is expanded. We will consider contin-
uous as well as discontinuous formulations (Zienkiewicz
and Morgan 1983).

In Section 2, we introduce the main equations and make
some preliminary comments. Spectral methods are presented
in Section 3, and these have been the methods of choice
for waveform imaging of the global Earth (Woodhouse and
Dziewonski 1984). Section 4 is devoted to the strong formula-
tion with pseudo-spectral methods, finite-difference methods
and finite-volume methods; all of these are widely used in
seismic and electromagnetic full waveform inversion, with-
out forgetting seismic reverse-time migration. Section 5 then
introduces the popular finite-element methods in the frame-
work of the weak formulation. Although these are heav-
ier than the previous methods from the point of view of
computer resources, they start to be used at different scales
for full waveform inversion (Askan et al. 2007; Tape et al.
2009). The advantages and disadvantages of continuous and
discontinuous approaches are discussed. In Section 6, some
of the current applications are listed, and in Section 7,
the imaging requirements that can influence our modelling
choices are presented. Finally, in Section 8, we present our
conclusions.

2 T HE EQUATIONS AND S OME EARLY
COMMENTS

The equations used in elastodynamic and electromagnetic
modelling can be written either as first-order or second-order
systems. The second-order systems contain fewer unknowns,
which provides a numerical advantage despite the more com-
plex structure of the numerical system. Also, a parsimonious
approach can be used after discretization of a first-order sys-
tem, to reduce the number of unknowns (Luo and Schuster
1990), which leads to a system that is equivalent to a discrete
second-order system.

2.1 The time-domain approach

In this review, we assume the earth parameters independent
of time.

The velocity-stress first-order elastodynamic equations are{
ρ∂tvi = ∂xj σi j + f v

i ,

∂tσi j = ci jkl∂xl vk + f σ
i j .

(1)

Here, vi are the components of the velocity vector, σ ij the
components of the stress tensor, cijkl the components of the
stiffness tensor, ρ the density and f v

i and f σ
ij the components

of the force source vector and the moment rate source tensor,
respectively. (The Einstein convention on repetitive indexes is
used.)

The first-order electromagnetic wave equations are{
μ∂t h = −∇ × e + f h,

ε∂te + σ = ∇ × h + f e.
(2)

Here, e is the electric vector, h is the magnetic vector, σ the
conductivity, μ the magnetic permeability, ε the dielectric per-
mittivity and f h and f e the magnetic and electric source vec-
tors, respectively.

The displacement second-order elastodynamic equation is

ρ∂ttui = ∂xj ci jkl∂xl uk + fi , (3)

where the components of the displacement vector are denoted
by ui.

The second-order electromagnetic equation for the electric
field is

ε∂tte + σ∂te + ∇ 1
μ

× ∇e = f , (4)

with an equivalent equation for the magnetic field.
Both the first-order and the second-order equations should

be complemented with their initial conditions. We generally
assume that the fields and their time derivatives are zero at
negative times. Boundary conditions also need to be added,
as we are modelling inside a finite computational domain. In
elastodynamics, at the free surface the traction is zero, so

σi j n j = 0, (5)

where ni are the components of the vector normal to the free
surface.

In electromagnetism, perfectly electrically conducting
boundary conditions are currently implemented, such that

e × n = 0 and h · n = 0, (6)

where n is the vector normal to the boundary.
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Other boundary conditions come from the limited numer-
ical domain: absorbing boundary conditions need to be im-
plemented as surface conditions (Clayton and Engquist 1977)
in relation to the radiation conditions or layer conditions, as
the now popular perfectly matched layer technique (Berenger
1994; Chew and Weedon 1994) for electromagnetism and
for elastodynamics (Chew and Liu 1996; Drossaert and Gi-
annopoulos 2007; Komatitsch and Martin 2007). Due to the
discretization, the perfectly matched layer conditions are not
perfect, although they are relatively efficient. Limiting the size
of the perfectly matched layer zone while maintaining its effi-
ciency, and long-term stabilities still need to be better under-
stood (Collino and Tsogka 2001; Becache, Petropoulos and
Gedney 2004).

The time and spatial discretizations are often treated sep-
arately. Before discussing the spatial discretization scheme,
let us formulate the partial differential equations in a general
framework. The systems to be solved can be cast in a matrix
form. For the first-order system with the unknown vector p,
we have

M∂t p + K p = S p + f , (7)

and for the second-order system with the unknown vector p′,
we end up with

M′∂tt p′ + K ′∂t p′ = S′ p′ + f ′, (8)

where the vectors f and f ′ represent the excitation. Usually, the
matrices M and M′, which are often called the mass matrices,
describe the inertial terms and the matrices K and K′ describe
the viscous terms because of their specific antidiagonal block
structure. The matrices S and S′ are often called the stiffness
matrices because of the specific diagonal block structure: they
correspond to the discretization of the spatial derivatives and
contain the material properties of the wave equations and
Maxwell equations. Let us consider first-order systems.

The behaviour of this hyperbolic system greatly depends on
the relative importance of M and K. When |ωM| is much
larger than |K|, for any angular frequency, ω, considered
in the modelling, the inertial terms are dominant and the
system is principally a propagation system. However, when
|ωM| and |K| are of similar importance, the integration of
this system becomes stiff. This is true both for elastodynamic
or electromagnetic systems in the air or at high frequen-
cies. When K is much larger than |ωM|, the viscous terms
are dominant and the system is principally a diffusive sys-
tem; e.g., electromagnetic systems at low frequencies. We
can proceed through a time marching approach for solving
these partial differential equations iteratively. With a propa-

gation system, the Courant-Friedrickson-Lewy stability con-
dition (Courant, Friedrichs and Lewy 1967) leads to time dis-
cretisation that is proportional to the space discretization,
making the explicit time-marching method relatively attrac-
tive. With a diffusive system, the Courant-Friedrickson-Lewy
stability condition provides time discretization that is pro-
portional to the square of the space discretisation, here mak-
ing the explicit time-marching method less attractive. DuFort
and Frankel (1953) proposed a scheme that allows us to im-
prove the Courant-Friedricks-Lewy stability condition by ef-
fectively adding a propagative term in the discrete schemes.
However, the implicit schemes, such as the simple backward
Euler scheme, constitute the logical approach. This means
solving a linear system at each time step. At early times, the
time stepping should still be small enough to represent the so-
lution correctly. Fortunately, the diffusive nature of the system
allows us to increase the time stepping during the computa-
tion.

With first-order systems and especially with propagation
systems, leapfrog time integration is often implemented to ob-
tain a conditionally stable scheme; a first-order forward time
derivation directly applied to the equation (7) leads to an un-
stable scheme (LeVeque 2002). The leapfrog time derivation
approach updates the stress and displacement, or the electric
and magnetic fields, sequentially. Sometimes, instabilities are
encountered when dealing with dissipation terms and there
is the need to use implicit time schemes. With second-order
systems, a central second-order time derivative is generally
used and this allows explicit marching with two previously
estimated fields for the computation of the next one. Higher-
order time integration, such as the Lax-Wendroff scheme
(Dablain 1986), the higher-order scheme known as the arbi-
trary accuracy derivative Riemann problem (ADER) scheme
(Toro 2009) and the Runge-Kutta schemes (Cockburn 2003),
have been proposed for hyperbolic systems. In certain cases,
spectral integration with an arbitrary precision can even be
adopted (Tal-Ezer, Carcione and Koslo 1990; Mikhailenko,
Mikhailov and Reshetova 2003).

2.2 The frequency-domain approach

Systems (7) and (8) can be written in the frequency domain as

(−ıωM + K − S) p = f , (9)

and

(−ω2 M′ − ıωK ′ − S′) p′ = f ′, (10)
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where ω is the angular frequency and ı the pure imaginary
number with ı2 = −1. (For simplicity, we use the same symbols
for the fields in the time and in the frequency domains.)

The structure of the linear system is different for the prop-
agation equations and the diffusive equations. Indeed, the
propagation system leads to an indefinite system, namely a
system with (large) negative and positive (real part of the)
eigenvalues, limiting the efficiency of the iterative approach
for solving it. A preconditioner based on a damped wave
equation and a multi-grid cycle has been proposed to speed
up the convergence of the iterative approach (Erlangga, Vuik
and Oosterlee 2006; Plessix 2007). Direct solvers based on
LU (Lower/Upper) decomposition are an alternative (Marfurt
1984; Operto et al. 2007). The sparse matrix of the linear
system has, however, a large bandwidth, meaning that direct
solvers in 3D require an extremely large amount of memory.
On the contrary, the linear system associated with the dif-
fusion equations can be efficiently solved with an iterative
method (Mackie, Madden and Wannamaker 1993; Newman
and Alumbaugh 1999; Haber et al. 2000; Aruliah and Ascher
2003; Mulder 2006). In the following sections, we principally
discuss the spatial discretization that generally applies to both
time-domain and frequency-domain formulations. However,
our presentation of the spectral formulation mainly concerns
the frequency-domain formulation.

3 S PECTRAL FOR MULA T I ON

By moving to a dual domain such as the space
Fourier/wavenumber domain, we can efficiently transform
partial spatial derivatives into products. We can even go to the
time Fourier domain, which gives us the algebraic dispersion
relation. Analytical or semi-analytical solutions can be worked
out using the Cagniard-De Hoop path in the frequency-
wavenumber domain if it is possible to construct it (de Hoop
1960; Cagniard 1962; Aki and Richards 2002). When the
media variations become too complex, we can expand the
solution on special functions, which forms a complete ba-
sis as a relatively compact description when the medium is
smooth. When boundaries exist, simple geometries such as
spherical/ellipsoidal shapes can still lead to semi-analytical so-
lutions, while more complex shapes are handled by numerical
techniques. The medium is decomposed into simple domains
where the fundamental solution is obtained through a linear
combination of elementary solutions that form a complete ba-
sis, which is often expressed in a transformed domain. When
the boundary conditions are satisfied by each elementary so-
lution, they will be automatically satisfied by the wanted so-

lution, due to the linearity of the problem. These methods are
often expressed in the frequency-wavenumber space, although
some of them are in the time domain (Wheeler and Sternberg
1968).

The restriction to laterally invariant 3D media provides
a dramatically efficient and accurate method, as only a few
nodes are required in the discretization of boundaries in the
vertical direction (one point per layer). The solution is decom-
posed in plane waves with a constant wavenumber vector kh.
After the Fourier transform over the time and the horizontal
coordinates, the first-order equation is

d p̃
dz

= iωAp̃ + f̃ δ(z − zs), (11)

where A is the propagator matrix that depends on the earth
parameters and the horizontal wavenumber, p̃ the field vector,
f̃ the source vector, and zs the source depth. The variables
with tilde depend on the angular frequency, ω, the horizontal
wavenumber, kh and the depth, z. With the acoustic-wave
equation, for instance, p̃ is formed by the vertical displacement
and the pressure and the propagator matrix is equal to

A(z) =

⎡
⎢⎣ 0

k2
h(z)

ρ(z)ω2
− 1

κ(z)

−ρ(z) 0

⎤
⎥⎦ , (12)

where the density is denoted by ρ and the bulk modulus by κ.
This linear system can be diagonalized in each layer by find-

ing the eigenvalues and eigenvectors of the matrix A, which
leads to two independent upwards and downwards plane-
wave solutions. The solution can then be propagated by gen-
eralized reflection/transmission coefficients from the source
to the free surface, where free-surface boundary conditions
are applied. Then, the solution is moved back down to the
bottom half-space, where the radiation condition is applied,
which builds up the final solution. When considering sources
at various depths, the method is as efficient as a substitu-
tion technique. This technique was developed in elastody-
namics (Spencer 1960; Kennett 1983), as well as in diffusive
electromagnetism (Cagniard 1953; Wannamaker, Hohmann
and Ward 1984). To model the magnetotelluric response, the
source terms are introduced as plane-wave boundary condi-
tions on the top of the model (Wannamaker et al. 1984).

There are similar procedures for laterally varying media,
although these are more computer intensive. Potentialities for
imaging can be considered with the fast moment method,
which dramatically reduces the memory requirements. The
solution is efficiently found iteratively for each source (see
Chaillat, Bonnet and Semblat (2008) for applications to

C© 2011 European Association of Geoscientists & Engineers, Geophysical Prospecting, 59, 794–813



Spectral, pseudo-spectral, finite-difference and finite-element modelling 799

elastodynamics). Therefore, we can foresee that the fast mo-
ment method (which requires few computer resources for
modelling) could be a tool for imaging techniques that has
not been explored yet, as far as we know, with open ques-
tions remaining as to the reliability of the method for complex
structures.

4 S TRONG FORMULATION

Nowadays, scientific challenges concern complex zones of the
earth with rapid spatial variabilities in the medium properties.
Spectral methods are often inadequate. For solving partial dif-
ferential equations, we can consider volumetric discretization
of the medium properties, and the fields wanted should be
similarly discretized. We may select global spatial discretiza-
tion (which is often presented as a modal approach), such
as pseudo-spectral methods where the partial derivatives are
estimated by going back and forth in the dual domain (e.g.,
Fourier, Legendre or Chebychev domains), which leads to
specific regular/non-regular sampling (Koslo and Baysal 1982;
Druskin and Knizhnerman 1988; Seriani and Priolo 1994; Pri-
olo, Carcione and Seriani 1994). We may also consider spa-
tial discretization with local support, and more specifically,
the finite-difference method that is widely used in many fields
(Levander 1988; Mackie et al. 1993; Robertsson, Blanch and
Symes 1994; Newman and Alumbaugh 1999; Pitarka 1999;
Taove and Hagness 2000; Moczo, Robertsson and Eisner
2007). The finite-volume methods go one step futher, which
allows a more accurate description of the medium while keep-
ing the simple geometrical construction of the finite-difference
method (LeVeque 2002). However, this often leads to a low-
order scheme. In the strong formulation, the partial differ-
ential equations need to be exactly satisfied at collocation
points or at elementary domains of the volumetric mesh that
describes the model space.

4.1 The pseudo-spectral and finite-difference methods

Volumetric discretization of the partial differential equations
has been considered in many studies for the solving of effi-
ciently linear propagation or diffusion. Differences come from
the geometry of the mesh associated with the selected spatial
interpolation functions. The solution vector p(x) where we
ignore the time or frequency variation can be approximated
through an expansion using basis functions, ψ j, as

p(x) =
N∑

j=1

p(x j )ψ j (x), (13)

where the nodes x j define the collocation points at which
the partial differential equation has to be satisfied. The total
number of these nodes is denoted by N. Multi-dimensional el-
ementary functions ψ j (x) are selected according to the spatial
support we consider. Often, we rely on tensorial descriptions
over dimensions. Global support for Fourier polynomials with
regularly spaced collocation points or Chebyshev polynomials
with irregularly spaced collocation points (Koslo and Baysal
1982; Koslo et al. 1990; Tessmer and Koslo 1994) provides
the pseudo-spectral methods. These lead to a dramatic reduc-
tion in the unknowns at the expense of interactions between
nodes, which can be a critical issue for imaging: any misesti-
mation of properties and/or fields has an impact everywhere.
Local support with Lagrange polynomials leads to the finite-
difference method, which is popular because of its simplicity
and its efficiency.

The approximate derivative along one direction xi is ob-
tained through the application of a matrix D to the discrete
field values p(x j ) at collocation points x j :

∂ p
∂xi

(xl ) =
N∑

j=1

p(x j )ψ ′
j (xl ), (14)

where the components of the matrix are Dl j = ψ ′
j (xl ). This

transformation is sometimes called a stencil. Higher deriva-
tives can be constructed by repetitively applying D. With
global support (as for the pseudo-spectral method), the cost
of computing the derivatives is O(N2) operations from matrix
multiplication, or O(NlogN) by spectral estimation through
direct and inverse finite Fourier transforms (FFT). With lo-
cal support (as for finite-difference methods), this leads to
the following stencil for the centred finite differences: for the
first-order derivative with regular spacing 


∂x p =
K/2∑
n=1

ak

2

( p(x + k
) − p(x − k
)) , (15)

and for the second-order derivative

∂xx p =
K/2∑
k=0

ak


2
( p(x + k
) + p(x − k
)) , (16)

where K is the order of the scheme, and ak are coefficients to
determine.

For finite-difference methods, the cost of computing the
derivative is reduced at the expense of the precision and there-
fore of the accuracy of the solution, as the order K is often
much smaller than the number of nodes N. The collocation
density or the mesh discretization must be increased when
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considering short spatial support. A fourth-order stencil is
considered to be optimal for a second-order time integration.
Higher-order stencils (e.g., tenth-order) can, however, pro-
vide drastic computational time and core memory reductions
that are crucial for 3D simulations, although at the expense
of accuracy in non-smooth media (Dablain 1986). Optimal
design of the matrix D (i.e., optimal choice of the coefficients
ak), in association with the definition of the collocation points,
has been an endless investigation with this strong formulation.
The main purpose has been the reduction of the numerical dis-
persion (Marfurt 1984; Holberg 1987; Operto et al. 2007),
through looking at the spatial shape of the stencil (Saenger,
Gold and Shapiro 2000), the spectral shape of the derivative
operator (Jo, Shin and Suh 1996; Hustedt, Operto and Virieux
2004), or the minimisation of the residual energy through the
Rayleigh-Ritz variational investigation (Takeuchi and Geller
2000). These efforts are relatively specific to acoustic and
elastic propagation modelling. In diffusive electromagnetism,
second-order spatial derivatives are generally sufficient, as
they already lead to large grid spacing compared to the de-
sired earth discretization for imaging. Regular Cartesian grids
are often associated with the finite-difference method because
of its efficiency. Stretching the collocation points in relation
to strong gradients of the medium properties might drasti-
cally reduce solution errors for both global and local supports
at the expense of computer resources, e.g., finite-difference
approaches have been extended to irregular grids for seis-
mic propagation (Moczo 1989; Jastram and Tessmer 1994;
Aoi and Fujiwara 2001; Wang, Xu and Schuster 2001). In
diffusive electromagnetics, stretched grids are very common,
especially in the depth direction, because of the strong field
attenuation. We can consider that the finite-difference method
generally performs better on smooth media, especially when
we consider high-order stencils and coarse grids, for speeding
up the forward modelling.

Reductions in modelling costs have been achieved through
the introduction of the staggered grid approach. The compo-
nents of the solution vector P are not defined at all of the
nodes of the grid, which reduces the size of the field vector
without damaging the dispersion of the scheme (Yee 1966;
Virieux 1986). Some difficulties can appear with free bound-
ary conditions and anisotropy, which require interpolation of
some fields. This approach turns out to be stable at boundaries
between solids and liquids: as long as we consider a liquid,
the standard accuracy has been checked through analytical ex-
amples (Virieux 1986). An alternative partial grid approach,
as proposed by Saenger et al. (2000), mitigates the difficul-
ties related to free boundary conditions and anisotropy, while

the full grid approach (Tam and Webb 1993) will still be re-
quired for long-term stability conditions at the free surface
(Lombard and Piraux 2004; Lombard et al. 2008). An ap-
proach based on Lebedev’s grid has been proposed, to han-
dle anisotropy (Davydycheva and Druskin 1999; Lisitsa and
Vishnevsky 2010).

Whatever method we choose for the spatial discretization,
we end up with an evolution system in the time domain (sys-
tems (7) or (8)), or a linear system in the frequency domain
(systems (9) or (10)). In the frequency domain, the efficiency
of a direct solver depends on the bandwidth of the matrix
of the linear solver. High-order stencils along one dimension
considerably increase this bandwidth. The compactness of the
stencil is a critical issue. With acoustic-pressure second-order
wave equations, almost fourth-order compact schemes have
been proposed through the optimal reduction of the dispersion
of the scheme in the frequency band of the forward modelling
(Marfurt 1984; Stekl and Pratt 1998; Operto et al. 2007),
which leads to this very compact system,

−ω2

v2
a0 p(x, y, z)

+
1∑

k=−1

1∑
l=−1

1∑
m=−1

ak,l,m



p(x + k
, y + l
, z + m
), (17)

where a0, ak,l,m are the coefficients to be determined following
rules mentioned above. This scheme involves only neighbour-
ing points and does not increase the bandwidth of the linear
system, as compared to the standard second-order scheme and
it leads to an ’optimal’ tool for acoustic forward modelling
for seismic imaging when a frequency-domain direct solver is
used.

4.2 The finite-volume methods

One of the limitations of standard finite-difference methods
comes from the earth discretization on rectangular regular
or irregular grids, which prevents efficient representation of
non-flat interfaces. This limitation can be eliminated when
we work with the integral form of the partial differential
equations. This idea consists of writing the partial differen-
tial equations in a first-order (pseudo) conservative form and
taking the integral over the computational domain. In certain
cases, this integral form of the partial differential equations
can be obtained directly from physical conservation laws. The
local lower-order interpolation of the fields allows an intuitive
construction, which leads to the success of this formulation.
We proceed through a geometrical interpretation, rather than
through a variational approach. This technique appears to
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have the flexibility to describe the medium using complex
meshing, while retaining the simple approach of the finite-
difference method. The so-called grid method, which was in-
troduced by Zhang and Tielin (1999) and is based on local
integration of elastodynamics and the finite-integration tech-
nique, which is based on local integration of Maxwell’s equa-
tions (Clemens and Weiland 2001), follow similar strategies
and can be considered as finite-volume methods. As Clemens
and Weiland (2001) considered regular rectangular grids, the
technique collapses into a finite-difference approach, although
arbitrary grids might have been considered. The equivalence
of a finite-volume approach over a regular rectangular grid
and a finite-difference method was noted by Brossier, Virieux
and Operto (2008) in the frequency domain.

The finite-volume method starts with the decomposition of
the computation domain, �, into a set of subdomains, �e, here
called finite volumes: � = ∪e�e. Let us consider the equation

M∂t p = Ak∂xk p + f , (18)

where k = 1, 2, 3 is an index over the spatial directions and Ak

the matrices containing the earth parameters. Equation (18)
corresponds to equation (7) before spatial discretization and
with the viscous term K = 0.

Assuming Ak constant, the integral form of equation (18)
over a volume �e is simply:∫

�e

dx Me∂t pe =
∫

�e

dx ∂xk

(
Ak

e pe

) +
∫

�e

dx fe, (19)

where Me and Ak
e are the matrices associated with the volume

e, f e the source and pe the fields.
We transform the volume integral containing the spa-

tial derivatives to a surface integral through the divergence
(Gauss) theorem. This gives the following equation,∫

�e

dxMe∂t pe =
∫

∂�e

dx Ak
e pe ne

k +
∫

�e

dx fe, (20)

where ne
k are the components of the normal to the boundary

∂�e.
In the finite-volume approach, we generally work with the

field volume averages per volume; these are discontinuous
at the boundary ∂�e. Indeed, the surface integral relates to
(numerical) fluxes, Akp, between the adjacent volumes. With
∂�e = ∪e′∈Ve�e,e′ and Ve as the set of the adjacent volumes
to the volume e, we can write the equation (20) as (LeVeque
2002)

Me∂t pe =
∑
e′∈Ve

∫
�e,e′

dxφk
e,e′ ( pe, pe′ ) ne,e′

k + f e, (21)

where pe and f e are now volume averages and φe,e′ the flux
through the boundary �e,e′ between the volumes e and e′

that depend on pe and pe′ and ne,e′
the normal to �e,e′ , with

ne,e′ = −ne′,e. As only the fluxes are shared on the boundary
of each finite volume, material and field discontinuities can be
handled. Finite-volume approaches differ in the flux approx-
imations and the time-integration schemes. Note that we can
develop a similar approach in the frequency domain. On the
boundary of the computation domain, �, specific fluxes need
to be defined to take into account the boundary conditions
(LeVeque 2002).

There are two main strategies to define the fluxes: the cen-
tred flux between two adjacent elements; or the disymmetri-
cal flux based on physics. The centred flux is simply obtained
by averaging the flux components between two adjacent ele-
ments, which gives a symmetrical estimation. On rectangular
regular grids, this returns to the scheme obtained by centred
finite differences. This strategy has useful conservative proper-
ties and can be applied to non-hyperbolic systems. However,
it can induce numerical errors when sharp variations or dis-
continuities are expected in the field.

With a hyperbolic system, we can use its propagative na-
ture to define disymmetrical fluxes. This is obtained by solv-
ing the Riemann problems using Godunov’s approach and
upwind fluxes (LeVeque 2002). The fluxes are then deter-
mined according to the local propagation directions of the
waves. While sharp variations and discontinuities are well
handled, this approach leads to a dissipative scheme. Impor-
tant improvements have been performed since the study of
Roe (1981), with the propagation of discontinuities: the initial
approach was only first-order and had large numerical disper-
sion. Higher-order time-integration schemes can be obtained
with the Lax-Wendorf approach, or with its extensions that
are associated with generalized (derivative) Riemann solvers
that give the ADER method (Toro 2009). Some of these high-
order schemes create oscillations around discontinuities. Slope
limiters or (weighted) essential non-oscillatory schemes have
been proposed. These approaches are generally not applied in
seismic or electromagnetic modelling in geophysics.

The quality of the solution depends on the meshing. Small
meshes and meshes with poor aspect ratios can significantly
affect the numerical solution. The time evolution is controlled
by the smallest element of the medium. The resolution of the
linear system in the frequency domain can encounter difficul-
ties with respect to the different sizes of the elements. The
meshing strategy is in fact shared by both the finite-volume
and the finite-element methods, and it is the common bottle-
neck of forward modelling.
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5 W EAK FORMULATION

Despite their advantages, the discretization methods discussed
so far reach their limits in complex geological settings when
the geometry of the interfaces have predominant roles in the
recorded data: very fine discretization is required for accu-
racy, which can lead to relatively expensive and inefficient
simulations, as this fine discretization impacts upon the whole
domain. High-order differential stencils based on overlapping
elements/ meshes and high-order finite-volume methods are
questionable. The finite-element method based on the weak
formulation of the partial differential equations appears to
give us more freedom to adapt the discretization to particular
geometries.

The weak formulation is obtained by multiplying the par-
tial differential equations by test functions (unlike the finite-
volume methods), by integrating over a given domain and by
carrying out an integration by parts that reduces the derivation
order of the fields wanted (that weakens the derivability condi-
tions by transferring them to the test functions) (Zienkiewicz
and Morgan 1983; Brenner and Ridgway Scott 2008; Hes-
thaven and Warburton 2008). As the weak formulation has an
integral form like the finite-volume methods, we can decom-
pose the total integration volume into small domains, which
are also called elements, of a-priori arbitrary shapes; the in-
tegral over the total domain is the sum of the integrals over
the small domains. The introduction of test functions gives us
the extra freedom to develop high-order schemes without an
overlap between the elements. However, it has a numerical
cost since the mass matrix often becomes non-diagonal; this
is a drawback when comparing this weak formulation to the
strong formulation with an explicit time scheme. The choice
of the test functions together with the representation of the
field inside the domains determine the type of finite-element
methods. Classically, the fields and the test functions are func-
tions of the same space: this corresponds to the Galerkin for-
mulation. When the test functions are defined through the
values on a given set of nodes, we speak about the nodal ap-
proach. In practice, in the nodal approach, the test functions
are a product of Lagrange polynomials. When test functions
are global polynomials in the element, we speak about the
modal approach. The (maximum) degree of the polynomials
gives the order of the element. In this review, we consider two
approaches: the continuous Galerkin finite-element method;
and the discontinuous Galerkin finite-element method. The
purpose is not to describe here all of the developments in
finite-element methods, as the literature has become too nu-
merous over the last fifty years but to give some highlights
that may help the reader.

5.1 The continuous Galerkin finite elements

With the (classic) continuous Galerkin finite-element ap-
proach, the fields involved in the differential equations are
assumed to be continuous in the entire computation domain.
They are decomposed on a local piece-wise functional basis,
which is also used for the test functions. To highlight the
main features of this method, we consider the displacement
second-order wave equations (3). The weak form is obtained
by multiplying these equations by the test functions, w and by
integrating over the computation domain � (wi are the com-
ponents of w and Einstein’s convention on repetitive indices),
as

∫
�

dxρ∂ttuiwi =
∫

�

dx∂xj σi jwi +
∫

�

dx fiwi , (22)

and integrating by parts, assuming continuous test functions
and fields,

∫
�

dxρ∂ttuiwi = −
∫

�

dxσi j∂xj wi +
∫

∂�

dxσi jwi n j

+
∫

�

dx fiwi , (23)

where nj are the components of the vector normal to the
boundary ∂�.

At the free-surface boundaries, the surface integral on the
righthand side is zero. This integral is also zero when the
test functions can be chosen as null on the boundary con-
ditions (Dirichlet conditions). This is one of the advantages
of the continuous Galerkin finite-element method: the free-
surface boundary condition is intrinsically satisfied, which
allows precise modelling of the surface waves. More com-
plicated boundary conditions can also be handled explicitly
through the boundary integral. From here on, this surface
contribution is taken as zero.

In the discrete formulation, the test function space is of
finite dimension; it can be represented by P basis functions.
We call wp

i the components of the pth basis function. In this
approach, as the fields and test functions are part of the same
function space, we have

ui (x, t) = ûp
i (t)wp

i (x), (24)

and

σi j =
∑

k

ci jkl û
p
k (t)∂xl w

p
k (x). (25)
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We can then rewrite equation (23) as∫
�

∑
i

dxρw
p
i w

q
i ∂tt û

p
i = −

∫
�

∑
i

∑
k

dxci jkl û
p
k∂xl w

p
k ∂xj w

q
i

+
∫

�

∑
i

dx fiw
q
i . (26)

The computational domain is decomposed into elements, (�
= ∪e�e). For each element, we obtain the semi-discrete system
from equation (26):

Me∂tt ûe = Seûe + f e, (27)

where Me, Se are the mass and stiffness matrices of the element
e, respectively and ûe and f e the field and source vectors,
respectively.

The total unknown vector, û, is formed with all of the com-
ponents ûp

k, which are sorted according to a given numbering
procedure. In the continuous Galerkin finite-element method,
the elements share the field values at the faces, edges and
corners of the elements. Therefore, the field vector of the el-
ement e shares component elements with the field vectors of
the neighbouring elements, forcing the continuity of the fields
at the edges of the elements. The system satisfied by û has the
form of system (8). Assembly of the matrices Me and Se gives
the (total) mass and stiffness matrices, M and S, respectively.
The mass matrix is not diagonal in the general case, because
Me is a priori not diagonal and because of the assembling. It
can have a large bandwidth. It is, however, a sparse matrix. In
the frequency domain, the continuous Galerkin finite-element
method leads to system (10). Similar results are obtained with
the electromagnetic wave equations. In this formulation, the
earth parameters can vary in each element. This variability
of the earth parameters in each element has to be taken into
account in the computation of the integrals that define the
mass and stiffness matrices. With the nodal approach and
a Gaussian quadrature technique, this can be achieved eas-
ily by defining the earth parameters at the nodes of the test
functions.

We have considered only one test function space here. To
more accurately represent the derivatives of the fields, we can
use a different test function space per equation of the system.
This leads to the so-called mixed-element methods (Nedelec
1980; Stenberg 1988). This idea resembles the staggered-grid
idea of the finite-difference methods. This is used, for in-
stance, with the first-order elastodynamic wave equation to
more accurately compute displacement and stress (Becache,
Joly and Tsogka 2002), or with the electromagnetic equa-
tions to handle the divergence operator and the possible dis-

continuity of the normal components via the so-called edge
elements and then to avoid some spurious numerical modes
that arise from medium discretization (Hiptmair 2002; Monk
2003).

The conditioning of mass matrix, M, depends on the shapes
of the elements. Badly shaped elements, e.g., very elongated
elements, lead to a poorly conditioned system and can cre-
ate numerical instability. This is one of the difficulties of the
meshing, which needs to avoid elements with a too large as-
pect ratio. The condition number of M also depends on the
choice of the test functions; in the nodal approach, this is
seen as the choice of the location of the nodes in the el-
ement. For high-order elements, equidistant nodes lead to
poor condition numbers and in practice only non-equidistant
nodes are used and especially nodes based on the Gauss-
Lobato points with quadrant or octant elements (Cohen
2002).

While it is not a real drawback with the frequency-domain
formulation or with an implicit time scheme (as in diffusive
electromagnetics), with an explicit time scheme, the solving
of a non-diagonal system at each time step can limit the use-
fulness of the approach. The remedy here is to apply a mass-
lumping technique: namely, to replace the mass matrix with a
diagonal matrix built by summing all of the elements of a line
onto the diagonal (Cohen 2002). This simplification is not al-
ways accurate and therefore careful choice of the quadrature
and the nodes is required. This approach is often adequate
with Gauss-Lobato points and a Gaussian quadrature. The
spectral element method, which is often used in seismology,
is developed in Komatitsch and Vilotte (1998) and Chaljub
et al. (2007) and uses the Gauss-Lobato-Legendre integration
technique to obtain a diagonal mass matrix with a high-order
quadrant in 2D and an octant in 3D elements. Aside from
the property of a diagonal mass matrix, this leads to spectral
convergence behaviour in space.

For practical applications, the meshing needs to be adapted
to the earth structure, with generally fine meshes in com-
plex zones or in zones with low velocity or low resistivity,
in order to speed up the computation. With the continuous
Galerkin finite-element method, grid adaptation (also called
h-refinement) is regularly used. However, because elements
share information through the nodes that are on the bound-
aries, it is complicated to use different types of elements and es-
pecially different element orders (the so-called p-refinement).
This sometimes limits the flexibility of the method, especially
when high-order elements would be needed in most of the
domain to gain efficiency.
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5.2 The discontinuous Galerkin finite elements

Some of the limitations of the continuous Galerkin finite-
element approach can be addressed by the discontinuous
Galerkin finite-element method, including, as already men-
tioned, when some of the field components need to be discon-
tinuous across interfaces. In the continuous Galerkin finite-
element method, forcing the continuity of the test functions
can introduce some spurious artificial modes. Relaxing the
continuity of the test functions helps to better represent the
fields. The p-refinement can also be easily handled with the
discontinuous Galerkin method. These approaches are, how-
ever, not a replacement for the classic Galerkin approaches,
because they also suffer from numerical complications.

To discuss the main features of the discontinuous Galerkin
method, let us consider the hyperbolic first-order wave equa-
tion as for the finite volume. We also decompose the compu-
tational domain � into elements, �e as previously. The weak
form is obtained by multiplying the equations by the test func-
tions wq. These test functions, together with the fields, are a
priori not continuous at the boundaries of the element. There-
fore, after integration in parts, the weak form in the element
�e is (Hesthaven and Warburton 2008):

∫
�e

dx Mi j∂t pejw
q
i = −

∫
�e

dx pej∂xk(Ak
i jw

q
i )

+
∫

∂�e

dx φk
ei n

e
kw

q
i +

∫
�e

dx feiw
q
i ,

(28)

with the numerical flux

φk
ei = Ak

i j pej . (29)

On the boundary ∂�e, the numerical flux is not known be-
cause the fields are discontinuous. As with finite-volume meth-
ods, the main difference between the different discontinuous
Galerkin methods is in the numerical estimation of this flux.
The fluxes are shared by the adjacent elements. We assume
that the fluxes depend on the values of the fields in the element
and on its adjacent elements. With ∂�e = ∪e′∈Ve�e,e′ and Ve

as the set of the neighbour elements of the element e, we can
write the flux on �e,e′ as

φk
ei = φ̂k

i ( pe, pe′ ). (30)

Here, φ̂ remains to be determined. As previously, we consider
the Galerkin approach for the discretization:

pei = p̂p
eiw

p
i . (31)

The weak formulation becomes∫
�e

dx
∑

j

Mi j∂t( p̂p
ejw

p
j )wq

i = − ∫
�e

dx
∑

j p̂p
ejw

p
j ∂xk(Ak

i jw
q
i )

+
∑
e′∈ve

∫
�e,e′

dx φ̂k
i ( p̂e, p̂e′ )ne,e′

k

×w
q
i +

∫
�e

dx feiw
q
i . (32)

With constant test functions per element (and constant ma-
trices Ak), the first volume integral on the righthand side is
null and we retrieve the equation (21) of the finite-volume
methods. The lower-order finite-volume method is equiva-
lent to the lower-order discontinuous Galerkin finite-element
method, showing that this technique generalizes the finite-
volume method in one way, while alternative higher-order
formulations of the finite-volume method are also possible.

With a linear flux φ̂, we obtain the linear system

Me∂t p̂e = Se p̂e +
∑
e′∈Ve

S′
e,e′ p̂e′ + f e, (33)

which has the form of system (7).
Before assembling the matrices, we need to take care of the

conditions at the boundaries of the computation domain and
notably at the free surface. Contrary to the continuous case,
the free-surface condition is not naturally accounted for with
this method; specific numerical fluxes need to be defined as
with the finite-volume method.

The total unknown vector, p̂, is built from the vectors p̂e.
The vectors p̂e do not share elements and therefore the vector
p̂ is just the concatenation of all of the vectors p̂e. This means
that the global mass matrix M is block-diagonal. The lin-
ear system associated with the discontinuous Galerkin finite-
element method is then often easier to solve than that associ-
ated with standard finite-element methods. We must however
note that the size of the vector p̂ can be much larger with the
discontinuous Galerkin formulation than with the continuous
Galerkin formulation, especially with low-order elements, be-
cause the nodes on the element boundaries are duplicated,
which represents an effect of the flux approach balancing the
advantages of the p-adaptivity.

The flux strategies described for finite-volumes methods
can be adopted here. An upwind approach has been tested
by Dumbser, Käser and Toro (2007) and Käser et al. (2007)
and centred fluxes by Etienne et al. (2010). With the dis-
continuous Galerkin method, high-order schemes can also be
obtained using high-order polynomials for the test functions,
which is a great advantage. With the centred fluxes, the earth
parameters can be gathered in the matrix M, in front of the
time derivatives (e.g., by using the compliance matrix – the

C© 2011 European Association of Geoscientists & Engineers, Geophysical Prospecting, 59, 794–813



Spectral, pseudo-spectral, finite-difference and finite-element modelling 805

inverse of the stiffness matrix – in the elastodynamic equa-
tion). Consequently, the numerical fluxes are independent of
the earth parameters, and for imaging/inversion, where we
need to compute the gradient of the misfit function with re-
spect to the earth parameters, the derivatives of the flux terms
disappear, which makes the implementation simpler. How-
ever, it can complicate the implementation when we have large
earth parameter discontinuities, e.g., at the acoustic-elastic
interface.

The discontinuous Galerkin method has also been proposed
for the second-order wave equation (Riviere and Wheeler
2003; Grote, Schneebeli and Schotzau 2006; de Basabe, Sen
and Wheeler 2008). The use of the second-order wave equa-
tion is interesting because it reduces the number of unknowns.
The schemes differ according to the penalty applied in the nu-
merical flux estimation.

Although the mass matrix is block-diagonal for the discon-
tinuous Galerkin method, the blocks can be relatively large
in 3D for high-order elements. The quadratures of the finite-
element formulation can be applied, in order to obtain a di-
agonal matrix (de Basabe et al. 2008). The use of an orthog-
onal basis, e.g., with the Legendre polynomials, in a modal
approach, automatically leads to a diagonal mass matrix, as-
suming constant material properties per element (Cockburn
2003).

In practical applications, grid refinement and order refine-
ment can be easily implemented, leading to the so-called hp-
adaptivity, because the elements share flux values and not
field values, as in continuous finite-element methods (Cock-
burn 2003). In most of the geophysical modelling applica-
tions of the discontinuous Galerkin method, the elements
used in the meshing are triangular in 2D and tetrahedral in
3D, which leads to simpler meshing than with the quadrant
or octant elements classically used with the spectral finite-
elements method. However, to our knowledge, the discontin-
uous Galerkin method has been mainly used with low-order
elements in an imaging approach.

In the presence of complex geometry and complex geolog-
ical models, adaptivity and the mesh refinement are the key
features for efficient numerical solutions of the elastodynamic
and electromagnetic equations. Refining meshes imposes se-
vere stability constraints on explicit time-stepping schemes
to respect the Courant-Friedrickson-Lewy stability condition
and to ensure stability of the numerical scheme. When the
mesh refinement is restricted to a small region, the smallest
time step will be used in the entire computational domain.
Overcoming this limitation is essential to achieve high perfor-
mance and high numerical accuracy. If there is only a limited

number of small cells, then decreasing the interpolation order
is a practical approach (p-adaptivity) (Dumbser et al. 2007;
Etienne et al. 2010), while local time-stepping schemes with
local stability conditions will be the method of choice (Collino,
Fouquet and Joly 2006; Dumbser et al. 2007; Diaz and Grote
2009). The methods of local time steps have not yet achieved a
maturity level for efficient load balancing between processors
in a high-performance computer environment, as the com-
putational complexity varies dramatically between processors
with the local time stepping: an optimal domain decomposi-
tion strategy remains to be found, as far as we know.

6 S OME A PPLICATIONS

Without being exhaustive, we now give some of the geophys-
ical applications of the modelling methods described above.

As discretization is different from other formulations, spec-
tral methods are often used to validate the solutions of the vol-
umetric methods, especially when an interface phenomenon
has an important role. A well-known application is for global
earth modelling where both material properties and fields are
developed on spherical harmonic functions for latitute/ longi-
tude coordinates and simple polynomial interpolation for the
radial coordinate (Woodhouse and Dziewonski 1984; Geller
and Ohminato 1994; Woodhouse 2007). These spectral ap-
proaches (at least for horizontal distances) have a low number
of parameters (Takeuchi, Geller and Cummins 2000; Kawai,
Takeuchi and Geller 2006), which allows efficient computa-
tions of seismograms for relatively smooth media. For global
earth imaging, spectral methods have been the methods of
choice as the earth is a closed medium. Since the seminal study
of Woodhouse and Dziewonski (1984), full waveform inver-
sion has been performed up to 0.05 Hz from recorded seis-
mograms with earthquakes of magnitudes greater than 6.5,
with closed-form estimations of the Fréchet derivatives and
a relatively compact form of the Hessian matrix (Geller and
Hara 1993): various local targets have been investigated as the
database has increased (see references provided by Thurber
and Ritsema (2007)).

Due to the efficiency and accuracy with layered 3D me-
dia, spectral methods have also been used for full waveform
inversion, often with a stochastic approach (Pica, Diet and
Tarantola 1990; Kormendi and Dietrich 1991; Sen and Stoffa
1995; Hoversten et al. 2006; De Barros and Dietrich 2008).

Spectral methods also have an important role when the state
equations are reformulated with the introduction of Green
functions. We can cite the primary/secondary formulation
that is often used in diffusive electromagnetism (Hohmann
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1988; Zhdanov 2002). In this formulation, the primary
solution in a layered background is often computed with
a spectral method, allowing analytical discretizations of the
source; the secondary field is computed by a volumetric (finite-
difference or finite-element) formulation. We should also men-
tioned the integral equations formulation. This might be of
interest when the sought properties of the medium are con-
fined in a more limited domain than the one where we must
solve the forward problem, or when weak perturbations in the
variations of properties are expected (Zhdanov 2002). Here,
volumetric methods, such as the finite-difference method, are
also used to compute the Green functions. These approxima-
tions could be similarly applied using the partial differential
equations (Robertsson and Chapman 2000; Abubakar et al.
2009). It is worth noting that the integral equation methods
can be collapsed into the boundary integral methods where
discretization is only along the boundaries between domains,
as long as solutions are available inside each domain. We of-
ten consider domains with homogeneous properties leading to
local analytical solutions (Kausel 2006), although numerical
local solutions can be constructed at the expense of computer
resources (Wolf 2003).

A lot of large-scale geophysical inversion/imaging use the
finite-difference or finite-volume methods. In 3D electromag-
netic imaging, applications can be found in magnetotelluric
data imaging (Mackie et al. 1993) and in marine-controlled
source electromagnetic data imaging (Newman and Alum-
baugh 1999; Carazzone et al. 2005; Plessix and Mulder 2008).
In these applications, most of the time, the inversion is car-
ried out in the frequency domain and second-order spatial
schemes are used. In seismic imaging, 3D acoustic reverse-
time migration of P-waves is nowadays a commodity, espe-
cially in the Gulf of Mexico. In 3D, only time-domain im-
plementations with time marching are competitive, because
a sufficiently large band-frequency window has to be taken
into account to obtain sufficient depth localization. To im-
prove the efficiency, large optimal stencils are implemented
(Etgen and O’Brien 2007). The use of large stencils is not
only crucial from a computational time point of view but
also from a memory and disk access point of view. In ex-
ploration geophysics and geodynamic lithospheric interpre-
tations, 3D acoustic full waveform inversion also principally
relies on finite-difference techniques. However, contrary to the
reverse-time migration, only a sparse set of frequencies can be
used. Here, computation of the gradient of the misfit func-
tion is required, making the implementation somewhat more
challenging than for the reverse-time migration applications.
Processing frequency per frequency allows the disk access re-

quirements to be reduced. Indeed, the time-harmonic incident
field can generally be stored in the memory while comput-
ing the data back-propagated field, as the full waveform in-
version method for velocity building currently uses only the
low-frequency part of the data spectrum. Therefore, both 3D
time-domain and frequency-domain implementations are now
used (Ben-Hadj-Ali, Operto and Virieux 2008; Vigh and Starr
2008; Warner, Stekl and Umpleby 2008; Plessix 2009; Sir-
gue et al. 2010). Despite some attempts (Brossier, Operto and
Virieux 2009), finite-volume methods are not routinely used
in seismic imaging. While attractive for the representation of
sharp interfaces, as we can use triangle or tetrahedral meshes,
these low-order methods remain too expensive and less flex-
ible than finite-element methods. We can also question the
relevance for imaging of the high-order finite-volume meth-
ods based on high-order time integration, such as the ADER
technique, because of their complexity.

Finite-difference approaches represent a good compromise.
These are less accurate than other numerical methods but
they are efficient, notably with the high-order stencils in
seismic imaging and easy to implement even with gradient
computation. While the model representation can be crude
(for instance with rough topography), model discretization
through a grid is easy and generally does not lead to numer-
ical difficulties. In exploration geophysics, we often do not
have precise knowledge of the geological interfaces (except
at the air-earth and water-earth interfaces). Therefore, work-
ing with relatively smooth earth parameters at the wavelength
scale is often sufficient, at least in the first stages of velocity
model building with P-waves or resistivity imaging in a marine
environment.

In the oil and gas industries, finite-element methods have
rarely been used so far in large-scaled applications. In contrast,
they have been applied in seismology. Various implemen-
tations have been studied, from standard finite-element ap-
proaches (Marfurt 1984) to octree-based finite-element meth-
ods (Bielak et al. 2003) in active and passive seismology, and
with classic and mixed continuous finite-element methods,
sometimes with edge elements, in electromagnetism, e.g., see
Cognon (1971) and Li and Key (2007). A few inversions
have been performed using the standard finite-element ap-
proach (Askan et al. 2007). However, with the regaining of
importance of land exploration and the need for better reser-
voir characterisation, these techniques might become crucial
to better model the propagation and diffusion phenomena
around interfaces and in anisotropic media. In global seis-
mology, the spectral finite-element method with a spectral
convergence in the standard space has reached a mature level
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(Komatitsch and Vilotte 1998; Komatitsch and Tromp 2002;
Chaljub et al. 2007). This method has been applied in an
inversion scheme at lithospheric scales (Fichtner et al. 2008;
Tape et al. 2009). Discontinuous Galerkin implementations
that provide additional properties and flexibilities have been
proposed (Käser et al. 2007; De la Puente et al. 2008). The
first preliminary attempts of this method for seismic imag-
ing have been performed (De la Puente, Sallares and Ranero
2010). The relative advantages of the different finite-element
methods for inversion remain an active research topic.

7 S OME M ODELLING A ND IMAGING
CONSIDERATIONS

When modelling approaches form the kernel of an inversion/
imaging problem, some extra considerations can influence our
choice, depending on the size of the model space. In elasto-
dynamics and electromagnetism imaging methods, the earth
model contains from less than 100 unknowns in very small
real-sized cases, to hundreds of millions in large real-sized
cases. When the forward modelling is fast enough and with
a reduced number of unknowns, the objective function of the
inverse problem can be minimized with a global optimisa-
tion technique, such as a grid search or Monte Carlo sam-
pling (Press 1968; Silva and Hohmann 1983; Hong and Sen
2009), or a semi-global method, such as simulated anneal-
ing or genetic algorithms (Sen and Stoffa 1995), where the
sampling strategy of the model space depends on the values
of the objective function. These (semi-)global optimizations
are interesting because they only rely on the value of the mis-
fit function. To converge, these methods require a number of
simulations that is often larger than the number of unknowns.
Unfortunately, they can be implemented only with small cases
under certain simplifications. Classically, a 1D assumption
is made and the spectral methods are good candidates. The
finite-difference, finite-volume and finite-element methods are
often still too expensive to allow (semi)-global searches.

In more complex settings, we revert to local optimization
due to computational constraints. Local techniques without
the estimation of the gradient, such as the simplex method,
are limited to a few parameters. This leaves us with gradient
optimization. This adds some burdens on the implementa-
tion, as the gradient of the misfit function with respect to
model parameters needs to be evaluated and numerical dif-
ferentiation is not a real option due to its cost. Computing
the Jacobian matrix of the misfit function, namely the Fréchet
derivatives with respect to the model parameters, is often not
possible because it would require a large number of simula-

tions, although there are cases where it is manageable (Chen,
Jordan and Zhao 2007). With a limited number of parame-
ters, closed-form estimation of the Fréchet derivatives can be
done with the spectral methods, as mentioned previously.

An alternative consists of directly evaluating the gradient
with the adjoint-state technique (Chavent 2009). The dis-
cretization of equations (7), (8), (9) or (10) leads to the formal
system Lp = f . The adjoint system is given by LTq = g, where
q is the adjoint (back-propagated) fields, g the source of the
adjoint system, which depends on the residuals between the
observed and computed data from fields p and T the transpo-
sition. The gradient with respect to a model parameter m is
then given by qT∂mLp.

Several comments that may guide our modelling choice can
now be made:

� The forward (direct) and backward (adjoint) systems
are similar. They are conjugated, and consequently they
have the same dispersion curve. The methods described
for the forward system can be used directly to solve the
backward system. However, the source term of the back-
ward system is generally less localized than the source
term of the forward system. This may become a challenge
with spectral methods. Moreover, it is recommended to
derive the adjoint system from the discretized system
(Chavent 2009). This can be numerically difficult or ex-
pensive with certain approaches, such as spectral meth-
ods or sophisticated spatial and temporal schemes; e.g.,
with some finite-difference schemes on irregular grids,
and some high-order time-integration schemes.

� In the time domain, the adjoint system is solved back-
wards. This means that computing the gradient requires
the incident fields at all of the time steps. This is a bur-
den compared to the frequency domain, where all of
the frequencies can be treated separately. When an ef-
ficient frequency solver exists, such as in diffusive elec-
tromagnetism, the frequency domain is then the domain
of choice. Note that the situation becomes more compli-
cated when a time window is applied to the data, e.g.,
to remove the air wave. When the disk access becomes
a bottle-neck with the time-domain approach, check-
pointing methods can be applied, as recalled by Symes
(2007); however, this increases the computational effort
and the complexity of the implementation.

� In the frequency domain, the matrix L is independent of
the source locations. With a direct solver, the LU ma-
trix decomposition is then carried out only once, mak-
ing this implementation attractive. In 3D geometries,
however, the parallelization of the direct solver is quite
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challenging and this requires a very large amount of
memory. This approach is a priori not a real option in
diffusive electromagnetism, where fast iterative solvers
exist. In acoustics, with fixed-spread acquisition, the
direct-solver approach can be an option when very few
frequencies are used, as in certain inversion approaches
(see examples in Brossier et al. 2010). This, however, re-
lies heavily on the hardware architecture, and especially
the speed of communication.

� Often, the data contain a large number of sources. The
forward and backward systems can be very efficiently
parallelized over the sources. Moreover, the compu-
tational domain can be adapted to the shot acquisi-
tion, which leads to an efficient implementation, espe-
cially when the computational and inversion grids can
be decoupled. Time-domain and frequency-domain im-
plementations with an iterative solver take advantage
of this feature when dealing with large real datasets.
For the frequency-domain implementation, the algo-
rithm can also be parallelized over the frequencies. This
favours frequency-domain implementation when an effi-
cient solver exists. This explains why frequency-domain
approaches are favoured in diffusive electromagnetism;
moreover, just a sparse set of frequencies are often used.
In elastodynamics, no sufficiently efficient 3D frequency-
domain iterative solver exists yet to compete with time-
domain implementation when a large band-frequency
window needs to be modelled, such as for reverse-time
migration. When only a very few frequencies are used,
such as with certain (acoustic) full waveform inversion,
iterative solvers can be an option. Nevertheless, time-
domain implementations are currently the most common
choices.

� The gradient will be efficiently evaluated when the ma-
trix ∂mL is very sparse. High-order time or spatial
schemes reduce the sparsity of these matrices. The ad-
joint state technique can, for instance, be relatively in-
efficient with spectral methods, such as the reflectivity
method. The finite-difference and finite-element high-
order spatial schemes are generally not an issue. How-
ever, parallel implementations by domain decomposi-
tion can significantly increase inter-node communica-
tion. The local nature of the discontinuous Galerkin
method appears to be an advantage. In the time domain,
the complexity added by the high-order time scheme,
such as a high-order ADER scheme, needs to be evalu-
ated. Currently, as far as we know, only low-order time
schemes are used in inversion.

With large inverse problems, these considerations around
the gradient computation appear to be in favour of the
finite-difference, finite-volume or finite-element methods for
spatial discretization. The choice between frequency-domain
and time-domain formulations is problem dependent. Phys-
ical or (pre)processing considerations should influence the
choice, as these can influence the behaviour of the numerical
implementation.

8 C ONCLUSIONS

In this review, three main modelling approaches have been
presented. First, spectral methods can give very efficient and
accurate solutions; however, their lack of flexibility limits their
applications to very specific earth geometries, e.g., a layered
Earth. Secondly, the discretization of the strong formulation
of the partial differential equations has been discussed. This
corresponds to the pseudo-spectral, finite-difference method
and finite-volume method. On a structured meshing and no-
tably a regular or stretched grid, these approaches are easy
to implement and are relatively flexible. They are currently
the methods of choice for large-scale modelling and inversion
in exploration geophysics and especially in the marine envi-
ronment. They may however demand very fine discretization
when the earth model contains large contrasts and accurately
modelling the responses around a sharp interface is quite chal-
lenging. Thirdly, we discussed the weak formulation, namely
the finite-element methods with continuous and discontinuous
approaches. The use of test functions gives us more freedom
and the integral form provides us flexibility in the meshing.
However, they lead to numerical challenges: they are more
difficult to implement than methods related to the strong for-
mulation, they are often more expensive in computational
time and memory and they are more complicated to use be-
cause the accuracy of the response depends on the quality of
the meshing.

This classification helps in our understanding of the ad-
vantages and limitations of each particular method for the
modelling of specific physical phenomena. The choice of the
modelling approach depends in particular on the needed ac-
curacy, the efficiency in the evaluation of the solution and the
gradient of the misfit function in an inversion algorithm and
the simplicity of use. Although this was not really discussed,
the efficiency can depend considerably on the hardware ar-
chitecture. New types of hardware architecture require new
modelling implementations to be used efficiently and, there-
fore, can require specific developments. Similarly, the practical
implementation will probably be adapted to the data acquisi-
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tion. Densely sampled acquisition in exploration geophysics,
with or without blending, or in lithospheric investigations
with the recent deployment of sensors, as for the US array
experiment, challenge our modelling choice. This appears to
indicate that developments in modelling and the associated in-
version approaches remain crucial for the improvement of our
subsurface knowledge and particularly for the extraction of
more information from the ever larger data sets we record.
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