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Ribodetti, Michel Dietrich and Ludovic Métivier for sharing their knowledge during video-
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Résumé

Le suivi temporel est un processus d’acquisition et d’analyse d’acquisitions multiples répétées
au même endroit sur la même cible à différentes périodes de temps. Cela s’applique bien à
l’exploration sismique quand les propriétés de la cible varient au cours du temps comme pour
les réservoirs pétroliers. Cette technique de sismique, dite 4D en raison de l’intégration du
temps dans la construction des images, permet une détection et une estimation des variations
du sous-sol survenues lors de l’évolution en temps du milieu. En particulier, dans l’industrie, le
suivi et la surveillance peuvent améliorer notre compréhension d’un réservoir de pétrole/gaz ou
d’un site de stockage de CO2. Analyser la sismique 4D peut aider à mieux gérer les programmes
de production des réservoirs. Ainsi, des acquisitions répétées permettent de suivre l’évolution
des fronts de fluide injecté: on peut optimiser les programmes d’injection de fluides pour une
récupération améliorée des hydrocarbures (enhanced oil recovery).

Plusieurs méthodes ont été développées pour l’imagerie variable dans le temps en utilisant
les informations des ondes sismiques. Dans ma thèse, je montre que l’inversion de forme d’onde
complété (FWI) peut être utilisée pour cette imagerie. Cette méthode offre des images sismiques
quantitatives haute résolution. Elle est une technique prometteuse pour reconstruire les petites
variations de propriétés physiques macro-échelle du sous-sol. Sur une cible identifiée pour ces
imageries 4D, plusieurs informations a priori sont souvent disponibles et peuvent être utilisées
pour augmenter la résolution de l’image. J’ai introduit ces informations grâce à la définition
d’un modèle a priori dans une approche classique FWI en l’accompagnant de la construction
d’un modèle d’incertitudes a priori. De plus, j’ai introduit une pondération dynamique de
manière à réduire l’importance de ces modèles a priori lors de la convergence finale. Sur des
exemples synthéques réalistes, j’ai montré que l’inversion FWI est moins sensible au modèle
initial (qui peut donc être moins précis) grâce à cette utilisation de l’information a priori. Il
est donc possible d’obtenir un modèle très précis comme modèle de base pour l’imagerie 4D.

Une fois la reconstruction d’un tel modèle atteinte, plusieurs stratégies peuvent être utilisées
pour évaluer les changements de paramètres physiques. On peut réaliser deux reconstructions
indépendantes et faire la différence des deux modèles reconstruits: on parle de différence paral-
lèle. On peut aussi effectuer une différence séquentielle où l’inversion de l’ensemble de données
de la second acqusition, dite moniteur, se fait à partir du modèle de base et non plus à partir
du modèle utilisé initialement. Enfin, l’approche double-différence conduit à l’inversion des dif-
férences entre les deux jeux de données que l’on rajoute aux données synthétiques du modèle de
base reconstruit. J’étudie quelle stratégie est à adopter pour obtenir des changements vitesse
plus précis et plus robustes. En plus, je propose une imagerie 4D ciblée en construisant un
modèle d’incertitude a priori grâce à une information (si elle existe) sur la locatisation poten-
tielle des variations attendues. Il est démontré que l’inversion 4D ciblée empêche l’apparition
d’artéfacts en dehors des zones cibles: on évite la contamination des zones extérieures qui



pourrait compromettre la reconstruction des changements 4D réels.

Une étude de sensibilité, concernant l’échantillonnage en fréquence pour cette imagerie 4D,
montre qu’il est nécessaire de faire agir simultanément un grand nombre de fréquences au
cours d’un cycle d’inversion. Ce faisant, l’inversion fournit un modèle de base plus précis que
l’approche temporelle, ainsi qu’un modèle des variations 4D plus robuste avec moins d’artéfacts.
Toutefois, la FWI effectuée dans le domaine temporel semble être une approche plus intéressante
pour l’imagerie 4D. Enfin, l’approche d’inversion 4D régularisée avec un modèle a priori est
appliquée sur des ensembles de données réelles d’acquisitions sismiques répétées fournis par
TOTAL. Cette reconstruction des variations locales s’inscrit dans un projet d’injection de
vapeur pour améliorer la récupération des hydro-carbures: Il est possible de reconstituer des
variations de vitesse fines causées par la vapeur injectée.
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Abstract

Time-lapse monitoring is the process of acquiring and analysing multiple seismic surveys, re-
peated at the same place at different time periods. This seismic technique, called 4D because
of the integration time in the construction of images, allows detection and estimation of the
subsurface parameter variations occured through a time evolution. Particularly, in industries,
the monitoring can improve our understanding of a producing oil/gas reservoir and CO2 stor-
age site. Analyzing the time-lapse seismics can help to better manage production programs
of reservoirs. In addition, repeated surveys can monitor the evolution of injected fluid fronts
and can permit to optimize injection programs which are considered for enhanced oil recovery
(EOR) techniques.

Several methods have been developed for time-lapse imaging using seismic wave informa-
tion. In my thesis, I show that full waveform inversion (FWI) can be used for time-lapse
imaging, since this method delivers high-resolution quantitative seismic images. It is a promis-
ing technique to recover small variations of macro-scale physical properties of the subsurface.
In time-lapse applications, several sources of prior information are often available and should
be used to increase the image reliability and its resolution. I have introduced this information
through a definition of a prior model in a classical FWI approach by also considering a prior
uncertainty model. In addition, I have suggested a dynamic weighting to reduce the impor-
tance of these prior models in the final convergence. In realistic synthetic cases, I have shown
how the prior model can reduce the sensitivity of FWI to a less accurate initial model. It is
therefore possible to obtain a highly accurate baseline model for 4D imaging.

Once the baseline reconstruction is achieved, several strategies can be used to assess the
physical parameter changes. We can make two independent reconstructions of baseline and
monitor models and make subtraction of the two reconstructed models. This strategy is called
parallel difference. The sequential difference strategy inverts the monitor dataset starting from
the recovered baseline model, and not from the model used initially. Finally, the double-
difference strategy inverts the difference data between two datasets which are added to the
calculated baseline data computed in the recovered baseline model. I investigate which strat-
egy should be adopted to get more robust and more accurate time-lapse velocity changes. In
addition, I propose a target-oriented time-lapse imaging using regularized FWI including prior
model and model weighting, if the prior information exists on the location of expected varia-
tions. It is shown that the target-oriented inversion prevents the occurrence of artifacts outside
the target areas, which could contaminate and compromise the reconstruction of the effective
time-lapse changes.

A sensitivity study, concerning several frequency decimations for time-lapse imaging, shows
that the frequency-domain FWI requires a large number of frequencies inverting simultaneously.



By doing so, the inversion provides a more precise baseline model and more robust time-lapse
variation model with less artifacts. However, the FWI performed in the time domain appears
to be a more interesting approach for time-lapse imaging considering all frequency content.
Finally, the regularized time-lapse FWI with prior model is applied to the real field time-
lapse datasets provided by TOTAL. The reconstruction of local variations is part of a steam
injection project to improve the recovery of hydrocarbons: it is possible to reconstruct the
velocity variations caused by the injected steam.
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Introduction

Time-lapse seismic reservoir monitoring has received much attention over the past decade for
improving our understanding of complex phenomena in the upper crust from natural geological
variations as well as from anthropagenic influences. Time-lapse monitoring is the process of
acquiring and analysing multiple seismic surveys, repeated at the same place at different time
periods, in order to image potential fluid changes in a producing reservoir and/or CO2 storage
site (Landrø, 2001; Lumley, 2001; Calvert, 2005). Due to the extra fourth dimension, which is
time, the repeated 3D seismic survey is often called 4D seismics.

The final goal of seismic monitoring is the estimation of fluid parameter variations in a
reservoir during production time and/or CO2 storage during stockage time. While fluid satu-
rations, pressures and temperatures in the reservoir change, seismic reflection properties change
according to their sensitivity to each parameter. In time-lapse applications, by assuming the
solid skeleton is time-invariant during production time (sometimes this may not be the case,
due to physical changes and/or chemical reactions), it is possible to separate the dynamic fluid
flow properties from the static geology footprint in seismic data and to produce images of
the time-variant fluid changes (Lumley, 1995b, 2001). Figure 1 shows two seismic attributes
acquired at two different times. By interpreting them, it is possible to detect the changes of
oil water contact (OWC) over time. Amplitude and phase of seismic data change because of
substitution of oil by water.

Compared to the 3D seismic, which is an exploration tool, 4D seismics is an important
reservoir engineering management tool. Time-lapse images can identify bypassed hydrocarbon
and show potential fluid migration paths. Therefore, it can be used for making a decision to
drill or not to drill new wells in the field. Another example of the use of time-lapse monitoring
concerns one of the EOR (Enhanced Oil Recovery) techniques, related to injection of fluid
(water, steam, gas, etc.) into the reservoir. Repeated surveys can monitor the evolution of
injected fluid fronts and can permit to optimize injection programs (Lumley, 2001). In addition,
time-lapse models can distinguish the fluid-flow properties of sealing or non-sealing faults in
complex reservoir.

Acquisition & processing

Repeatability in seismic acquisition is a crucial issue for time-lapse monitoring. Advances in
repeatability of acquisitions can result in a major enhancement in time-lapse signal-to-noise
ratio (Zabihi Naeini, 2012). Several studies have been shown that small changes in tides, water
velocity, near surface properties (due to temperature changes), ambient noise, source and re-
ceiver positioning, for example, can produce significant non-repeatability effects on time-lapse
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Figure 1: A repeated survey allows to monitor fluid variation in the subsurface (from Statoil).

data (Moldoveanu et al., 1996; Beasley et al., 1997; Rennie et al., 1997; Porter-Hirsche and
Hirsche, 1998; Ronen et al., 1999; MacKay et al., 2003; Bertrand and MacBeth, 2003). Some
of these acquisition effects can be reduced by performing more repeatable acquisition geome-
tries, using minimized streamer cable feather, using ocean-bottom cable (OBC), and with the
installation of permanent sensors on the site (Lumley, 2001), as shown by two examples: Seis-
Movie technology suggested by CGG (http://www.cgg.com/default.aspx?cid=5899) and
OptoSeis system recently installed in deepwater offshore Brazil by PGS (http://www.pgs.
com/en/Geophysical-Services/4D-Seismic/Permanent-Monitoring/). Indeed, permanent
receivers are widely used in microseismic projects and could also be used for permanent reser-
voir monitoring. Some other effects such as ocean velocity variation and even changes in source
and receiver locations could be reduced during the time-lapse data processing steps, using stat-
ics correction and 4D binning (Zabihi Naeini et al., 2009; Zabihi Naeini, 2012; Zabihi Naeini
et al., 2012).

The main aim of 4D processing is the mitigation of the 4D noise caused by changes in
acquisition parameters or environmental conditions, and the improvement of the 4D signature
of the reservoir caused by changes in fluid, pressure and stress. For this reason, there is a need
to obtain excellent 3D or 2D seismic images for each dataset, and simultaneously optimize time-
lapse repeatability in areas without any changes. This processing workflow is known as cross
equalization in the industry (Lumley, 2001). The main purpose of 4D cross-equalization tools
is to process repeated vintage data together in order to equalize spectral bandwidth, amplitude
gain variations, and event positioning to optimize 4D seismic difference anomalies (Harris and
Henry, 1998; Rickett and Lumley, 1998). Figure 2 shows an example of the cross-equalization
process (before and after). We can see that, after applying the cross-equalization process, the
spectral bandwidth of both surveys become almost similar.

Several processing steps should be performed for time-lapse projects. 4D binning is an
essential step to improve the repeatability of time-lapse (4D) data. Binning is a strategy to
select the most compatible traces which are best matched between two surveys in terms of
source, receiver and midpoint position, offset and azimuth. In other words, the 3D image
quality is reduced in order to gain better subtraction between repeated vintages (Meunier and
Herculin, 2003). The binning criteria corresponding to the selection of the most compatible
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Figure 2: An example of the cross-equalization process. Amplitude spectra before (left) and
after (right) cross-equalization. The solid line corresponds to the baseline survey and the dashed
line to the monitor survey acquired after 12 years later (from Rickett and Lumley (1998)).

traces can be extended to include statistical measurements of 4D data quality based on cross-
correlation and normalized RMS (NRMS) or predictability (http://www.cgg.com). Recently,
Zabihi Naeini et al. (2009) have proposed a simultaneous multi-vintage (SMV) 4D binning
algorithm which provides the best possible repeatability across all vintages and in each bin,
instead of cascaded (pair-wise) processing (Figure 3).

Figure 3: Comparison of cascaded (left) and simultaneous (right) multi-vintage processing
approaches for a time-lapse study with three vintages (from Zabihi Naeini et al. (2010)). In
cascaded processing, the vintage 1 and 2 are compared as well as the vintage 2 and 3, but
comparison of vintage 1 and 3 is not considered. While in simultaneous approaches, all the
possible comparisons are considered at the same time.

Rock physics and time-lapse data

Fluid parameter variations, pressure and temperature changes have a direct effect on subsurface
macroscale parameters such as the P-wave velocity Vp, the S-wave velocity Vs, the density,
etc.. In the 1980’s, it has been shown that thermal effects and/or presence of free gas (steam
injection) on heavy-oil saturated field lead to large decreases in seismic rock velocity (Nur
et al., 1984; Pullin et al., 1987; Greaves and Fulp, 1987; Wang and Nur, 1990). The significant
decrease of rock seismic impedance due to the presence of free gas allows to track the motion
of gas-fluid contact and detect chambers of injected gases (Johnstad et al., 1995; Harris et al.,
1996; QueiBer and Singh, 2013).
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Numerous models aim to link the P- and S-wave velocities (Vp, Vs) to the porosity (φ) in
a downscaling procedure. Mainly, when porosity increases, P- or S-wave velocity decreases, as
well as pressure and shear moduli. Empirical relations try to make a link between quantities
Vp and φ, but they are dependent on the rock type because they are based on experimental
measurements. For example, Han et al. (1986) have established linear relations between Vp, Vs,
porosity and the clay content for clastic sediments during their full diagenetic evolution (from
unconsolidated sands to sandstones). Other empirical relations exist, as those from Wyllie et al.
(1956), Raymer et al. (1980) or Raiga-Clemenceau et al. (1988). However, in these relations,
the P-wave velocity is only linked to the porosity while, in real media, the drained medium
(skeleton) rigidity plays an important role. This skeleton rigidity depends also on the mineral
grains rigidity and the grain arrangement (geometry, compaction, etc.). Moreover, we need to
consider the rigidity of fluids inside pores. On the other hand, numerous empirical relations
between Vp and Vs have been established for various rocks (as an example, summarized by
Castagna et al. (1993) for limestones, sandstones, shales and dolomites).

Therefore, if it is possible to recover the time-lapse variations related to macroscale param-
eters using time-lapse seismic inversions, we can hope to get fluid and poroelastic parameters
variations by downscaling approaches (Gassmann, 1951; Berryman et al., 2002; Avseth et al.,
2005; Rubino and Velis, 2011; Dupuy, 2011; De Barros et al., 2012).

Analysis of time-lapse data: how to get maps of changes

After processing datasets and obtaining optimal 4D seismic signal anomalies (with less 4D
noise), we can analyse the time-lapse signals to get qualitative and quantitative interpretations.
The first qualitative interpretation is to calibrate the time-lapse changes in the seismic data
with changes observed in other reservoir data such as pressure and temperature data in well
logs, production and injection history data, etc. This step can show that time-lapse seismic
changes are real and are not due to artifacts related to acquisition and processing. At this step,
we can have a qualitative idea about fluid saturation changes and/or pressure and temperature
variations inside reservoirs (Lumley, 1995a; Jenkins et al., 1997; Anderson et al., 1997; He et al.,
1998).

To make a better reservoir management recommendation, it is preferred to make a quan-
titative time-lapse analysis. This can be done by inverting time-lapse seismic data to produce
dynamic-property variation maps and this is an active research topic (Lumley, 2001). An at-
tribute clustering technique has been used by Sonneland et al. (1997) to obtain oil and gas
saturation maps from Gullfaks field. Later, time-lapse amplitude versus offset (AVO) inversion
of reflectivity has been presented to estimate pressure and fluid saturation changes (Tura and
Lumley, 1999; Landrø, 2001).

Another technique, widely used for quantitative time-lapse analyses, is a warping method
to improve an alignment of seismic volume or image with the other one (align baseline and
monitor surveys) (Hall et al., 2002, 2005; Hall, 2006; Williamson et al., 2007). Standard warping
algorithms estimate time-shifts by selecting windows of data from one image and searching over
time displacements to maximize the correlation (trace by trace). This method depends on the
length of correlation window and may induce artifacts in the difference volume. Therefore, the
correlation-based warping technique has shown insufficient resolution, lower stability and less
accuracy (Williamson et al., 2007). The main limitation of this approach is the poor-sensitivity
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to density variations (reflectivity), since it estimates the time-shifts which are sensitive to the
velocity variations. However, Williamson et al. (2007) have proposed a new warping method
to explain both time-shifts and amplitude changes and to provide stable estimation of velocity-
change attributes. This new approach is limited to flat reflectors, for near-offsets and the
velocity should vary smoothly laterally. Recently, (Hale, 2013) proposed a dynamic warping
method which is able to align both time-shifts and amplitude between two traces. It appears
that this dynamic warping could also be used for time-lapse applications in the future.

During the past decade, full waveform inversion (FWI) has become a promising technique
for seismic inversion, especially in exploration projects (Virieux and Operto, 2009). This ap-
proach can deal with the complex datasets and the complex physical model parameters and
it delivers high resolution and quantitative interpretation of macroscale physical parameters
(Brossier, 2009; Brossier et al., 2009). This framework can provide P-wave, S-wave velocities,
density, attenuation factor and even the anisotropy parameters through multiparameter inver-
sion (Virieux and Operto, 2009; Brossier et al., 2009; Malinowski et al., 2011; Plessix, 2012;
Prieux et al., 2013a,b; Gholami et al., 2013a). Moreover, difference-based FWI takes into ac-
count both phase and amplitude information of seismic data. FWI has been promoted as high
resolution seismic imaging with a theoretical resolution of half the minimal wavelength. More-
over FWI aims for an improved automated workflow with less inputs from interpreters. The
initial model design still remains an issue and if its building relies on travel-time tomography,
some pickings, more or less automatic, will be required: an open question for the moment.

Considering these advantages, FWI could be an interesting technique to be used for inverting
the time-lapse datasets, even if it is not yet widely applied (Gosselet and Singh, 2008; Abubakar
et al., 2009; Plessix et al., 2010; QueiBer and Singh, 2013; Zheng et al., 2013).

FWI in brief

Today, one of the interesting imaging techniques is known as full waveform inversion (FWI).
The purpose is the interpretation of the entire seismograms using complete wave propagation
features. The seismic data-fitting procedure was presented as a local optimization method by
Lailly (1983b) and Tarantola (1984a). It is shown to be a least-squares minimization of the
misfit between observed and calculated data. Figure 4 shows an example of elastic FWI on a
synthetic wide-aperture marine dataset (after Shipp and Singh (2002)). It shows the observed
and final calculated data and final residuals. The relationship between the seismic data and the
model parameters is nonlinear in the forward modeling. Therefore, the inversion appears to be
nonlinear and hence this method is reduced to an iterative linearized approach. This seismic
inversion method is called the full waveform inversion, because the full information content of
the seismogram is considered in the optimization. The waveform inversion has been developed
in time-domain inversion in 1980s (Tarantola, 1984a, 1987; Gauthier et al., 1986; Mora, 1989),
and in 1990s in frequency domain (Pratt and Worthington, 1990; Pratt, 1990a). Later, the
frequency-domain FWI became a widely applied seismic inversion method (see e.g. Pratt and
Shipp (1999); Pratt and Symes (2002); Ravaut et al. (2004); Gelis et al. (2004); Operto and
Virieux (2006); Sirgue et al. (2007); Malinowski and Operto (2008); Ben Hadj Ali (2009) and
Plessix (2009)), however several nice applications have been also shown for time-domain FWI
(Shipp and Singh, 2002; Sears et al., 2008, 2010).

In full waveform inversion, the initial model (often rather smooth but kinematically accu-
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Figure 4: The wavefield inversion experiment on a synthetic wide-aperture marine streamer
data with 12 km offset, after Shipp and Singh (2002). (a) The observed data, (b) the final data
computed by elastic FWI, and (c) the residual between observed data and the FWI computed
data.

rate) is updated with the perturbation obtained by an optimization algorithm. The updating
model continues toward minimization of the misfit function until reaching the convergence. In
general, the local optimization method has difficulties to converge toward the global minimum
of the misfit function, if the initial point is far away from the global minimum. Due to the
ill-posedness of the inverse problem, there is a possibility to get trapped in existing local min-
ima. The main challenges for FWI concern the accuracy of the initial model and also the lack
of low frequency content in the observed data as we relax conditions on the initial model with
lower and lower frequency content. Therefore, in order to retrieve low spatial wavenumbers, it
is essential that the observed data contain the transmitted and diving waves (wide-aperture)
(Pratt et al., 1996; Sirgue and Pratt, 2004). These arrivals are useful for the reconstruction
of the large wavelengths of the subsurface. Less accurate initial models lead to cycle-skipping
problems. The initial model should predict arrival times with errors less than half of the period
to avoid the cycle-skipping ambiguity (Virieux and Operto, 2009).

The starting model of FWI can be obtained by ray-tracing based methods (Červený, 2001;
Virieux and Lambaré, 2007), reflection/refraction traveltime tomography (Taillandier et al.,
2009; Roux et al., 2011; Prieux et al., 2013c) and by migration velocity analysis (MVA) tech-
niques (Chauris et al., 2002a,b; Sava and Biondi, 2004; Symes, 2008), which all can usually
provide a smooth initial model. The MVA procedure relies on iterative applications of prestack
depth-migration and velocity analysis. The velocity updating can be performed through min-
imization of a differential semblance functional in the image domain (Symes and Carazzone,
1991; Chauris and Noble, 2001; Shen and Symes, 2008). The drawback of these MVA ap-
proaches is the computational cost of the iterative application of prestack depth migration
and velocity analysis. Recently, Wang et al. (2013) have proposed an integrated workflow of
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combination wave-equation tomography (WET) and full waveform inversion (FWI) through
a hybrid misfit function. This workflow allows inverting for high-resolution subsurface veloc-
ity structure from a poor constrained initial model. Building accurate initial models for full
waveform inversion still remains an important research topic (Chauris et al., 2008).

Objectives

In this thesis dissertation, I want to answer these following questions. Can the FWI method
be used for the reconstruction of small time-lapse variations or not? Can this method deliver a
robust time-lapse result for macroscale parameter changes? How to obtain accurate and robust
time-lapse models using FWI approach? I mainly focus on inversion of time-lapse datasets in
depth domain to get the map of P-wave velocity variations using 2D acoustic full waveform
inversion (FWI). As a first step, time-lapse analysis is considered as a single parameter inversion.
Multi-parameter FWI is still an issue for general exploration projects to accurately estimate
several macroscale parameters. Therefore, in this thesis, the time-lapse inversion is restricted
to acoustic approximation and single parameter inversion in order not to have influence of
multi-parameter inversion problems on the estimation of small time-lapse variations. In this
case, our conclusion will not be affected by the multi-parameter issue.

The goal of this thesis is to focus on the analysis of time-lapse data to get macroscale
parameters in more complex 2D models. I will show how the time-lapse velocity can be obtained
in a robust way with less time-lapse noise artifacts. However, the suggested approaches in this
thesis can be extended to elastic and multi-parameter inversion in the future, which is an
important issue to get more accurate and more robust fluid and microscale parameter changes
by downscaling. Indeed, in addition to Vp, Qp, the knowledge of Vs and Qs changes may
contribute to image fluid changes (Dupuy, 2011). Before transition to multi-parameter time-
lapse inversion, it is crucial to develop the current FWI algorithms to be adapted for more
precise multi-parameter estimation, an open active research line.

This research study includes four main objectives: (a) taking into account the available
non-seismic prior data into the inversion scheme by adding prior model misfit term into data-
driven FWI framework and showing that the prior model information is essential for time-lapse
FWI , (b) better understanding of which time-lapse strategy can deliver more robust and more
accurate time-lapse velocity variations. I also propose a target-oriented time-lapse inversion
in order to make inversion focus only on the expected area of changes. Sensitivity analysis on
synthetic datasets are performed as well, (c) studying a sensitivity analysis of reconstruction
time-lapse variation models using different frequency decimations for the baseline (time zero)
and monitor (greater times) inversions. Which sampling frequency can be suitable to recover
baseline accurately, and consequently to reconstruct small time-lapse perturbations? I show
that it may be better to use time-domain FWI for time-lapse applications, (d) applying the
suggested time-lapse strategies to realistic synthetic and real field datasets (steam injection
case).

In Chapter 1, I discuss how to include the prior model information into standard FWI,
which is necessary for time-lapse applications. It is illustrated that the prior model term may
significantly reduce the inversion sensitivity to less accurate initial model conditions. It is
highlighted how the limited range of spatial wavenumber sampling due to the acquisition may
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be compensated with the prior model information, in order to get a more accurate baseline
model.

Chapter 2 explores different time-lapse FWI strategies and their sensitivities. After base-
line reconstruction, several strategies can be used to recover the physical parameter changes,
such as parallel difference (two separate inversions of baseline and monitor datasets), sequential
difference (inversion of the monitor dataset starting from the recovered baseline model), and
double-difference (inversion of the difference data starting from the recovered baseline model)
strategies. I compare the robustness of these strategies on two synthetic datasets, on famous
and complex Marmousi2 model (Martin et al., 2006) and a modified steam injection model
originally introduced by Dai et al. (1995). In addition, a target-oriented time-lapse inversion is
proposed based on the prior model and the prior weighting, in order to focus inversion on the
expected area of time-lapse changes.

In Chapter 3, several studies are investigated in order to find which domain, time or
frequency, would be more suitable for a time-lapse application. I propose to compare the
results of an inversion approach in frequency domain inverting all the frequencies simultaneously
(similar to the time-domain inversion) and several decimations on the selected frequencies on
the Marmousi synthetic data. It is shown that to get more accurate time-lapse model with less
4D artifacts, it is necessary to perform frequency-domain FWI with dense frequency samples.

Chapter 4 contains the application of time-lapse FWI on a real field steam injection
dataset (Canada). The presented workflow for synthetic cases at early chapters are also taken
into account for this real field application.
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REGULARIZED FULL WAVEFORM INVERSION

In this chapter, we first discuss the forward modeling and standard full waveform inversion.
We then present an article, published in Geophysics journal, which discusses how to include
the prior model information into the standard procedure of FWI. For time-lapse inversion,
it is necessary to have high accurate and high precise baseline model in order to reconstruct
small time-lapse variations (Asnaashari et al., 2011). The issue with this result is that standard
FWI, which generally only uses information from surface seismic data, cannot deliver the proper
accuracy in baseline model estimation. Figure 1.1 shows the sensitivity of reconstructed time-
lapse models by differential waveform inversion with respect to reference models. Figure 1.1j
shows the recovered time-lapse variation which is similar to the true one. In these simple
synthetic examples, we can clearly see that an improvement of the recovered baseline model
leads to an improvement of the time-lapse model. For more details, please refer to Appendix
A.1.

In order to increase the precision of the recovered baseline model, it may be interesting to
add more information into the inversion scheme. These supplementary information addition
to seismic data, called prior information, could be integrated inside additional terms of the
objective function. This is the main goal of the article presented hereafter (section 1.2). It
must be noted that, in time-lapse applications, there are usually several sources of available
prior information, which may be crucial in term of final precision. This leads to end up with
more accurate baseline and more robust time-lapse variation models.

1.1 Full waveform inversion

Generally, the full waveform inversion (FWI) is represented as data-driven approach based on a
least-squares local optimization problem. A representation of inverse problem is performed on
probabilistic maximum likelihood or generalized inverse formulation (Menke, 1984; Tarantola,
1984a). Lailly (1983a) and Tarantola (1984a) represented the seismic inversion problem by
recasting the migration imaging principle (Claerbout, 1971, 1976), as a local optimization
problem. The reader is referred to Virieux and Operto (2009) for an overview on the FWI
problem in exploration geophysics. The generalized inverse problem is based on minimizing
the difference between the observed data dobs, and the data calculated in an estimated model
dcal(m). Before going to inverse problem, we need to have an accurate forward modeling engine
to simulate the calculated data.

1.1.1 Forward modeling

The modeling of the synthetic data is performed using full wave equation, which provides a
data vector with complete waveforms sampling the subsurface at receiver positions. Several
techniques of discretization of wave equation have been studied, such as finite-difference (FD)
or finite-element (FE) methods. Among them, one of the possible methods is the finite element
discontinuous Galerkin (DG) method (Käser and Dumbser, 2006; Dumbser and Käser, 2006;
Brossier et al., 2008). This DG method allows the use of triangular/tetrahedral meshes, which
is suitable for the handling of strong physical contrasts in the medium, including liquid/solid
contact. However this method demands higher computational costs compared to the finite-
difference method and is more difficult to be implemented. Therefore in this study, we use the
finite-difference method to solve the 2D acoustic wave equation in the time domain,
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Figure 1.1: Reference and time-lapse Vp models: left panel shows the evolution of reference
models from (a) reconstructed baseline image to (e) the true baseline model, and right panel
illustrates each time-lapse image corresponding to the reference model at the left part.
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∇.( 1
ρ(x, z)

∇u(x, z, t)
)− 1

ρ(x, z)V 2
p (x, z)

∂2u(x, z, t)
∂t2

= −s(x, z, t), (1.1)

where quantities ρ and Vp represent the density and velocity of the medium. u and s denote the
pressure wavefield and an acoustic source, respectively. The finite-difference scheme suggested
by Levander (1988) adapted for the acoustic case is used. The velocity-pressure formulation of
the 2D acoustic wave equation, which is reduced from 2D P-SV formulation, is given by

∂ux(x, z, t)
∂t

= κ(x, z)(
∂vx(x, z, t)

∂x
+ s(x, z, t))

∂uz(x, z, t)
∂t

= κ(x, z)
∂vz(x, z, t)

∂z
∂vx(x, z, t)

∂t
= b(x, z)

∂u(x, z, t)
∂x

∂vz(x, z, t)
∂t

= b(x, z)
∂u(x, z, t)

∂z
, (1.2)

where vx(x, z, t) and vz(x, z, t) are the horizontal and vertical particle velocities. The pres-
sure components ux(x, z, t) and uz(x, z, t) are used to separate the horizontal and vertical
derivatives and also to take into account for the perfectly matched layers (PML) absorbing
condition (Berenger, 1994; Operto et al., 2002). The real pressure wavefield can be computed
by u(x, z, t) = ux(x, z, t) + uz(x, z, t). The quantities b(x, z) and κ(x, z) represent the inverse
of density (buoyancy) and bulk modulus (ρV 2

p ).

This system can be easily discretized using Virieux-Levander staggered-grid stencils (Virieux,
1986; Levander, 1988). Geometry of the staggered-grid is shown in Figure 1.2. The FD classic
staggered-grid stencils provide calculated pressure wavefields with an accuracy of the fourth-
order in space and second-order in time O(h4,∆t2). Spatial derivatives are discretized along
the Cartesian directions. The FD grids are uniform in time and space domains.

: Vx, b

: u, K
: Vz, b

Figure 1.2: Geometry of the staggered grid for Virieux-Levander stencils adapted to the acoustic
case (after Operto et al. (2007)).
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1.1 Full waveform inversion

1.1.1.1 Spatial discretization rule: numerical dispersion

The usual discretization rule is 10 and 5 grid points per minimum wavelength for the classic
O(h2) and O(h4) staggered-grid stencils, respectively (Virieux, 1986; Levander, 1988). For
our case, since we use the fourth-order stencils, the spatial discretization h should satisfy the
condition 1.3,

h <
λmin

5

h <
Vpmin
5fmax

, (1.3)

where Vpmin and fmax denote minimum P-wave velocity of medium and maximum frequency
content of source wavelet.

1.1.1.2 Time discretization rule: stability conditions

To keep numerical calculation stable, the time increment ∆t must be less than or equal to
the Courant limit (Richtmyer and Morton, 1967) known as the CFL condition. The stability
condition in 2D case for O(h4,∆t2) is given by,

∆t ≤ 0.606
h

Vpmax
. (1.4)

To have an accurate modeling of seismic waves, both conditions 1.3 and 1.4 must be satisfied.

1.1.2 Inverse problem

In general, the inverse problem involves optimization of a misfit functional, which measures
the distance between observed and computed data. The misfit functional is defined based on
the considered `2 or `1 norms in the data space. The theory of the generalized inverse problem
(as a least-squares optimization), and different methods for model parameter estimation were
established by Tarantola (1987). One of the main principle of the least-squares criterion of
the misfit function underlies on the hypothesis that all uncertainties in the inverse problem
are modelled with Gaussian distributions (Tarantola, 1987). In FWI, the residual or misfit
vector ∆d, is defined as the difference between observed and computed data vectors at the
receiver positions for each source. The residual vector is the criterion showing the closeness of
the computed data vector to the observed data vector:

∆d = dobs − dcal(m). (1.5)

In FWI, the inverse problem represents a nonlinear relation between data and model spaces.
Hence, the solution of the inversion is computed with linearized iterative methods to minimize
the misfit function. The seismic wavefield data in the time domain are represented by real-
valued seismograms, and in the frequency domain by complex-valued data for each frequency
component. In this chapter, we focus on inversion in time domain, hence the formulation is
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shown in this domain. In Chapter 3, a complete study for the frequency-domain inversion for
a time-lapse application will be discussed.

The solution of the forward problem is the wavefield of each seismic source in the model
domain. Mathematically, the data is obtained by applying a sampling operator Pdata (corre-
sponding to the receivers) on the solution u in the model domain (dcal = Pdatau). The objective
of full waveform inversion is to seek the minimum of the misfit function starting from the ini-
tial model m0 The `2 norm misfit function of data is defined by the least-squares equation as
(Tarantola, 1987):

C(m) =
1
2

∫ T

0
(dobs − dcal(m))t(dobs − dcal(m)) dτ

=
1
2

∫ T

0
∆dt∆d dτ, (1.6)

where t is the transpose operator (reminding that the data in frequency domain is complex and
the complex conjugate operator must be applied as well) and T is the trace length (recording
time). Some weighting (more desirable to be related to the variance of data) may be applied
on the residual vector to equalize the role of each residual vector components in the misfit
function. This data weighting matrix (Wd) can be seen as an inverse of the data covariance
matrix (Tarantola, 2005). When the weighting matrix is equal to identity matrix, it means
same weight is applied to all data misfit components. For a seismic wide-aperture/wide-azimuth
dataset, the weighting matrix can be applied based on the offset distance and/or aperture angle.
The weighting depends on the distribution of the misfit between the observed and computed
data vectors. The weighting coefficient on each components of misfit vector can penalise the
data vector components. By considering the prior information on the data using weighting
matrix, the misfit function (equation 1.6) would appear as a weighted misfit function and leads
to a weighted least-squares problem:

C(m) =
1
2

∫ T

0
∆dtWd∆d dτ. (1.7)

In FWI, because of the huge number of estimated parameters and of the importance of
computational cost for solving the direct problem, FWI method generally uses linearized and
iterative local optimization scheme.

Let us consider the framework of small perturbation or Born approximation in the scattering
theory (see e.g. Born and Wolf (1980); Hudson and Heritage (1981); Beydoun and Tarantola
(1988); Beydoun and Mendes (1989); Coates and Chapman (1990); Born and Wolf (1993);
Forgues and Lambaré (1997)). At each iteration k, we can express the updated model based
on the starting model mk−1 and the perturbation vector ∆mk: mk = mk−1 + ∆mk. We search
for the local minimum of the misfit function C(mk) departing from the model mk−1 of previous
iteration:

C(mk) = C(mk−1 + ∆mk). (1.8)

By assuming that the model perturbation vector is small enough with respect to model vector,
the second-order Taylor expansion of misfit function gives:

C(mk−1 + ∆mk) = C(mk−1) +
n∑
i=1

∂C(mk−1)
∂mi

∆mk
i
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+
1
2

n∑
i=1

n∑
j=1

∂2C(mk−1)
∂mi∂mj

∆mk
i ∆m

k
j +O(m3), (1.9)

where n is the size of model parameter vector. Taking the derivative of equation 1.9 with
respect to the model parameter ml leads to:

∂C(mk)
∂ml

=
∂C(mk−1)
∂ml

+
n∑
i=1

∂2C(mk−1)
∂mi∂ml

∆mk
i . (1.10)

The optimum solution is obtained, when the quadratic (O(m3) = 0) misfit function is
tracked in minimum (∂C(mk)/∂ml = 0):

∂2C(mk−1)
∂m2

∆mk = −∂C(m
k−1)

∂m
. (1.11)

The first-order term ∂C(mk−1)/∂m in equation 1.11 is the gradient vector of the misfit function
and the second order term ∂2C(mk−1)/∂m2 is the Hessian matrix. Equation 1.11 can be
expressed in linear form as

Hk−1∆mk = −Gk−1, (1.12)

the so-called normal equation. We may solve this equation through a Newton approach de-
livering the minimum of misfit function in one iteration in case of a inverse problem with a
linear forward problem. For the FWI, since the inverse problem is highly non-linear, it must be
solved iteratively with a linearized problem at each iteration. The complete forward problem is
performed at each update of the model. The forward problem is not approached by any means
for a linear formulation. The gradient of misfit function G, is the vector whose components are
the partial derivatives of misfit function C with respect to the model parameters:

G = (
∂C
∂m1

,
∂C
∂m2

, · · · , ∂C
∂mn

)t. (1.13)

In other words, the negative of the gradient of misfit function (∆C) represents the direction
of descending toward the minimum. The Hessian matrix is the square matrix of second-order
partial derivatives of misfit function:

H =



∂2C
∂m2

1

∂2C
∂m1∂m2

· · · ∂2C
∂m1∂mn

∂2C
∂m2∂m1

∂2C
∂m2

2
· · · ∂2C

∂m2∂mn

...
...

. . .
...

∂2C
∂mn∂m1

∂2C
∂mn∂m2

· · · ∂2C
∂m2

n


. (1.14)

When the misfit function is continuous, the Hessian matrix is a symmetric square matrix (i.e.
∂2C

∂mi∂mj
= ∂2C

∂mj∂mi
). The Hessian matrix represents the curvature trend of the quadratic misfit

function. The model perturbation vector is the solution of the linear system 1.12, which is
solved by iterative optimization methods.
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The gradient and Hessian expressions of the misfit function (equation 1.7) should be detailed
here. Taking the first-order derivative of the misfit function with respect to model parameter
leads to an expression for the gradient as

G(m) = −∂C(m)
∂m

= −
∫ T

0
(
∂dcal(m)
∂m

)tWd(dobs − dcal(m)) dτ

= −
∫ T

0
J tWd∆d dτ. (1.15)

The operator J is the Jacobian or Fréchet derivative matrix. The Jacobian matrix is the first-
order derivative of calculated data vector with respect to model vector. Note that the operator
J represents the discrete first-order Born operator if the linearized direct problem is considered
∆d = J∆m (Tarantola, 1987; Pratt et al., 1996; Brossier, 2009). By taking the second-order
derivative of misfit function or the first-order derivative of the gradient with respect to the
model vector, the Hessian operator is expressed as

H = −∂
2C(m)
∂m2

=
∫ T

0

[
J tWdJ + (

∂J

∂m
)tWd(∆d · · ·∆d)

]
dτ. (1.16)

Replacing the gradient (equation 1.15) and the Hessian (equation 1.16) into the normal equation
1.12, the linear system would be expressed as

( ∫ T

0
J tWdJ + (

∂J

∂m
)tWd(∆d · · ·∆d) dτ

)k−1∆m(k) =
( ∫ T

0
J tWd∆d dτ

)k−1
. (1.17)

One should note that, for a linear direct problems where d=G.m, the second order deriva-
tive of the data with respect to model parameters is zero. Hence, the second term of equation
1.16 on the left-hand side would disappear. The first term of the Hessian is referred to as
approximated Hessian Ha =

∫ T
0 J†WdJ dτ . Methods which solve model perturbation using

the approximated Hessian Ha, is referred to as Gauss-Newton methods. An estimation of the
approximated Hessian, called pseudo-Hessian, is proposed by Shin et al. (2001). Full Newton
method used the complete Hessian (equation 1.16) while the Gauss-Newton method considers
the approximated Hessian. These methods have theoretically the quadratic convergences, but
they require to perform supplementary forward problems. Therefore, these methods are not
generally considered for large size problems, because of their computational costs.

Quasi-Newton optimization considers a cheap estimation of inverse of Hessian operator.
This method provides a less expensive way to take into account the benefits of information
contains in the Hessian, without paying the price of expensive full Newton or Gauss-Newton
methods.

In our implementations, the Hessian is not computed. Instead, we minimize our problem
with a bounded quasi-Newton method using the L-BFGS-B (limited-memory Broyden-Fletcher-
Goldfarb-Shanno) routine (Nocedal, 1980; Byrd et al., 1995; Nocedal and Wright, 1999). This
method provides an approximation of the product of the inverse of the Hessian (Hk−1)−1 by
finite differences of a limited number (l) of gradients (Gk−l, ...,Gk−1) and model difference vec-
tors coming from previous iterations. The double-loop recursive algorithm designed by Nocedal
(1980) does not explicitly build and store (Hk−1)−1, but directly computes the perturbation
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vector ∆mk = −(Hk−1)−1Gk−1 with additions, differences and inner products of vectors. A
diagonal approximation of the inverse Hessian computed from the diagonal terms of the approx-
imated Hessian (Pratt et al., 1998; Operto et al., 2006) or pseudo-Hessian (Shin et al., 2001),
can be provided to the L-BFGS algorithm for a better and faster estimation of (Hk−1)−1Gk−1

(Brossier, 2011).

This bounded limited-memory quasi-Newton method, by considering an approximation of
the non-diagonal Hessian terms, is an efficient alternative to preconditioned steepest-descent
based only on gradients and/or approximate diagonal Hessian approaches. This cheap and
efficient estimation of the influence of the inverse Hessian in the optimization improves focusing,
partially corrects the descent direction from effects due to limited aperture illumination and
frequency bandwidth and respects dimensionalities of the different parameter values (Brossier
et al., 2009).

1.1.2.1 Gradient computation

The adjoint-state method is a general method to compute the gradient of a functional that
depends on a set of state variables, which are solutions of forward equations (Plessix, 2006).
For computing directly the Fréchet derivatives by finite-difference method, we need to perform
the forward modeling for each model parameter, which is so costly. The adjoint-state method
can deliver an efficient computation of the gradient without implicitly performing the Fréchet
derivatives. The theory of adjoint-state method in inverse problems was introduced by Chavent
(1974) in order to efficiently compute the gradient of the misfit function without computing the
Fréchet derivatives. This method was widely used within numerical community. In geophysics,
the gradient of the misfit function was also computed by adjoint-state method (Lailly, 1983a;
Chavent and Jacewitz, 1995; Tromp et al., 2005; Plessix, 2006; Chavent, 2009). Developing the
adjoint-state method in time domain is slightly more complicated than the frequency domain
because of the initial boundary conditions (Plessix, 2006). However, at the end, interpretations
of the gradient in both domains are similar.

The pressure wavefield u(x, t) satisfies equation 1.1 with the initial boundary conditions
u(x, t = 0) = 0 and ∂tu(x, t = 0) = 0. Equation 1.1 is used for the imaging formulation and
optimisation framework.

Before deriving the adjoint problem, we should define a real scalar product of two real
functions f and g, over the Ω spatial domain

< f |g >D=
∫
T

∫
Ω
dtdx f(x, t)g(x, t), (1.18)

for a time window of observation going upto time T (recording time). Let us repeat that the
pressure wavefield in time domain has real values.

A misfit function C in data space can be defined,

C(m) =
1
2

∑
r

∫ T

0
dt (dr −Rru(x, t))2, (1.19)

where the operator Rr projects the pressure wavefield u onto the receiver positions and dr
denotes the obsereved data at receiver positions. Summation over r denotes a summation over
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all the receivers. In our acoustic inversion, the P-wave velocity is reconstructed, therefore the
model parameter is considered as P-wave velocity (m = Vp(x)).

To compute the gradient of misfit function, a new functional called the Lagrangian L has
to be introduced. The Lagrangian function corresponds to the misfit function, subject to the
constraint that the state equation is satisfied. We associate the adjoint state µ0 and µ1 with
considering the initial boundary conditions u(t = 0) = 0 and ∂tu(t = 0) = 0 (Plessix, 2006),
and λ with the wave equation. The Lagrangian function is defined by

L(m,u, λ, µ0, µ1) =
1
2

∑
r

∫ T

0
dt (dr −Rru(x, t))2

+
∫ T

0

∫
Ω
dtdx λ(x, t)

(
1

ρ(x)m2

∂2u(x, t)
∂t2

−∇.( 1
ρ(x)

∇u(x, t)
)− s(x, t))

+
∫

Ω
dx µ0(x)u(x, t = 0) +

∫
Ω
dx µ1(x)∂tu(x, t = 0). (1.20)

The goal is to minimize the Lagrangian function (equation 1.20). The minimum must satisfy
conditions 1.21:

∂L
∂λ

= 0

∂L
∂u

= 0

∂L
∂m

= 0. (1.21)

The derivative of L with respect to the vector λ should be equal to zero at the minimum and
this will provide the wave equation while equating the derivative with respect to the vector u to
zero will provide the partial differential equations verified by the vector λ. For computing scalar
product, we should consider the initial boundary condition (u(t = 0) = 0 and ∂tu(t = 0) = 0).
We can find the derivative with respect to the vector u after two integrations by parts for the
second right-hand side term of the Lagrangian equation and by evaluating them at the solution
of wave equation

∂uL = −
∑
r

∫ T

0
dt (dr −Rru(x, t))

+
∫ T

0

∫
Ω
dtdx

(
1

ρ(x)m2

∂2λ(x, t)
∂t2

−∇.( 1
ρ(x)

∇λ(x, t)
))

+
∫

Ω
dx λ(x, T )

1
ρ(x)m2

∂tu(x, T )−
∫

Ω
dx λ(x, 0)

1
ρ(x)m2

∂tu(x, 0)

−
∫

Ω
dx ∂tλ(x, T )

1
ρ(x)m2

u(x, T ) +
∫

Ω
dx ∂tλ(x, 0)

1
ρ(x)m2

∂tu(x, 0)

= 0. (1.22)

We ignore the adjoint-state related to µ0 and µ1, because they do not play a role in the gradient
of misfit function. Four last terms of equation 1.22 can give us the boundary conditions for λ
adjoint wavefield. Since u(t = 0) and ∂tu(t = 0) are equal to zero and u(t = T ), ∂tu(t = T )
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are non-zero, therefore λ(t = T ) and ∂tλ(t = T ) must be equal to zero. So, two first terms of
equation 1.22 can be written as

∂uL = −
∫ T

0

∫
Ω
dtdx

∑
r

δ(x− xr)(dr −Rru(x, t))

+
∫ T

0

∫
Ω
dtdx

(
1

ρ(x)m2

∂2λ(x, t)
∂t2

−∇.( 1
ρ(x)

∇λ(x, t)
))

= 0, (1.23)

which gives us the local partial differential equation

1
ρ(x)m2

∂2λ(x, t)
∂t2

−∇.( 1
ρ(x)

∇λ(x, t)
)

=
∑
r

(dr −Rru(x, t)). (1.24)

The system 1.24 has final boundary conditions λ(t = T ) = 0 and ∂tλ(t = T ) = 0 . We apply
the change of variable in the time axis t′ = T − t which gives us

1
ρ(x)m2

∂2λ(x, t′)
∂t′2

−∇.( 1
ρ(x)

∇λ(x, t′)
)

=
∑
r

(dr(T − t′)−Rru(x, T − t′)),

λ(t′ = 0) = 0,
∂t′λ(t′ = 0) = 0. (1.25)

λ satisfies the wave equation with a new source term. This system is solved by our forward
modeling (system 1.2) to obtain the adjoint wavefield. The source term of the adjoint wavefield
is the residual between the observed and the synthetic data, in reverse time. Equation 1.25
back propagates the residual into the earth starting from the final time.

The last derivative of Lagrangian with respect to the model parameter m will provide the
gradient of the misfit function. We have the expression

∂mL = ∂mC +
∫ T

0

∫
Ω
dtdx λ(x, t)

( −2
ρ(x)m3

)
∂2u(x, t)
∂t2

= 0, (1.26)

which gives us the gradient G of the misfit function as

Gm = ∂mC = −
∫ T

0

∫
Ω
dtdx λ(x, t)

( −2
ρ(x)m3

)
∂2u(x, t)
∂t2

. (1.27)

The term −2/(ρ(x)m3) can be written as ∂M(m)/∂mi as a matricial form, where matrix M(m)
corresponds to the matrix of physical model parameters.

Based on equation 1.27, the gradient can be computed by performing only two forward
problems. The gradient will be calculated by correlation between second-time derivative of the
incident wavefield u and back-propagated residual wavefield λ, taking into account diffraction
kernel or pattern ∂M/∂mi. The matrix ∂M/∂mi is the partial derivative of model matrix
with respect to model parameter. The matrix ∂M/∂mi is extremely sparse. Physically it is
the signature of a diffraction coming from a perturbation point localized on a spatial position
in model mi. The radiation patterns of model parameters generally show the sensitivity of
FWI to reconstruct the parameters (especially for better parametrization) (Wu and Aki, 1985;
Tarantola, 1986; Ribodetti and Virieux, 1996; Forgues and Lambaré, 1997; Gholami et al.,
2013b).

31



REGULARIZED FULL WAVEFORM INVERSION

In time domain, the residual wavefield is back-propagated by reversing the time. In the
frequency domain, the back propagation is indicated by the conjugate operator. The principle
of back propagation is similar to reverse time migration (RTM) method (McMechan, 1989).
The equation 1.27 shows that only two forward modeling is necessary for gradient computation:
one is the computation of the incident wavefield and another one is for back propagating the
residuals.

In our application, we consider the acoustic wave equation and inversion is done in time
domain (Lailly, 1983a; Tarantola, 1984a; Mora, 1988). Therefore, the gradient in time domain
with multiple sources (ns number) can be sum up over the number of sources.

In the following, we introduce another misfit function by including the prior model infor-
mation into classical FWI scheme.

1.2 Regularized seismic full waveform inversion with prior model
information

Regularized seismic full waveform inversion with prior model information
Amir Asnaashari, Romain Brossier, Stéphane Garambois, François Audebert, Pierre

Thore, and Jean Virieux
2013, Geophysics, 78(2), R25-R36, doi: 10.1190/geo2012-0104.1.

1.2.1 Abstract

Full Waveform Inversion (FWI) delivers high-resolution quantitative images and is a promising
technique to obtain macro-scale physical properties model of the subsurface. In most geophys-
ical applications, prior information, as those collected in wells, is available and should be used
to increase the image reliability. For this, we propose to introduce three terms in the definition
of the FWI misfit function: the data misfit itself, the first-order Tikhonov regularization term
acting as a smoothing operator and a prior model norm term. This last term is the way to intro-
duce smoothly prior information into the FWI workflow. On a selected target of the Marmousi
synthetic example, we show the significant improvement obtained when using the prior model
term for both noise-free and noisy synthetic data. We illustrate that the prior model term may
significantly reduce the inversion sensitivity to incorrect initial conditions. It is highlighted
how the limited range of spatial wavenumber sampling by the acquisition may be compensated
with the prior model information, for both multiple-free and multiple-contaminated data. We
also demonstrate that prior and initial models play different roles in the inversion scheme.
The starting model is used for wave propagation and therefore drives the data-misfit gradient,
while the prior model is never explicitly used for solving the wave equation and only drives the
optimization step as an additional constraint to minimize the total objective function. Thus
the prior model in not required to follow kinematic properties as precisely as the initial model,
except in poor illumination zones. In addition, we investigate the influence of a simple dynamic
decreasing weighting of the prior model term. Once the cycle-skipping problem has been solved,
the impact of the prior model term is gradually reduced within the misfit function in order to
be driven by seismic-data only.
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1.2.2 Introduction

Robust reservoir characterization is a key issue for oil and gas exploration and production.
The seismic processing workflow can be roughly summarized in three main steps: velocity
model building, migration in time or in depth and elastic properties characterization through
amplitude variation-with-offset (AVO) or amplitude variation-with-angle (AVA) analysis. The
velocity model building remains a key step that can be tackled with reflection/refraction to-
mography in time and/or depth domain. A recent alternative for velocity model building is
the full waveform inversion (FWI) that allows to reconstruct high-resolution velocity models
of the subsurface through the extraction of the full information content of the seismic data
(Tarantola, 1984b; Virieux and Operto, 2009).

FWI is a multiscale data-fitting method well adapted to wide-angle/wide-azimuth acquisi-
tion geometries, as it uses simultaneously diving and reflected waves. FWI is classically solved
with local optimization schemes and therefore strongly dependent on the starting model defi-
nition. This starting model should predict arrival times with errors less than half of the period
to cancel the cycle-skipping ambiguity (Virieux and Operto, 2009). The multiscale strategy
performed by moving from low to high frequencies during the inversion allows to reduce the
non-linearities and cycle-skipping issues of the inversion and helps convergence towards the
global minimum. Recent applications of FWI to real data have shown promising results for
exploration projects: see 3D examples in Plessix and Perkins (2010) or Sirgue et al. (2010).
Monoparameter reconstruction of the acoustic velocity for exploration is quite impressive even
in the anisotropic case (Prieux et al., 2011). Elastic parameters could also be recovered for ex-
ploration targets (Brossier et al., 2009; Prieux et al., 2012), but elastic inversion applies rather
to seismological scales where phases are nicely separated (Fichtner et al., 2010; Tape et al.,
2010).

Preconditioning or regularization techniques may alleviate the non-uniqueness of the ill-
posed inverse problem. Tikhonov and Arsenin (1977) have proposed a regularization strategy,
within the optimization step, to find the smoothest model that explains the data. Precondi-
tioning techniques acting as a smooth operator on the model update (Operto et al., 2006) may
add strong prior features of the expected structure through directive Laplacian preconditioning,
such as in (Guitton et al., 2010). Regularization schemes that preserve edges and contrasts
have also been developed for specific FWI applications through an `1 model penalty (Guitton,
2011) or through a multiplicative regularization (Abubakar et al., 2009) that mimics the Total
Variation scheme (Rudin et al., 1992). Regularization can also be expressed in the curvelet
or wavelet domains (Loris et al., 2010; Herrmann et al., 2009). In such domains, the `1 norm
minimization is generally preferred for the model term penalty as it ensures sparsity in the
model space.

All the previous regularization techniques allow to stabilize the inversion scheme by assum-
ing a particular representation or structure of the velocity model (smoothness, sparsity and so
on). However, prior model information is generally not used in classical FWI implementation
even if Hu et al. (2009) recently suggested to use a prior model in the multiplicative regulariza-
tion term. Several sources of prior model information are usually available at the exploration
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stages, such as sonic logs, exploration well data or geological information of the field. One
may want to use such prior information in the FWI scheme as is done in other velocity build-
ing techniques. Taking into account the prior information could also be highly important for
monitoring purposes, where many different and precise prior data types have been collected for
the target zone. Prior information can be introduced through the generalized Tikhonov reg-
ularization using the Bayesian formulation (Greenhalgh et al., 2006; Mead and Renaut, 2009)
where the prior model is related to the expected model for the Bayesian interpretation. Strict
Tikhonov regularization can be recast into this formalism as well. However, combining strict
Tikhonov regularization and generalized Tikhonov regularizations may lead to difficulties in
defining the respective weights of the different information: prior information and expected
smoothness of the model.

Several studies have been done on using two model penalty terms in geophysical electro-
magnetic applications, such as for the inversion of magnetic stripe data (Farquharson and
Oldenburg, 1998) and for the inversion of controlled source audio-frequency magnetotellurics
data to recover a 1D conductivity structure (Routh and Oldenburg, 1999). In this study, we
investigate the performances of a FWI scheme based on two model penalty terms in the mis-
fit definition in addition to the data term: the Tikhonov term to ensure smoothness, and a
prior model term to drive the inversion in a given direction. In the first part, we present the
theoretical framework of our study. Then, through a synthetic application on the Marmousi
model, we show the critical effect of the prior model penalty term on the FWI results. We shall
highlight how the limited range of wavenumber sampling coming from the limited frequency
band and the acquisition geometry may be compensated with the prior model information, for
both surface multiple-free data and also data containing surface multiples. We shall underline
the fundamentally different role of the prior model and of the starting model within the FWI
procedure.

1.2.3 Theory

Full Waveform Inversion relies on an iterative local optimization problem that is generally in-
troduced as a linearized least-squares problem. The optimization attempts to minimize the
residuals between the observed and the modeled wavefields at the receivers. The linearized in-
verse problem remains ill-posed, and therefore multiple model solutions can provide a satisfac-
tory fit of the observed data. Prior information is generally introduced through regularization
in the inverse formalism. However, for specific applications where other sources of information
such as sonic logs, stratigraphic data or geological constraints are available, it is crucial to take
these into account in the inversion process and incorporate them into a prior model, to ensure
robust and consistent results.

To do so, we briefly introduce the full waveform inversion algorithm including the model
norm contribution.

The general definition of the misfit function for solving ill-posed inverse problems could be
recast as the Tikhonov function (Tikhonov and Arsenin, 1977):

C(m) = Cd(m) + λCm(m). (1.28)

The data misfit Cd(m) is based on a norm of the residuals between observed and computed
data in the data space, and the model norm Cm(m) term is based on a norm of a model penalty
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function in the model space. In the standard Tikhonov approach, this penalty function is based
on the first spatial derivative of the current model that should have a minimal norm, thus giving
a smooth model. The hyper-parameter λ is the regularization parameter, also called trade-off
parameter, that balances contributions between the data and the model terms.

For applications where prior information on the model can be established, we add a second
penalty term to the misfit function. This term estimates residuals between the current model at
a given iteration and the prior model considered at that same iteration. The objective function
can now be written as the following expression,

C(m) = Cd(m) + λ1C1m(m) + λ2C2m(m), (1.29)

where the Tikhonov term is denoted by C1m(m) and the prior model misfit term by C2m(m).
Two regularization hyper-parameters λ1 and λ2 are introduced, to allow weighting of the
penalty terms with respect to each other and to the data term.

Let us express these three terms in a more explicit way using `2 norms. The data term may
be written as

Cd(m) =
∑
ns

||Wd (dobs − d(m))||2 =
∑
ns

1
2

{
(dobs − d(m))T WT

d Wd (dobs − d(m))
}
, (1.30)

where dobs and d(m) are vectors for the observed and computed data respectively. For our
specific investigation we consider a time-domain approach, and each component of these vectors
are samples of time-domain seismograms recorded at receiver positions for one seismic source.
This misfit function results from a sum over the ns sources of the experiment. The matrix Wd

is a weighting operator on the data. This matrix can also be seen as the inverse of the square-
root of the covariance matrix of the data, which contains information on data uncertainties.
Considering a constant measurement quality and uncorrelated traces, we end up with a diagonal
matrix of Wd = σdI, where σd is the standard deviation of the data and I is the identity matrix
(Tarantola, 2005). The synthetic data d(m) non-linearly depend on the model parameters
denoted by m = {mi}i=1,Nm

, where Nm is the number of unknows. These model parameters
should be determined through the inverse procedure by reducing this data term.

The second term of the misfit function is the Tikhonov term and can be written as

C1m(m) = ||Bxm||2 + ||Bzm||2 =
1
2
{mTBx

TBxm + mTBz
TBzm} =

1
2
{mTDm}, (1.31)

where Bx and Bz are the first-order spatial derivative operator matrices with respect to x and
z, respectively. In practice, they can be reduced to the second-order Laplacian operator D. We
use a classical five-point finite-difference stencil to implement the operator D.

The third term of the objective function is related to the prior model mp, which can be
designed from different information and could be set prior to the seismic inversion, but which
could be also adapted iteratively during the inversion procedure. This so-called prior model
norm term is computed using the expression

C2m(m) = ||Wm (m−mp)||2 =
1
2

{
(m−mp)

T WT
mWm (m−mp)

}
, (1.32)

where the matrix Wm is a weighting operator on the model space. This matrix can also be
seen as the inverse of the square-root of the covariance matrix of the model, and contains prior
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uncertainty information of the prior model parameters. In our implementation, since we want
to separate the influence of the diagonal and off-diagonal terms of the covariance matrix, we
choose a diagonal Wm matrix, diag(WT

mWm) = 1/σ2(m). The prior weighting model σ2(m)
contains both the prior model uncertainty (variance) and the potential weighting function, and
will be discussed in the application section. The covariances (off-diagonal terms) are implicitly
taken into account through the Tikhonov term.

Does the Wm operator play a critical role in driving the inversion procedure towards a given
minimum? This is a question we want to investigate. Note that the misfit function, mixing both
data and model quantities, is dimensionless due to the introduction of the matrices Wd and
Wm, and through the hyper-parameter λ1 dimension. In order to have three dimensionless
terms in the sum, the hyper-parameter λ1 has a dimension [dim(h2)/dim2(m)], due to the
dimensionality of the D operator, where the grid size h is for a 2D square regular cartesian grid.
For a model described by velocity, the dimension of λ1 is second squared (m2/(m/s)2 = s2).

Minimizing the misfit function classically leads to the normal equation system which can
be written as

Hm∆m = −Gm, (1.33)

where the gradient and the Hessian of the misfit function are denoted Gm and Hm respectively.
The gradient expression can be written with three components as

Gm = −
∑
ns

(
∂d(m)
∂m

)T
WT

d Wd (dobs − d(m)) + λ1Dm + λ2WT
mWm (m−mp). (1.34)

The sensitivity matrix J = ∂d(m)/∂m is composed by the Fréchet derivatives of the synthetic
data with respect to the model parameters. The data-term gradient is efficiently computed
with an adjoint formulation (Plessix, 2006) without an explicit computation of the matrix J.
The two terms related to the model penalties are generally straightforward to compute and are
simply added to the data-term gradient contribution, leading to negligible computer memory
and CPU-time increase.

The Hessian matrix is based on the second derivative of the misfit function and is not
computed in our implementation. Instead, we minimize our problem with a bounded quasi-
Newton method using the L-BFGS-B routine (Byrd et al., 1995). This routine allows to take
into account an approximate non-diagonal inverse Hessian from previous gradient and model
vectors, and performs a line-search satisfying Wolfe’s conditions. This bounded limited-memory
quasi-Newton method is an efficient alternative to preconditioned steepest-descent or conjugate-
gradient methods based only on gradients and/or approximate diagonal Hessian approaches.
This cheap and efficient estimation of the influence of the inverse Hessian in the optimization
improves focusing, partially corrects the descent direction from effects due to limited aperture
illumination and frequency bandwidth and respects dimensionalities of the different parameter
values (Brossier et al., 2009).

A major point for real data applications is the source-wavelet estimation. Our FWI is
implemented in the time-domain for both the forward and the inverse problem. The source-
wavelet estimation is however straightforwardly implemented in the frequency-domain by a
linear inverse problem resolution. The computed and observed time-domain data are Fourier
transformed to apply the Pratt (1999) (his equation 17) source estimation equation for each
frequency. The Fourier coefficients of the wavelet are then transformed back to the time-
domain and appropriately processed (anti-causal mute and/or band-pass filtering if required)
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1.2 Regularized seismic full waveform inversion with prior model information

before performing FWI. This estimation is performed once before the optimization. In the
following tests applied to synthetics, we use the exact source wavelet for fair comparisons, such
that the results are not biased by potential errors from this estimation.

1.2.4 Application to Marmousi model
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Figure 1.3: (a) The true Vp velocity model which is a small part of the Marmousi model and
the acquisition geometry; (b) initial model for inversion which is a smooth model of the true
model; (c) the prior model created by linear distance weighted interpolation in the x direction
between the exact values inside two exploration wells and then gently smoothed.

In this section, we study the effect of prior information in FWI. In particular, we show how
prior information allows to mitigate the lack of seismic illumination. A selected target zone of
the Marmousi II P-wave velocity distribution (Martin et al., 2006) and a homogeneous density
model are considered. The target exhibits two gas sand traps (Figure 1.3a). We consider
a shallow-water configuration with a water depth of only 25 m. Our acquisition geometry
contains 54 isotropic pressure-sources, located along a horizontal line at 15 m depth, every
50 m. The layout is the same for all shots, one fixed horizontal receiver line at 15 m depth and
two fixed vertical lines of receivers inside two exploration wells at x = 50 m and x = 2700 m
with a 10 m interval between sensors. The deepest receivers inside the wells are at z = 1265 m.
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The grid is regular, with the grid size equal to 5 m, and it is consistent for both modeling
and inversion. We do not consider any sources within the wells as this design is unusual and
quite expensive. However we consider sensors inside the wells, which could be installed for
exploration or monitoring purposes, and allowing to dramatically increase the illumination for
velocity reconstruction. Note that our final test will be performed without these well sensors,
to mimic a pure surface acquisition. A Ricker wavelet source with a central frequency of 10 Hz
is used for all shots. The time seismograms are generated using finite-difference modeling in
the time-domain with a fourth-order stencil in space and a second-order integration in time.
Perfectly-Matching-Layer (PML) absorbing boundary conditions (Berenger, 1994) are used for
non-reflecting boundaries. The first tests are performed using a PML on top, in order to
mimic multiple-free data. The last test will consider a free-surface condition, modeling surface-
multiples. The recorded pressure data are used as observed data, both at the surface and in
wells. Figure 1.4a shows an example of a seismogram generated by a shot located at the center
of the source line.
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Figure 1.4: Seismograms of pressure data for the source located almost at the center of the
Marmousi model x = 1.4 km: (a) recorded inside the true model, (b) calculated inside the
smooth initial model, (c) calculated inside the interpolated velocity model, and (d) computed
inside the final model obtained through our dynamic approach.

In our study, the data weighting matrix Wd is chosen as identity Wd = I [dim(data)]−1,
where dim(data) means the unit of pressure data. In order to have a dimensionless objective
function, Wd should have a dimension which is the inverse of the data dimension. Note that for
all further applications, the Tikhonov regularization parameter is kept fixed to a small value,
imposing only a weak smoothing constraint, since we mainly focus on analyzing of the effects
of the prior penalty term.

A smooth velocity model (Figure 1.3b), which mimics a time-tomography velocity model
based on both first arrivals and reflected events, and referred to henceforth as“smoothed velocity
model”, is used as the initial model for FWI. A time-domain FWI approach is used, involving
all the frequencies of the spectrum (maximum 30 Hz in this case). No additional hierarchical
approach such as the frequency-continuation approach of Bunks et al. (1995) is used in these
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1.2 Regularized seismic full waveform inversion with prior model information

examples. This means that the weighting of each frequency is directly link to its amplitude
in the spectrum. A first investigation (Figure 1.6a) is performed with noise-free data and a
standard regularized FWI method, without considering a prior model (equivalent to λ2 = 0).
The result shows that the optimization is trapped in a local minimum. This issue can be
related to cycle-skipping ambiguities due to the starting model inaccuracy, especially in the
deepest part below 700 m and on the left part of the model until the second fault. Due to these
inaccuracies, the target zones composed of the two reservoir areas are not well recovered with
this configuration.

1.2.4.1 FWI with prior model and impact of prior weighting matrix (Wm)

In our framework where well information does exist, the FWI method should use this non-
seismic information as prior information for the inversion. We first need to build the prior
velocity model mp and the model weighting matrix Wm that contains the prior model un-
certainty. In our study, we consider that the sonic-log measurements acquired in the two
exploration wells provide an accurate estimation of the local vertical velocity. A prior model
could have been created from interpolation of the well velocity, following picked horizons in the
migrated section. Instead, we build a crude prior velocity model based on a linear interpolation
between the two well locations without any migration and picking approach. This interpolated
model (Figure 1.3c) from only the well data, henceforth called “interpolated velocity model”,
even though being far from the true 2D structure of the Marmousi model, will be used as a prior
velocity model for regularized inversion. As shown in the following test, this crude prior model
allows to significantly help the inversion to converge, and when applied to real data, the more
accurate the prior is, for example if it is derived using standard quantitative interpretation
techniques, the better the FWI results will be.

The prior model has to be associated to the weighting matrix Wm, in order to weight the
penalty associated to the model residual (m−mp). As already mentioned, we use a diagonal
weighting matrix containing both the uncertainty and some weighting. From how the prior
model is built, we know that, quantitatively, the interpolated velocity values should be accurate
close to the well positions, but they can be erroneous far from the wells, since the structure
is highly heterogeneous. Therefore, we decided to build a weighting shape whose uncertainty
values follow a Gaussian function with weak values near the wells and increasing values in the
center of the area (Figure 1.5a). This is the prior weighting model A.

A key point in all additive regularized optimization schemes is the selection of the weighting
hyper-parameters. As already mentioned, the λ1 value chosen is small enough to ensure a slight
smoothing of the results. In practice, to select the λ2 hyper-parameter, we compute the misfit
function for the starting model for λ2 = 1. Based on the ratio γ between the prior-model misfit
λ2C2m(m) and the data-term misfit Cd(m), we adjust the λ2 value such that 10−3 < γ < 10−2.
Therefore, by selecting this reasonable ratio of prior-model and data misfit terms, the FWI is
prevented to minimize the model norm heavily at early iterations. In fact, an even stronger
weight is applied to the data term in the global objective function. In this test, we choose to
have the ratio γ = 10−2.

Figure 1.6c shows the reconstructed velocity model after FWI, starting from the “smoothed
velocity model”, and using the “interpolated velocity model” as a prior model. We can see
that the shallow left part of the reconstructed model has been strongly improved compared
to Figure 1.6a. However, the deeper part of the result remains strongly dominated by the
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Figure 1.5: Two types of prior weighting model used for regularized inversion: (a) model A,
the Gaussian function varying only in the x direction between two wells with maximum value
at the center of model, and (b) model B, the same variation in x complemented by a quadratic
evolution in the z direction (the Gaussian lateral variation could be seen now in the undulation
of the white interface).

footprint of the interpolated velocity model used as a prior model. This footprint can be
interpreted as an inappropriate relative weight between the prior penalty term and the data
misfit term, for waves that illuminate this deeper part. The consistency of the two terms
at shallow depth, leads to an improved reconstruction. In order to visually see the relative
amplitude of the different terms of the gradient, the absolute value of the data-term gradient
(Figure 1.7a), the prior-model term gradient (Figure 1.7b), and their ratio (prior-model/data)
(Figure 1.7c) are computed at the first iteration. With increasing depth, the amplitude of the
data-term gradient decreases, because the associated wave amplitudes, mainly in a reflection
regime, decrease due to geometrical spreading, intrinsic attenuation and energy partitioning
at interfaces. The ratio between the prior-model and the data gradients therefore shows that
the deep part of the gradient is driven by the prior-model at the expense of the data term,
because of the homogeneous weighting term with depth in the Wm matrix. To overcome this
unfavorable balance between the data and the prior terms in the optimization, a weighting is
required and can be implemented in two different ways. We can either modify the Wm matrix
to decrease the weight in depth or change the data-term weighting Wd matrix such that the
late arrivals have more weight in the data misfit and the data-gradient terms. This second
weighting can be linked to the metric choice of the misfit function norm for the data term as
defined in Jin et al. (1992).
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Figure 1.6: The recovered Vp models by FWI and two QC vertical logs passing through the
two target areas at x = 0.65 km and x = 2.3 km, (a) reconstructed model starting from
the smooth initial model and without a prior model, small λ1 and λ2 = 0; (b) two vertical
logs corresponding to the model (a); (c) reconstructed model starting from the smooth initial
model and with the prior model, small λ1, fixed λ2, the prior weighting model A and the ratio
between prior-model and data misfit terms γ = 1 × 10−2; (d) two vertical logs corresponding
to the model (c); (e) reconstructed model starting from the smooth initial model and with
the prior model, small λ1, fixed λ2 same as case (c), the prior weighting model B. Note the γ
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vertical logs corresponding to the model (g). 41
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In our study, we choose to involve the depth weighting in the model space and we use a
rough but efficient approximation of the geometrical spreading to change the Wm matrix in
depth: we propose to make the operator WT

mWm decrease by a simple 1/z2 with respect to the
depth z, in order to compensate for the propagating decay of the wave amplitude. This kind of
depth weighting has been used in the Controlled Source Electromagnetic method (Plessix and
Mulder, 2008) and gravity inversion applications (Li and Oldenburg, 1998). Plessix and Mulder
(2008) have proposed the depth weighting matrix to compensate the exponential decay of the
amplitude of electromagnetic waves and also geometrical spreading. This depth weighting was
used as a preconditioning of the model parameter (Plessix and Mulder, 2008) and to counteract
the geometric decay of the kernels in inversion (Li and Oldenburg, 1998). In our application, we
use the same general principle, but our main goal is to make an appropriate balance between the
prior-model norm and data misfit in depth. We combine this weighting and the uncertainty
associated to distance away from the wells to build a new weighting matrix (Figure 1.5b),
referred to as prior weighting model B.

FWI is now applied using the “smoothed velocity model” as the initial model and the
“interpolated velocity model” as the prior model together with the prior weighting model B.
The same hyper-parameter λ2 is used, but note that the γ ratio value between prior-model
and data misfit is decreased to around 3× 10−3. This weighting model B allows to successfully
balance the gradient energy with the depth as shown in Figure 1.7d and 1.7e. The reconstructed
velocity is shown in Figure 1.6e and exhibits a significant improvement compared to Figure 1.6a.
This result first shows the importance of the prior weighting, which should contain appropriate
uncertainty information, but should also ensure an appropriate balance between the prior misfit
term and the data misfit term in the optimization. In this case, the prior term significantly
helps the inversion to converge to the global minimum of the optimization problem, mitigating
the cycle-skipping issues that the data misfit term cannot handle alone. In fact, adding the
prior model penalty allows to change successive descent directions and helps the inversion to
converge to the correct global minimum valley of the misfit function. This test shows that prior
information allows to constrain inversion and, therefore, mitigates the non-uniqueness issue of
ill-posed inverse problems.

1.2.4.2 Roles of initial versus prior models

In many geophysical inversions, it has been proven successful to choose the initial model
equal to the prior model (see Oldenburg (1994); Routh and Oldenburg (1999) for electri-
cal/electromagnetic inversion and Routh and Anno (2008); Miller et al. (2008) for time-lapse
inversion), when it is chosen sufficiently accurate. In this part, we address the relative role of
the prior and initial models in the inversion procedure, when only partial information is con-
tained in the available models. A first natural idea could be the use of the prior velocity model
(Figure 1.3c) as the initial model of FWI. Since this model helps the FWI when it is used as
prior model, it could be a good candidate for the initial model of the inversion. Fundamental
differences exist when using a particular velocity model as a prior model which has no direct
impacts on the modeling of synthetic data or when using it as an initial model with direct
consequences on the synthetic data. Figure 1.8 illustrates the inversion result derived using the
classical regularized FWI (same tuning as Figure 1.6a) and the “interpolated velocity model”
as initial model. We can clearly see that the inversion converges towards a local minimum, far
from being a satisfactory result. Moreover, in this case the optimization process stops after
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Figure 1.7: At first iteration of optimization, the absolute value of (a) the data-term gradient,
(b) the prior-model term gradient , (c) the ratio between prior-model and data gradients, in
case of using the prior weighting model A; (d) and (e) same as (b) and (c) respectively, but in
case of using the prior weighting model B.

only a few iterations. The shallow part on the right-hand side of the model seems satisfactory
but the left-hand side and the deeper parts seem to be badly handled by this initial model,
built from interpolation in this strongly laterally-varying structure. One interpretation of this
failure is related to the major difference in the meaning of the initial and of the prior model:
the initial model must be localized in the attraction valley of the global minimum of the misfit
function, often related in seismic as being kinematically accurate and not generating erroneous
arrivals in the synthetic data computed using the wave equation (see Figure 1.4a and 1.4c).
Indeed, it is much more difficult for the inversion workflow to suppress or shift a structure
than to create a new one. On the contrary, the prior model is never explicitly used as an
input for solving the wave equation and is only used to drive the optimization step in order to
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minimize the total objective function. It can therefore contain any structure, complementary
to the information contained in the initial model, that can drive inversion towards expected
zones of the model space. In our case, the prior model allows FWI to be driven and partially
fills in the lack of low wavenumbers that cannot be extracted from only the data. Both the
“smoothed velocity model” and the “interpolated velocity model” contain partial information
on the velocity model, that, when used alone, is not sufficient to converge towards the global
minimum. Only an appropriate combination of both pieces of information, through the initial
and prior models, allows to exploit the partial information included in both, and allows to
significantly improve the results. Note however that for regions of poor seismic illumination, as
the optimization is driven by the prior model, this model requires to be as accurate as possible
(kinematically correct) to ensure good results. In this case, the prior model puts its imprint
on the current model and then is partially used for solving the wave equation.
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Figure 1.8: The recovered Vp model by standard FWI starting from an initial model equal to
the interpolated velocity model, small λ1 and λ2 = 0.

1.2.4.3 Dynamic prior regularization parameter

In complex environments, the prior model derived from extra information on the target zone
may be far away from the exact model we never reach. Even if the prior model can significantly
improve results by driving the inversion in an appropriate direction, the final model can keep
a significant footprint of the prior model structure and may prevent a significant expression of
the data itself. As shown in Figure 1.6e, the result exhibits ghost interfaces coming from the
interpolated prior model. These footprints of the prior setting do not honor the data itself.
However, keeping a fixed hyper-parameter on the prior term of the misfit function prevents the
results from being improved since the prior model is intrinsically wrong in such a case.

Thus, one can investigate a dynamic weighting of the prior information, in order to de-
crease the weight of the prior term (λ2) during iterations of the optimization. We suggest a
simple dynamic approach, considering a starting λ2 value that is gradually decreasing until
it reaches zero. This method allows to drive FWI towards the global minimum valley of the
objective function at the beginning, due to the prior-model influence, and to finally leave only
the data term to drive the final iterations of the optimization, by gradually decreasing the
prior weight. The Tikhonov regularization term is kept constant as we only discuss here the
reciprocal influences of the data misfit term and of the prior term. Our heuristic approach is
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based on the decrease of the objective function with iterations. When the slope of the objec-
tive function curve becomes too small, and smaller than a specific threshold, the current λ2

value is divided by a factor of two to reinforce the weight of data misfit term. Our criterion
is based on the first derivative of the misfit function with respect to iterations, computed with
a simple finite-difference stencil. The derivative value at each iteration is normalized by the
first derivative value. During the optimization procedure, the corresponding derivative value
is compared to the fixed threshold at each iteration. Every time that the derivative is smaller
than the threshold, meaning that the misfit function curve with iterations is becoming too flat,
the hyper-parameter λ2 is changed. The key issue of this strategy is the value of the threshold
at which the hyper-parameter λ2 term must be decreased. We find that a few trials can narrow
down this value quite rapidly from variation of the misfit function. This threshold value should
be of the order of 10−4 ∼ 10−3. Note that in our implementation, the L-BFGS-B optimization
is restarted each time the hyper-parameter λ2 is changed.

The dynamic method has a similar property to the multiplicative regularization and cooling
regularization approaches (van den Berg et al., 1999; van den Berg et al., 2003). In Total
Variation (TV) as the multiplicative constraint, the data objective function itself is defined
as the weight of TV. Therefore, the regularization term has a large weighting parameter in
the beginning of the optimization process, and gradually decreases as the objective function is
minimized and the data fitted.

Figure 1.6g shows the recovered model obtained by this dynamic method, using the“smoothed
velocity model” as the starting model, the “interpolated velocity model” as a prior model and
the optimal weighting matrix B. As with the fixed λ2 strategy, we can see that the reconstructed
model is dramatically improved when compared to the one obtained by standard FWI. More-
over, the dynamic approach allows to mitigate the footprint of the prior model, since during
the optimization the prior penalty weight decreases with respect to the data misfit term. Thus,
the effect of the prior model is being reduced slowly and the misfit data term helps inversion
to converge to a quasi-perfect final model. As a quality control, vertical profiles taken through
the two gas sand traps (for the initial, true and recovered models) illustrate that the target
velocity is recovered accurately (Figure 1.6h), compared to the result from standard FWI using
the same initial model (Figure 1.6b). In addition, the computed seismogram inside the final
model shows that the full seismic arrivals have been exploited during the optimization (see
Figure 1.4d).

The objective function curves for the data term, the model norms and the λ2 curve as a
function of iteration are shown in Figure 1.9. In this case, the data are without noise and a
very small stopping criterion is selected to fit the data as much as possible, leading to a large
number of iterations. This stopping criterion, based on the flatness of the misfit function for two
successive iterations, is the same for all the inversion tests, so that the results are comparable.
The data objective function always decreases and by reducing λ2, we try to prevent giving a
high weight to the prior penalty term. Therefore, by reducing the model objective function
value, an appropriate contribution of the prior model is kept during optimization. Note that
there is no change on the small λ1 value and that the Tikhonov term always exists, leading to
a non-zero model objective.

The convergence of standard FWI without any prior model and FWI with dynamic prior
weighting shows dramatic differences of the evolution of the total objective function (Figure
1.10). The standard FWI gets trapped in a local minimum and stops the optimization after
87 iterations. By including the prior model to the optimization, the path of descent is changed
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Figure 1.9: Evolution of (a) the data objective function, (b) the model objective function, and
(c) λ2 value with iterations in case of using the dynamic approach. Note that (a) and (b) curves
are shown in logarithmic scale.

and the optimization procedure is not trapped by local minimum attraction basins. The begin-
ning of the optimization appears quite equivalent for both approaches until iteration 40, even
showing better convergence speed for the standard FWI. Please note however that even if the
convergence rate is the same, the results may be different because the null-space is different
between an inversion with and without the prior model penalty. After this step, due to different
descent paths, standard FWI slows down convergence speed and rapidly stops. For FWI with
dynamic prior weight (blue curve), we can observe a large decrease in the objective function
between iterations 170 and 230. Looking at the updated model history at these iterations shows
a significant improvement, associated to the prior model penalty use, in the shallow left part
target, leading to a large decrease in the data misfit. In standard FWI, the data and Tikhonov
terms of the misfit gradient alone are not able to solve this problem in the shallow left part of
model.
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Figure 1.10: Comparison of the total objective function curves in case of using the standard
FWI and the dynamic prior weighting FWI (a) for all iterations, (b) shown at early iterations.

1.2.4.4 Noisy data

In presence of noise, the ill-posedness of the inverse problem is increased. Therefore, we need
to study the effect of noise on our proposed regularized FWI including the prior model penalty.
We keep the same acquisition configuration, while an artificial Gaussian noise in the range of
0−30 Hz, the bandwidth of the source, is added to the true noise-free data. The signal-to-noise
ratio is around 7 dB. Figure 1.11 illustrates an example of shot gathers used for FWI (we have
used the suaddnoise procedure of Seismic Unix (Cohen and Stockwell, 2008)).

Three inversion tests starting from the “smoothed velocity model” (Figure 1.3b) are per-
formed. The first one uses the standard FWI without the prior model (Figure 1.12a). The
second test uses the “interpolated velocity model” as prior model with a fixed λ2 value (Figure
1.12c), and the third one uses the dynamic prior weighting (Figure 1.12e). All the parameters
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Figure 1.11: Noisy seismograms of pressure data for the source located almost at the center of
the Marmousi model x = 1.4 km; random Gaussian noise added to the synthetic seismograms
in bandwidth of 0− 30 Hz and SNR = 7 dB.

are chosen identical to those of the noise-free data set case, except the hyper-parameter λ2,
which is now increased in order to account for the noise energy in data. The λ2 value is chosen
such that the ratio between the prior-model penalty and the data misfit remains the same in
the global misfit function, and equal to the noise-free case (γ = 3×10−3). In presence of noise,
the data misfit function has a larger value than the noise-free case, therefore a higher λ2 value
is required.

The results with noisy data remain consistent with the noise-free tests: the prior penalty
term still drives the inversion towards a more realistic and accurate final model, even though
more noisy. The dynamic approach also remains an appropriate strategy as can be shown from
the model reconstruction and from the two displayed vertical profiles (Figure 1.12f). This test
for data with the presence of noise confirms the robustness of the approach for non-perfect
data.

1.2.4.5 Surface acquisition and multiple-contaminated data

In this section, we apply our scheme to a less favorable frame: a free surface condition is used,
meaning that surface multiples are now present in the data. Moreover, we suppress the sensors
located in the wells, leading to a pure surface acquisition. Note that the sensors in the wells
previously allowed to dramatically increase the illumination in this selected target of Marmousi,
where the ratio maximum offset/depth is about two, instead of three to four as in classical FWI
applications to exploit diving waves. In such a configuration with a small offset compared to
the depth, the FWI behaves generally like a non-linear migration technique, as the low part of
the wavenumber domain can not be retrieved (Plessix and Mulder, 2004) and we may question
how the prior information may fill in this part of wavenumber domain.

The observed data used in this test are shown in Figure 1.13. The surface-related multiples
can clearly be seen compared to the previous data set.

Two inversion tests starting from the “smoothed velocity model” are performed. The first
one uses the standard FWI without the prior model (Figure 1.14a). The second test uses the
“interpolated velocity model” as the prior model, the optimal prior weighting model B, and the
dynamic approach (Figure 1.14c). Here, we assume that the sonic logs are still available and
that we can use them for building the prior model (like in previous tests).
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Figure 1.12: The recovered Vp models by FWI of the noisy data and two QC vertical logs
passing through the two target areas at x = 0.65 km and x = 2.3 km, (a) reconstructed model
starting from the smooth initial model and without a prior model, small λ1 and λ2 = 0; (b) two
vertical logs corresponding to the model (a); (c) reconstructed model starting from the smooth
initial model and with the prior model, small λ1, fixed adapted λ2 to have the ratio γ = 3×10−3

at first iteration, and the prior weighting model B; (d) two vertical logs corresponding to the
model (c); (e) reconstructed model starting from the smooth initial model and with the prior
model, small λ1, same initial λ2 before it is decreased to zero (or same initial ratio γ = 3×10−3),
the prior weighting model B and using the dynamic approach. The prior model is removed
from the inversion at the end of the procedure; (f) two vertical logs corresponding to the model
(e).

All the parameters are chosen identical to those of the previous tests. The starting λ2

value is adapted, due to a difference in the data energy and trace number, to keep the same
γ = 3× 10−3 ratio between the prior-model and data misfit terms at the first iteration.

The result of standard FWI (Figure 1.14a) contains many anomalies and ringing artifacts
in the shallow part. These effects could be associated to surface-related multiples coming from
the free surface. Even if the main structures are recovered in the shallow part, the velocity
model is strongly contaminated by artifacts at all depths leading to erroneous velocity values
at the two reservoir depths (see the QC logs in Figure 1.14b). Moreover, due to the limited
aperture coverage of the acquisition, the low part of the wavenumber spectrum is not recovered,
and the structure seems depth stretched due to the initial model inaccuracy. Adding the prior
model and the dynamic weighting allows to significantly improve the results (Figure 1.14c),
canceling the shallow ringing effects associated to the surface-related multiples. In the shallow
part of the target where illumination remains strong, the result is almost perfect. Deeper,
because of the lack of illumination, some artifacts appear, but the prior model allows, at least
partially, to fill in the low part of the wavenumber spectrum that can not be retrieved from
short-spread reflection only. This leads to well-positioned structures, until at least 1 km depth
(Figure 1.14d).
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Figure 1.13: Seismograms of pressure data for the source located almost at the center of the
Marmousi model x = 1.4 km, recorded inside the true model with free surface condition and
using the receivers only at the surface.

1.2.5 Discussion

So far, FWI has been considered essentially as a data-driven procedure with negligible contri-
bution of prior model information and has therefore been investigated for seismic exploration
purposes. As the knowledge of the target zone is increased, we may need to introduce more
model-driven features in the optimization procedure, especially when we have poor illumination
of the target zones.

The description of the misfit function with three terms should increase potential perspectives
of the FWI as we may relax the illumination constraints of this approach at the expense of a
better knowledge of expected features of the model we want to reconstruct.

The design of the hyper-parameters and, more specifically, the dynamic evolution during
the inversion procedure, could be improved and robustness should be analyzed. One can say
that this tuning is based on the misfit evolution for different damping laws. From the synthetic
example we have studied, we have found that behaviors of the FWI for different acquisition
configurations, namely the one with receivers at the surface and within two wells, and the
one with receivers only at the surface with the surface-related multiples, are quite similar and,
therefore, the tuning of hyper-parameters should not be highly sensitive to the application.

In addition, deep targets could benefit as well from the prior information once the overbur-
den structure has been defined. In seismic exploration, sub-basalt and subsalt imaging is quite
challenging and any extra piece of information could help to improve the illumination of the
target. The introduction of prior information would allow to help recover poorly illuminated
zones, thus broadening the application of the full waveform inversion.
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Figure 1.14: The recovered Vp models by FWI and two QC vertical logs passing through the
two target areas at x = 0.65 km and x = 2.3 km, in case of free surface condition and using only
the receivers at the surface, (a) reconstructed model starting from the smooth initial model and
without a prior model, small λ1 and λ2 = 0; (b) two vertical logs corresponding to the model
(a); (c) reconstructed model starting from the smooth initial model and with interpolated
velocity model (Figure 1.3c) as a prior model, small λ1, initial λ2 value chosen to have the ratio
γ = 3× 10−3 at first iteration, the prior weighting model B and using the dynamic approach;
(d) two vertical logs corresponding to the model (c).

1.2.6 Conclusions

We have proposed a regularized FWI scheme that includes prior information as an optimiza-
tion penalty term. Aside from the data misfit term, our misfit definition is composed of two
penalty terms: the Tikhonov term to ensure smoothness and the prior model term to help
the convergence towards expected models. Generally, this latter prior penalty term is not
used in classical FWI implementation, but we show that adding this information reduces the
non-uniqueness issue of the inverse problem that is a well-known difficulty of the full wave-
form inversion. This prior information can be deduced from non-seismic data, well-logging and
geological constraints that are generally available for specific exploration applications and for
monitoring during production. We show with that this prior information improves the well-
posedness of the problem as compared to the standard FWI approaches, and allows to partially
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mitigate potential kinematic inaccuracy of the starting model as well as illumination issues.
The prior weighting operators and the prior model require an appropriate design: one has to
properly balance the prior model term and the data term during the inversion. We have shown
that well-balancing both pieces of information is crucial during the optimization process. The
prior model definition, may include structures that can help drive the inversion towards the
global minimum valley without being kinematically as accurate as the initial model for wave
propagation. Moreover, these structures may prevent convergence in the final steps of the
inversion and one can wish to decrease the importance of this prior information with respect
to the data information. We have proposed a dynamic weighting of the prior term during the
inversion in order to smoothly reduce the impact of the prior information, leaving the floor at
the end only to the data itself (regardless of the smooth Tikhonov term).

During this investigation, we have shown the striking differences between the roles of the
initial model and the prior model in this constrained FWI framework where generally only
partial information is available: the initial model must respect the wave equation and the
related kinematic features to be positioned in the global minimum valley of the misfit function;
while the prior model does not have such obligations restrictively like the initial model. The
construction of the initial model is quite delicate while the construction of the prior model
could allow more freedom.

Future investigations will be focused on using prior model for time-lapse applications, in
order to accurately obtain the physical parameter variations in a target zone. The design of the
prior model, for more complex environments and real data applications, should also consider
geostatistical approaches and/or standard quantitative interpretation techniques to honor the
geological structures.
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1.3 Estimation of regularization parameters

The main issue concerns the development is a reliable technique for choosing the regulariza-
tion parameters. Several methods, such as discrepancy principle, L-curve, Generalized Cross
Validation (GCV) and NCP Analysis have been proposed but no one has advised a general
purpose algorithm which will always provide a proper estimation of these regularization pa-
rameters (Hansen, 1998; Castellanos et al., 2002; Hansen, 2010). In our paper, we suggested
to approximately choose these parameters based on the ratio between model and data misfit
functions at the beginning of optimization. In our regularization scheme, since the dynamic
approach will be applied, probably very precise estimation of this regularization parameter at
the beginning may probably not be necessary.
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Here, we briefly introduce two different well-known parameter-choice techniques that could
also be used in seismic data inversion:

Discrepancy principle: in this method the regularization parameter is chosen such that the
data residual norm equals discrepancy in the data which is measured by the noise norm,
‖dcal(mλ)− dobs‖2 = ‖n‖2. This method is simple but the main disadvantage is that we
often do not know the noise norm exactly, and therefore we must estimate the norm or
the standard deviation of data noise. This might be difficult to obtain in practice and
unfortunately the quality of the computed regularization parameter is very sensitive to
the accuracy of the estimation of ‖n‖2 (Hansen, 2010).

L-curve: this technique is based on the balancing of two error components, a perturbation
error coming from the inversion of the noise component in the data and a regular-
ization error due to the introduction of the regularization filter (Hansen, 1992). The
regularization parameter is defined from the corner of the L-curve plot. This curve
is a plot of the regularized solution norm versus the residual norm, both in log scale
(log‖dcal(mλ)− dobs‖2, log‖mλ‖2).

It is important to note that all these parameter estimation methods could be expensive for
FWI applications where we have an iterative optimization method and expensive computational
tasks. The reader is referred to Hansen (1998) and Hansen (2010) for a detailed explanation
of these techniques.

1.4 Building prior model using geostatistical techniques

For building the prior model from the available prior information, we can use more accurate
techniques than just doing a simple interpolation between wells. One of the potential meth-
ods could be a geostatistical approach (Isaaks and Srivastava, 1989; Dubrule, 2003). In this
technique, the spatial variation due to distance from wells can be accounted; therefore, this
geostatistical interpolation could provide more reliable prior model. Indeed, in addtion to well
data, the available geology data could also be integrated for building the prior model.

Kriging technique addresses the problem of interpolating a variable like velocity on the
basis of a number of scattered data in the space (Matheron, 1970). Let us consider that we
know the velocity computed at a well location from the sonic log. Then, we want to estimate
the velocity value far away from the well location by using the value at the well. We can do
that based on one variogram model. The variogram model contains the information related to
variable variation with the distance. Obviously, we have an estimation error which could be
provided with statistical models. Kriging is the generalization of this idea to the estimation
of the variable value at one specific location x using not just one well but several wells away
(Dubrule, 2003). In fact, this technique provides an estimation of the variable in the space based
on a weighted average of the measured values in several scattered data points. These weights
are directly linked to the spatial distance between the estimated point and the measured points.
Kriging will consist in finding these weights such that minimizing the estimated variance.

This kriging technique could be used for constructing the prior model using distributed
well data in 2D or 3D spaces. In addition, the geostatistic interpolation could be honored from
the available geological horizons. It means the interpolation can be perfomed by following the
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velocity interfaces. Indeed, for time-lapse applications, we have usually several sources of prior
information on the studied field.

1.5 Other possibilities of dynamic methods

The dynamic weighting of prior model penalty term we propose, could also be implemented
by other methods. The similar idea used in multiplicative regularization (van den Berg et al.,
2003), where the data objective function is defined as the weight of total variation, could be
used for the regularization parameter λ2 of prior model penalty term. The ratio between
prior model objective term and data part of objective function is important and this kind of
information can be used to control the dynamic approach.
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Figure 1.15: Lambda half-lambda algorithm based on choosing damping parameter in Leven-
berg–Marquardt algorithm. This algorithm could be an alternative for the dynamic weighting
approach.

Another possibility, called here “lambda half-lambda” method, is derived from the idea
of Levenberg–Marquardt algorithm (LMA) (Levenberg, 1944; Marquardt, 1963; Moré, 1978).
The LMA is originally an optimization method modifying the Hessian (Blm = B + εI). The
idea of choosing the damping parameter (ε) which was suggested by Marquardt (1963) can be
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interesting for us as a dynamic approach for changing the regularization parameter λ2. Our
proposed “lambda half-lambda” algorithm is shown in Figure 1.15.

In this suggested algorithm, at each iteration, two optimizations must be done. Once with
λ2 value as a weight of prior model penalty term and one time with half of this current λ2.
After both optimizations, the data terms of the objective function in two cases are compared.
If use of the half-lambda results in a more reduction in objective function then this is taken
as the new value of λ2 and the new optimum model is taken as that obtained with this half-
lambda and the process continues; otherwise λ2 is left unchanged and the new optimum is
taken as the value obtained with λ2 as regularization parameter. This algorithm can deliver a
robust result (Figure 1.16) similar as derivative based method used for the dynamic approach
(compare Figure 1.16c with Figure 1.6g). However, performing two optimizations at each step
would be the main drawback of this algorithm.
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Figure 1.16: The recovered Vp models by FWI and two QC vertical logs passing through the
two target areas at x = 0.65 km and x = 2.3 km, (a) the reconstructed model by classical
FWI without prior model, (b) two vertical logs correspond to model (a); (c) the reconstructed
model by regularized FWI with dynamic prior weighting performed by “lambda half-lambda”
method, (d) two vertical logs correspond to model (c).
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1.6 Conclusions

We have proposed a regularized FWI scheme that includes prior information as an optimiza-
tion penalty term. Aside from the data misfit term, our misfit definition is composed of two
penalty terms: the Tikhonov term to ensure smoothness and the prior model term to help the
convergence towards expected models. Using a synthetic benchmark, we show how the prior
information improves the well-posedness of the inverse problem as compared to the standard
FWI approaches, and allows to fill in partially the lack of low-wavenumber during inversion.
The prior model definition may include structures that can help drive the inversion towards
the global minimum valley. This prior model is not involved in the synthetic data computation
and, therefore, is not required to be kinematically as accurate as the initial model for wave
propagation.

However, structures of the prior model may prevent convergence in the final steps of the
inversion and one can wish to decrease the importance of this prior information with respect
to the data information. We have proposed the idea of dynamic weighting of the prior term
during the inversion in order to smoothly reduce the impact of the prior information. This idea
could be promising and the way of performing that in a proper way can be an open research
study.

In time-lapse applications, this kind of prior information should be included for the inver-
sion. First, in order to get more accurate and more precise baseline model, and second to use
these prior data for inverting the small time-lapse variations. In the next chapter, we apply
this regularized FWI algorithm on synthetic time-lapse examples and show how the time-lapse
variations could be obtained in a robust way.
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Time-lapse Full Waveform Inversion
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After the accurate baseline reconstruction through FWI using limited aperture and with the
introduction of prior information, we may consider different strategies for the time-lapse inver-
sion. In this chapter, we discuss different time-lapse strategies and we compare the robustness
of these strategies on Marmousi synthetic datasets. We make different discussions about null-
space issues and differences between baseline and monitor inversions. In addition, we propose
a target-oriented time-lapse inversion based on the prior model and the prior weighting.

In a second part, we apply our regularized FWI method to another synthetic time-lapse
datasets with steam injection, namely Dai model (Dai et al., 1995). In this second synthetic
case, we investigate the sensitivity of the recoverd baseline model with respect to different
initial and prior models. Finally, the sensitivity of time-lapse models obtained by differential
FWI strategy with respect to the baseline models is studied and discussed.

2.1 Time-lapse seismic imaging using regularized FWI with
prior model: which strategy?

Time-lapse seismic imaging using regularized full waveform inversion with
prior model: which strategy?

Amir Asnaashari, Romain Brossier, Stéphane Garambois, François Audebert, Pierre
Thore, and Jean Virieux

2013, Geophysical Prospecting, accepted.

2.1.1 Abstract

Full waveform inversion (FWI) is an appealing technique for time-lapse imaging, especially
when prior model information is included into the inversion workflow. Once the baseline recon-
struction is achieved, several strategies can be used to assess the physical parameter changes,
such as parallel difference (two separate inversions of baseline and monitor datasets), sequential
difference (inversion of the monitor dataset starting from the recovered baseline model), and
double-difference (inversion of the difference data starting from the recovered baseline model)
strategies. Using the synthetic Marmousi datasets, we investigate which strategy should be
adopted to get more robust and more accurate time-lapse velocity changes in noise-free and
noisy environments. In addition, we propose a target-oriented time-lapse imaging using regu-
larized FWI including prior model and model weighting, if the prior information exists on the
location of expected variations. This scheme applies strong prior model constraints outside of
the expected areas of time-lapse changes, and relatively less prior constraints in the time-lapse
target zones. In application of this process to the Marmousi model dataset, the local resolu-
tion analysis performed with spike tests shows that the target-oriented inversion prevents the
occurrence of artifacts outside the target areas, which could contaminate and compromise the
reconstruction of the effective time-lapse changes, especially when using the sequential differ-
ence strategy. In a strongly noisy case, the target-oriented prior model weighting ensures the
same behavior for both time-lapse strategies, the double-difference and the sequential difference
strategies, and leads to a more robust reconstruction of the weak time-lapse changes. Therefore,
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we show that, in some configurations where the double-difference strategy is not applicable (for
example, non-perfectly matched acquisition geometries), the target-oriented sequential differ-
ence strategy can provide the same robust result as the double-difference strategy.

Keywords

Monitoring, Full Waveform, Inversion, Time-lapse, double-difference, target-oriented

2.1.2 Introduction

Over several years, monitoring and time-lapse analysis has become an important tool for opti-
mizing the oil and gas production and for evaluating CO2 sequestration efficiency. Time-lapse
data provide high-resolution images which enable us to track dynamic changes in physical prop-
erties, especially fluid parameter variations in target areas. Several successful time-lapse studies
have been undertaken for near-surface geophysical problems with non-seismic data, GPR and
electrical data (Ramirez et al., 1993; Day-Lewis et al., 2002, 2003; Singha and Gorelick, 2005;
Oldenborger et al., 2007; Miller et al., 2008), for seismic monitoring (Lumley, 2001; Rickett
and Lumley, 2001; Calvert, 2005; Hall, 2006; Lumley et al., 2008; Ayeni and Biondi, 2010), and
for joint inversion of electromagnetic and seismic data of reservoir monitoring (Liang et al.,
2012). Most of these studies are based on tomography problems where inversion techniques are
needed.

Over the past few decades, full waveform inversion (FWI) has become a promising technique
for velocity model building that reconstructs high-resolution velocity models of the subsurface
through the extraction of the full information content of seismic data (Tarantola, 1984b; Pratt,
1999; Virieux and Operto, 2009). Since the FWI approach delivers high-resolution quantitative
images of macro-scale physical parameters, it should appear as a quite attractive tool for
monitoring purposes, even if it is not yet widely applied (Gosselet and Singh, 2008; Abubakar
et al., 2009; Plessix et al., 2010; Thore et al., 2010; Romdhane et al., 2012; QueiBer and
Singh, 2013). Gradient-based inversions used in FWI cannot provide yet uncertainties on
the inverted values, in spite of few attempts (Fichtner and Trampert, 2011), compared to
stochastic approaches. The computational cost of the a posteriori covariance matrix limits
dramatically such kind of analysis for FWI applications. Nevertheless FWI approach could
be one of promising techniques for time-lapse imaging, taking into account both the phase
and amplitude of data and and it may be considered as less user dependence. Moreover,
the final product of FWI relies on quantitative image of physical properties that should help
interpretation of 4D changes.

Time-lapse variations are defined as a high-frequency details in the model at the reservoir
scale, while FWI is known as a technique which is limited to rather low frequencies for ex-
ploration projects due to the computational cost. However, even with these low frequencies
it can provide high resolution images. Today, by increasing the computer facilities and more
developments in FWI algorithms, there is less problem to move onto inversion of intermediate
frequencies. Nice applications have been shown at intermediate and high frequencies in both
2D and 3D problems (Shipp and Singh, 2002; Bansal et al., 2013; Lu et al., 2013). Moreover,
for time-lapse applications, it is not necessary to invert an entire field model which would be
very large (this is the case in general exploration project); the inverted model could be reduced
to the interested zones. Therefore, by decreasing the size of model (unknown parameters), it
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helps to move to a higher frequency inversion. Please note however that the problem of high
frequency inversion is not only a computational cost issue: the amplitude and cycle-skipping
issues become more and more important when moving to high frequencies.

Regularization or preconditioning may reduce the non-uniqueness of the ill-posed inverse
problem. Several studies have been done on regularization schemes of FWI implementations
(Abubakar et al., 2009; Herrmann et al., 2009; Loris et al., 2010; Guitton, 2011; Ma et al.,
2012). All these regularization techniques do not directly use prior model information as a
separate term in the data-oriented misfit function: they prefer to concentrate on the defini-
tion/restriction of the model space. One may want to use prior model information in the FWI
scheme as is done in other velocity building techniques (Le Stunff and Grenier, 1998; Tarantola,
2005). Recently, some authors suggested to introduce prior models in the multiplicative (Hu
et al., 2009) and additive (Wang et al., 2012; Asnaashari et al., 2013a) regularization terms of
the FWI workflow. Taking into account prior information could be very valuable for monitor-
ing purposes, where many types of precise prior information have been collected for the target
zone, in a way similar to the model-based regularization used on time-lapse electrical resistiv-
ity tomography (Oldenborger et al., 2007; Miller et al., 2008). Adding prior information can
also significantly improve the accuracy of the reconstruction of the baseline model (Asnaashari
et al., 2013a).

The time-lapse reconstruction procedure can be divided into two steps: (1) the baseline
and (2) the monitor model reconstructions. In order to obtain a robust high-resolution time-
lapse model, it is necessary to reconstruct both baseline and monitor models in a robust and
accurate way. For the second step of this approach, several workflows can be designed for
the monitor reconstruction. One of them, called the parallel difference strategy, independently
inverts the two datasets (baseline and monitor) starting from the same initial model. The time-
lapse changes will be assessed by subtracting the final derived monitor model from that of the
baseline (Plessix et al., 2010). The second approach, called the sequential difference strategy,
uses the final baseline model as the starting model for inverting the monitor dataset (Asnaashari
et al., 2012). An alternative strategy, called double-difference or differential strategy, consists
in inverting only the difference dataset to recover a differential image. It is related to a double-
difference tomography method widely used in geodesy and in seismology in order to improve
earthquake source locations or to image receiver areas (Waldhauser and Ellsworth, 2000; Zhang
and Thurber, 2003; Monteiller et al., 2005; Got et al., 2008), and used more recently for
locating microseismic events (Zhou et al., 2010). The double-difference method in the form
discussed here has been proposed for time-lapse waveform inversion of acoustic cross-well data
in frequency domain (Watanabe et al., 2004) and inversion of elastic data in time domain (Denli
and Huang, 2009).

The sequential difference strategy does not depend too heavily on the repeatability of the
acquisition geometry between baseline and monitor surveys, which is a great advantage. On
the contrary, the double-difference method demands a perfect match of the receiver and source
positions between the two surveys. On the other hand, the sequential difference strategy cannot
naturally focus on the target areas and on the time-lapse changes during inversion (as shown
in this paper). Could we tune the sequential difference inversion for a better focusing on
target zones using prior model information? In addition, could we reduce the effects of image
noise outside of the expected target zones if prior data are available? These are some of main
questions that we want to address in this study.

In the first part, we shall present the theoretical framework of our study. Then, using
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synthetic data modeled for the Marmousi model, we shall investigate the different behaviors and
robustness of time-lapse strategies in noise-free and noisy cases. The fundamental differences
between the sequential difference and the double-difference strategies, in conventional (without
prior model) and target-oriented modes, will be illustrated by a local resolution analysis. We
underline the sensitivity analysis of obtained time-lapse images with respect to the inaccuracy
of the recovered baseline model in a noisy environment. We shall illustrate how the target-
oriented inversion can significantly improve the results of all time-lapse inversions and how the
sequential difference strategy in target-oriented mode can provide the same robust result as
the double-difference strategy if prior data are available in crucial areas.

2.1.3 Time-lapse strategies with regularized full waveform inversion includ-
ing prior model

Full waveform inversion is an iterative approach to recover model parameters based on the
local optimization of residuals between observed and computed wavefields at receiver positions
for different seismic source locations. Any prior information which can be incorporated into
the estimation of the misfit function reduces the ill-posedness issue of inverse problems and
ensures more robust results. For that, we apply the time-domain regularized FWI algorithm
with prior model penalty introduced in Asnaashari et al. (2013a), where two penalty terms
based on model parameters are introduced into the misfit function. The misfit function C(m)
can be expressed using the `2 norm as

C(m) =
1
2

∑
ns

{
(dobs − d(m))T WT

d Wd (dobs − d(m))
}

+
1
2
λ1{mTDm}

+
1
2
λ2

{
(m−mp)

T WT
mWm (m−mp)

}
= Cd(m) + λ1C1m(m) + λ2C2m(m), (2.1)

where the observed and calculated data at receiver positions are denoted by vectors dobs and
d(m), respectively. The matrix Wd is a weighting operator on the data misfit. This first
term of the misfit function is obtained by adding the contribution over ns sources. The second
term of the objective function corresponds to the standard Tikhonov regularization (Tikhonov
and Arsenin, 1977) where the modulus of the gradient (roughness) of the model is minimized,
in order to search for smooth models. Practically, this term is formulated as the application
of Laplacian operator D. A five-point finite-difference stencil is used for the discretization
of this operator. The third term of the objective function is related to the prior model mp

designed from available prior information, such as sonic logs and geological information. This
term estimates residuals between the current model at a given iteration and the prior model
considered at that same iteration. The matrix Wm is a weighting operator in the model space.
This matrix contains the prior uncertainty information and the potential weighting of this
information. This weighting operator plays a crucial role when reconstructing the model for
target-oriented imaging. In our misfit function, the prior-model variance information is included
in the diagonal Wm matrix and the covariances are implicitly considered in the Tikhonov term.
The two regularization hyper-parameters λ1 and λ2 allow each penalty term to be weighted
with respect to each other and to the data term. Designing the prior model and estimating the
weighting matrix is an important step before the optimization. Moreover, hyper-parameters
should also be estimated. These issues come with the new definition of the misfit function.
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The gradient of misfit function now has three terms, one data term and two model terms,
expressed as

Gm = −
∑
ns

JTWT
d Wd (dobs − d(m)) + λ1Dm + λ2WT

mWm (m−mp), (2.2)

where the Jacobian matrix J = ∂d(m)/∂m is composed by the Fréchet derivatives of the
synthetic data with respect to the model parameters. The data term of the gradient is effi-
ciently computed with an adjoint formulation (Plessix, 2006) without an explicit computation
of J. Then, two model penalty terms are readily added to the data term without extra com-
puter efforts as they can be easily differentiated. The quasi-Newton procedure involving the
L-BFGS-B scheme (Byrd et al., 1995) is used for the optimization and updates the model
parameter vector m. An approximate non-diagonal inverse Hessian (second derivative of the
misfit function) from previous gradients and model vectors is considered in this scheme. This
bounded limited-memory quasi-Newton method is an efficient alternative to preconditioned
steepest-descent methods, because of improved focusing and partially correcting the descent
direction affected by limited aperture of illumination (Brossier et al., 2009). The bounded
values can be approximately estimated from the prior information. A detailed review and ap-
plications of this regularized FWI scheme including prior penalty can be found in Asnaashari
et al. (2013a).

In the following, we briefly introduce three different strategies for time-lapse imaging with
this new regularized FWI approach, considering initial and prior models.

2.1.3.1 Parallel difference strategy

The parallel difference strategy considers two independent inversions, where the baseline and
monitor datasets are processed separately using the same starting and prior models. After in-
version, the time-lapse variation is simply the subtraction between the recovered (rec.) monitor
model and the reconstructed (rec.) baseline model (Plessix et al., 2010), as explained by the
diagram in Figure 2.1. The main advantage of this strategy is its applicability to acquisition
geometries that do not necessarily match between the two surveys. As the two inversions are
performed independently, the main drawback is the potential interpretation of non-repeated
inversion artifacts as a false time-lapse response.

2.1.3.2 Sequential difference strategy

Because one expects the time-lapse response to be localized and of small amplitude in most
of the monitoring applications, the baseline model is a natural good candidate for the starting
model of the inversion of the monitor dataset. Starting from the baseline model should reduce
the number of necessary iterations for the inversion of the monitor dataset. Therefore, once
the baseline reconstruction is completed, this baseline model is subsequently used as the initial
model during the inversion of the monitor dataset. At the end, the time-lapse model is obtained
by a subtraction between the two recovered models. The schematic of sequential difference
strategy is shown in Figure 2.2. This approach is similar to the previous strategy, but with a
different initial model. As the baseline model is close to the monitor model due to small and
localized time-lapse variations, the recovered baseline could also be a good candidate for the
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Figure 2.1: Diagram of parallel difference full waveform inversion.

prior model. The role of the prior model is to regularize the inversion and to find the monitor
model not far away from the initial one (baseline model). If more prior data on the changes
are available from boreholes and non-seismic data, they would be integrated to design a new
prior model. However, the prior model alone is not sufficient, and it is important to consider
an appropriate model weighting matrix Wm. The prior information related to the location of
time-lapse changes should be included in the Wm matrix. We discuss this issue in more detail
in the target-oriented FWI section.

2.1.3.3 Double-difference strategy

In the double-difference strategy, instead of minimizing the difference between the full observed
and calculated data, we attempt to minimize the difference of the difference data between two
sets of data (Watanabe et al., 2004; Denli and Huang, 2009), yielding the expression

∆d = (dobsm − dobsb
)− (dcalcm − dcalcb) = dobstime−lapse

− dcalctime−lapse
, (2.3)

where the monitor and baseline observed data are denoted respectively by dobsm and dobsb
,

while the computed data for these two experiments are denoted by dcalcm and dcalcb . Based
on equation 2.3, the double-difference inversion focuses on the difference data, i.e. changes in
data due to the time-lapse variation. In order to use the standard regularized FWI algorithm
at our disposal, we can rewrite equation 2.3 in another way,

∆d = (dobsm − dobsb
+ dcalcb)− dcalcm = dcomposite − dcalcm . (2.4)

63



TIME-LAPSE FULL WAVEFORM INVERSION

B a s e lin e  d a ta

In itia l m o d e l
R e g u l. F u ll
W a v e fo rm
In v e rs io n

R e c . B a s e lin e
m o d e l

R e c . M o n ito r
m o d e l

R e g u l. F u ll
W a v e fo rm
In v e rs io n

T im e -la p s e
m o d e l

P rio r m o d e l

M o n ito r d a ta

-

In i t i a l  m o d e l

P r i o r  m o d e l

Figure 2.2: Diagram of sequential difference full waveform inversion.

Therefore, for the double-difference analysis, we first need the elaboration of a composite dataset
defined as

dcomposite = dobsm − dobsb
+ dcalcrec−b

, (2.5)

which is composed of (a) the time-lapse difference observed data (dobsm − dobsb
) which should

only contain the time-lapse changes between the two datasets and (b) the computed data
dcalcrec−b

estimated using a forward modeling in the recovered baseline model (rec-b). This
composite dataset dcomposite can be used as a new observed dataset dobs in equation 2.1, which
allows minimizing the double-difference residual 2.3 with a standard regularized FWI algorithm.
The reconstructed baseline model is the natural choice for the initial model for this inversion.
Finally, the time-lapse model changes δmtime−lapse = mcomposite −mrec−b can be obtained. A
schematic of the proposed algorithm is shown in Figure 2.3.

Please note that the difference observed data are computed by a raw subtraction, without
any time warping. The difference data may contain artificial 4D effects along time axis, due
to slightly time-shift related to 4D changes. This issue does not make a problem, since FWI
performs inversion in depth domain and not in time domain. These artificial 4D effects are
associated to the time-lapse anomaly at specific depth, therefore can be focalized at that depth.
Hence, because of inversion in depth domain, there is no need to align baseline and monitor
traces in time.

The main advantage of the double-difference strategy is that the unexplained events (non-
fitted during inversion) of the baseline data at the baseline reconstruction step have less impact
on the time-lapse perturbation reconstruction, as compared to the sequential difference strategy.
The composite dataset is free from any unexplained baseline events. In contrast, the sequential
difference uses the full real monitor data that may contain unexplained baseline/monitor events.
As long as these unexplained events stay common for both baseline and monitor data, they
will not produce time-lapse artifacts. This feature, as well as the importance of an accurate
recovered baseline model, will be discussed in detail in the synthetic example section.
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Figure 2.3: Diagram of double-difference (differential) full waveform inversion.

For double-difference, it is essential to have perfectly matched surveys (e.g. permanent sen-
sors or ocean-bottom cable (OBC) configurations) to perform subtraction between datasets. In
case of non-matching surveys, we need to tackle extra pre-processing steps and make data inter-
polation to match receiver and source positions between two surveys. In parallel difference and
sequential difference strategies, because of performing two separate inversions, exact-matching
issue is less required.

2.1.4 Target-oriented inversion

The sequential difference strategy cannot naturally focus only on target areas and on the time-
lapse data changes during inversion. Is there any way to make the sequential difference inversion
focus on the target zones? In addition, could we reduce effects of image noise outside of the
expected target zones?

As the baseline model is close to the monitor model, since the time-lapse variations are
small and localized, the recovered baseline model could also be a good candidate for the prior
model in both the sequential difference and the double-difference strategies. If the variations
are localized only at the reservoir and assuming no overburden changes, we can constrain
the inversion outside of the area of expected changes through the prior-model misfit term
of the objective function (the location of these expected changes may come from external
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information or be known after previous attempts of different inversions). In other words, we
may give strong weights to the prior model (here, the recovered baseline model) for the parts
of the model where no time-lapse variations are expected to occur, and relatively less prior
weights in the target areas. By doing so, the inversion tends to update the monitor model
only inside the target areas where the weaker prior constraints leave more relative weight in
the cost function to the data-misfit term with respect to the model term. Of course, hyper-
parameters will balance the global contributions between data and model terms. Thus, this
target-oriented inversion can be easily incorporated into the double-difference and sequential
difference strategies, using the target-oriented model weighting matrix Wm. This is another
advantage of these strategies compared to the less interesting parallel difference strategy. The
target-oriented procedure could be used as a final focusing strategy. The non-seismic prior
data such as well data and geological models, and a migrated section of difference dataset,
together, can help to approximately identify the areas of expected changes. The diagonal
model weighting matrix is computed based on diag(WT

mWm) = 1/σ2(m), where σ2(m) is
related to the prior uncertainty. In the expected target area, the prior uncertainty associated
to the prior model (recovered baseline model) is relatively higher than outside of the target
area where no changes are expected. This target-oriented inversion mode can be integrated
with two of the time-lapse strategies, the sequential difference and the double-difference ones.
This target-oriented option can be performed, if the prior information exists on the location of
expected time-lapse variations.

2.1.5 Application to the Marmousi model

In this section, we study the robustness and behavior of the different time-lapse imaging strate-
gies presented before, in the case of both noise-free and noisy synthetic datasets modeled on a
version of the Marmousi2 model (Martin et al., 2006). A selected target zone of the Marmousi2
P-wave velocity model and a homogeneous density model are considered as the true baseline
models (Figure 2.4a). The true monitor velocity model is created from the baseline model
through a relative (40 m/s) variation of velocity inside two gas reservoirs (Figure 2.4b). The
velocity changes are around 2% of the baseline velocity variation inside the reservoirs, which is
realistic. We assume that the two reservoirs are fully saturated by gas at the beginning, and
after production the gas is partially replaced by water. This means, in a second phase of the
exploitation, that the reservoirs are partially saturated by gas and water. Due to this issue,
there is an increasing change in Vp velocity. A surface acquisition geometry with a free-surface
condition is used to generate the synthetic data, with seventy-seven isotropic explosive sources,
located along a horizontal line at a depth of 16 m, equally spaced by a distance of 50 m. A
horizontal receiver line at a depth of 15 m with a sensor interval of 10 m completes the ac-
quisition. All receivers record all shots. A Ricker wavelet source with a central frequency of
10 Hz is used, for baseline and monitor surveys. The time seismograms are generated using
2D acoustic finite-difference modeling in the time domain with a fourth-order stencil in space
and a second-order integration in time. Perfectly-matching-layer (PML) absorbing boundary
conditions (Berenger, 1994) are used for non-reflecting boundaries except at the top where a
free-surface condition is implemented. The observed data for the inversion are the recorded
pressure data.
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Figure 2.4: (a) The true Vp baseline model selected from Marmousi model and the acquisition
geometry; (b) the true time-lapse model.

2.1.5.1 Noise-free data

Figure 2.5a shows an example of baseline seismograms generated by a shot located at the center
of the source line. Clearly, surface multiples are present in the data and increase the complexity
of the data for inversion. Figure 2.5b shows the noise-free difference data (time-lapse data)
obtained by subtraction between the monitor and the baseline data. Note that the amplitude
of the difference seismograms is amplified by a factor of 10 so as to be at the same scale as
the baseline seismograms, for visualization purposes. The time-lapse signal is weak due to very
small velocity variation of the two small target reservoirs. This low energy time-lapse signal
may induce difficulties for the recovering of time-lapse changes. The baseline reconstruction
should be done as the first step.

2.1.5.2 Baseline reconstruction

The main challenge for monitoring remains the necessity to derive a robust high-resolution
baseline model which will be key for the reconstruction of time-lapse parameter variations
(Asnaashari et al., 2011). Therefore, an accurate and robust reconstruction of the baseline
model is crucial. Recently, Asnaashari et al. (2013a) have proposed a dynamic prior weighting
FWI designed to impose a strong contribution of the prior model term in the objective function
at the beginning of optimization and then gradually reduce its influence and increase the impact
of the data term. Combining the prior information and a dynamic prior weighting allows to
drive the inversion to the valley of the quasi-global minimum, to mitigate the cycle-skipping
issues, and to progressively give more importance to the data-misfit term at the late iterations
of optimization.

The same dynamic approach is followed for the inversion of the baseline data using the
regularized 2D acoustic full waveform inversion. Our FWI is implemented in the time domain
for both the forward and the inverse problem, involving all the frequencies of the spectrum
(between 1 Hz to maximum 25 Hz in this case). No additional hierarchical approach such
as the frequency-continuation approach of Bunks et al. (1995) is used. This means that the
weighting of each frequency is directly linked to its amplitude in the spectrum. The full offset
range is included for the inversion. The forward modeling is performed by 2D acoustic finite-
difference method with a fourth-order stencil in space and a second-order integration in time.
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Figure 2.5: (a) The noise-free observed baseline seismograms for the source located at the center
of Marmousi model; (b) the noise-free difference data between monitor and baseline datasets;
(c) the noisy baseline seismograms obtained with an artificial Gaussian band-limited noise in
the bandwidth of source wavelet, which has been added to the noise-free data with S/N=6 dB;
(d) the noisy difference data, the time-lapse seismic events are blinded by high level of random
noise. Please note that the amplitude of (b) and (d) seismograms are amplified by factor 10 to
be plotted at the same scale of (a) and (c), for visualization purpose.

For this model, performing of forward modeling for all the shots takes around 15 seconds of cpu
elapsed-time, using a shot-based parallelization FWI algorithm (on 77 mpi-processors for this
test). Therefore, performing FWI on the baseline data takes roughly 2-3 hours of cpu elapsed-
time (note that for the sequential difference or double-difference strategies due to starting from
the recovered baseline model and less iteration numbers, this computational time will reduce
to less than 20 minutes). Please note that our code is a prototype code and is not optimized
for production.

A strongly smoothed initial model (Figure 2.6a) obtained by smoothing the true base-
line model, which mimics a time-tomography velocity model based on both first arrivals and
reflected events, is used as the initial model. In our study, we consider that the sonic-log mea-
surements acquired in the two exploration wells, located at two sides of the model, provide an
accurate estimation of the local vertical velocity. We build a crude prior velocity model (Figure
2.6b) based on a linear interpolation between the two well locations. However, more accurate
techniques such as geostatistical approach or structural interpolation based on migration could
be used. From the local velocity measurements, the interpolated prior model is accurate near
the well locations and degradates with distance from well, as the structure is highly hetero-
geneous. Therefore, we decided to build a weighting shape whose uncertainty values follow a
Gaussian function in x direction with weak values near the wells and increasing values in the
center of the area. Then, this uncertainty model has been combined with a depth weighting
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Figure 2.6: (a) The strongly smoothed initial model used for the baseline and the parallel
difference inversions. (b) The prior model used for the baseline and the parallel difference
inversions. This prior model is built by a linear interpolation between the two exploration
wells at two sides of model and is slightly smoothed. (c) The prior model weighting σ used for
the baseline and the parallel difference inversions. This model weighting contains the Gaussian
function varying only in the x direction between two wells with maximum value at the center
of model, then this variation is complemented by a quadratic evolution in the z direction.

(z2), in order to have an appropriate balance between the data-misfit and prior-model terms
by going into depth (it can also be seen as compensating for the propagating decay of the wave
amplitude). This σ2(m) model (Figure 2.6c) is used to include the prior model into the misfit
function with a spatial varying weight (recall diag(WT

mWm) = 1/σ2(m)).

For selection of regularization parameters, the λ1 value is chosen as a small value to ensure
a slight smoothing of the results. To select the λ2 hyper-parameter, the misfit function is
computed for the starting model for λ2 = 1. Based on the ratio γ between the prior-model misfit
λ2C2m(m) and the data-term misfit Cd(m), we adjust the λ2 value such that 10−3 < γ < 10−2.
Therefore, by selecting this reasonable ratio of prior-model and data-misfit terms, the FWI is
prevented to minimize the model norm heavily at early iterations. In this test, we choose to
have the ratio γ = 10−3. As mentioned before, the dynamic weighting approach is performed
to gradually reduce the λ2 value during the optimization. The reader is referred to Asnaashari
et al. (2013a) for more details. The stopping criterion for L-BFGS-B is based on the flatness
of the misfit function for two successive iterations, ensuring a convergence. The criterion is
the same for all the following inversion tests performed in this study, so that the results are
comparable on the data side.

The obtained baseline model is shown in Figure 2.7a. As a quality control (QC), the
normalized Vp error computed at each grid point is plotted (Figure 2.7b). The theoretical error
associated to the recovered model is computed by the expression V err

p = (V true
p − V rec

p )/V true
p
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Figure 2.7: (a) The recovered baseline model by regularized FWI using the interpolated prior
velocity model with inversion of noise-free data; (b) the normalized Vp error at each grid point,
V err
p = (V true

p − V rec
p )/V true

p , used as a quality control for the recovered model (a); (c) similar
as (a) in case of strongly noisy data with S/N = 4.5 dB; (d) the normalized Vp error for the
recovered model (c).

as we know the true model.

At larger depth and close to the boundaries of the model, the error is slightly higher
due to the lack of illumination. However, inside the reservoirs and in the overburden, the
reconstruction of the velocity model converges to a quasi-perfect model thanks to the influence
of the prior model. We insist that such a precise and accurate result cannot be obtained without
considering the prior model and the dynamic approach. Adding the prior model into inversion
scheme leads to an accurate baseline model which is crucial for time-lapse inversion.

2.1.5.3 Time-lapse imaging

In this part, we perform a robustness study of the three proposed time-lapse imaging strategies
(parallel difference, sequential difference, double-difference), particularly in the presence of
ambient noise. In the first investigation, we focus on the noise-free case using the conventional
modes (i.e. without target-oriented option). For the parallel difference strategy, we invert
the monitor dataset with the same configuration and inversion parameters as for the baseline
reconstruction, starting from the same smooth initial model, using the same interpolated prior
velocity model, and the same parameters of the dynamic approach. Figures 2.8a and 2.8b show
the time-lapse model obtained by the parallel difference strategy, with two vertical QC logs
passing through the two gas reservoirs. The result shows that inverting both data independently
from the same initial model does not make it possible to focus only on time-lapse changes.
The two reservoir variations are approximately recovered, but many high amplitude anomalies
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associated to inversion artifacts are present in the final time-lapse model. This problem is
mainly linked to the ill-posedness and the non-uniqueness issues of the inverse problem. Since
the complexity of data is not the same for the two datasets, the two independent inversions
do not converge to similar models and do not have the same path of optimization. Thus,
different artifacts are created for the two inversions. In terms of computational costs, the
parallel difference strategy is not interesting, because both inversions start from the smooth
initial model.

Once the recovered baseline model is obtained, we can perform the sequential difference and
the double-difference strategies starting from this baseline model. Since the expected monitor
model must be close to the baseline model, due to the small and localized time-lapse variations,
the recovered baseline could also be a good candidate for the prior model in both strategies.
This is the case in this study. In the conventional mode (without target-oriented option), a
homogeneous weighting is applied to the model, with a low influence of the prior model penalty
term in the objective misfit function. The sequential difference is able to detect the time-lapse
variation, but it cannot focus solely on the target areas (Figures 2.8c and 2.8d). The result is
less contaminated by inversion artifacts as compared to the parallel difference strategy. Figure
2.8e shows the time-lapse result produced in the noise-free case with the conventional double-
difference strategy. It appears that both target zones are very well recovered and that most
of the difference data energy is focalized inside the correct perturbation zones, although some
low-value anomalies exist below 1 km depth at the center of the model. This may be due to
small inaccuracies in the reconstructed baseline model, that are not completely recovered in
this part mostly due to the lack of illumination. However, such time-lapse incorrect anomalies
may be considered as acceptable. For the small reservoir, since its thickness is smaller than the
spatial wavenumber, there is a small shift in the position of the top reservoir (please note that
the maximum frequency included in the time-domain inversion is around 25 Hz).

For the target-oriented inversion (in the following), we need to design the model weighting
matrix Wm based on the location of expected changes. Based on non-seismic prior information,
well-known the depth of reservoirs, and the migrated section of difference dataset, it is possible
to roughly detect the area of time-lapse changes. After detecting the approximate location of
variations, the prior uncertainty model σ2(m) (Figure 2.9) is built by a summation between a
small constant uncertainty value everywhere in the model and two Gaussian functions varying
in x and z direction which are centered roughly at the center of variations. These two Gaussian
functions, which contain high relative values with respect to the small values of other places,
present the areas where we expect to be updated during the target-oriented inversion. This is a
roughly design of the target-oriented prior uncertainty model, however more precise techniques
could be used in real case applications. We use this target-oriented weighting model for all
following target-oriented inversions.

As the parallel difference may not be very interesting anymore, in the following we will
concentrate on the two other strategies.

2.1.5.4 Local resolution analysis

In this section, we want to analyze the different behaviors of the two time-lapse strategies,
in conventional and target-oriented modes. For that, we perform a local resolution analysis.
The Hessian function is related to the point-spread functions (PSFs) or the spike tests; this
relation is important information brought by the Hessian in a local resolution analysis. Spike
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Figure 2.8: The recovered time-lapse Vp models by regularized FWI of noise-free data and two
QC vertical logs passing through the two target areas at x = 1.1 km and x = 2.8 km: (a)
using the parallel difference strategy; (b) two vertical logs corresponding to the model (a); (c)
using the sequential difference strategy; (d) two vertical logs corresponding to the model (c);
(e) using the double-difference approach; (f) two vertical logs corresponding to the model (e).

tests are commonly used as a diagnostic tool for resolution analysis in linearized tomographic
problems (Menke, 1984; Fang et al., 2010; Fichtner and Trampert, 2011). They constitute a
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Figure 2.9: The target-oriented σ model is built based on the location of time-lapse changes
coming from the migrated section, the available prior well data and geological model.

numerical way for estimating the effects of the off-diagonal terms of the Hessian function on
the recovering model parameters, for one row and one column of the Hessian matrix related to
the point model perturbation.

We shall consider a true monitor model which contains only two point time-lapse pertur-
bations that are point-localized inside the two reservoirs. In a first investigation, without any
target-oriented prior weighting, the time-lapse images (two spike functions) are recovered by
the inversion from three different configurations: 1) The time-lapse inversion (eighter sequen-
tial difference or double-difference) starting from the true baseline model used as the starting
monitor model, shown in Figure 2.10a; 2) the sequential difference strategy starting from the
recovered baseline model (Figure 2.7a) used as the starting monitor model, shown in Figure
2.10b; and 3) the double-difference strategy starting from the recovered baseline model (Figure
2.7a) used as the starting monitor model, shown in Figure 2.10c. The results are shown here
after 10 iterations. The spikes recovered by the double-difference strategy (from the recovered
baseline model) appear to be very similar to the ones obtained with the true baseline model,
showing the robustness of the strategy with respect to the starting model. In addition, the total
energy of the time-lapse perturbations is better located and better focused at their positions
with the double-difference method, as compared to the sequential difference strategy.

When using the true baseline model as the initial model for time-lapse inversion (Figure
2.10a), the two strategies bring quite identical results, because the calculated baseline data
dcalcb are equivalent to the observed baseline data dobsb

, so the composite dataset and the
observed monitor data are identical (for noise-free data). Let us clarify the differences between
the composite and the monitor dataset, when the recovered base model is used. The monitor
dataset can be written as the time-lapse perturbation data plus the baseline data (simply by
mathematical adding and subtracting the baseline data to and from the monitor data),

dobsm = dobsm − dobsb
+ dobsb

. (2.6)

The expression is similar to the one for the composite data (2.5), but the calculated re-
covered baseline data has been replaced with the observed baseline data. The misfit data
computed at the first iteration (when dcalcm = dcalcrec−b

) of optimization for the two strategies
are expressed as

∆ddouble−difference = dobsm − dobsb
, (2.7)
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∆dsequential = (dobsm − dobsb
) + (dobsb

− dcalcrec−b
). (2.8)

Equation 2.7, which follows from equation 2.4, and equation 2.8, derived from equation 2.6 and
the data misfit equation (dobsm − dcalcm), reveal the main differences between the sequential
difference and the double-difference strategies. The sequential difference strategy, in addition
to the time-lapse data (first part of the expression, common with the expression for the double-
difference approach), tries to recover the misfit related to the baseline events that have not been
fully reconstructed before (second part of the expression). This is the drawback of the sequen-
tial difference strategy, that leaves a potential risk of creating spurious time-lapse variations.
However, the double-difference strategy focuses on inverting difference data and requires as a
starting model a baseline model which accurately enough describes the background baseline
kinematics and structures, otherwise the time-lapse energy cannot be localized and focalized
properly at the correct positions.

We should mention that the problem of sequential difference is not related to a convergence
of inversion in a wrong direction. This issue rather appears as a mixing of two different
effects: the updating of baseline structure and the recovering of time-lapse changes. If it
would be possible to qualify the time-lapse variations with another smart way rather than a
simple subtraction between the two obtained models (baseline and monitor), we could better
distinguish 4D changes from other effect. In the following, as we rely on model-difference
to build the 4D variations, the baseline improvement during the monitor inversion will be
considered as 4D artifact.

In a second investigation, the same tests are performed, with the baseline model as a prior
model (i.e. the true baseline model used as the prior model in the test of Figure 2.10d and
the recovered baseline model used as the prior model in the tests of Figures 2.10e and 2.10f)
and applying the target-oriented prior model weighting (Figure 2.9). The results are shown in
Figure 2.10 (bottom panel). The target-oriented inversion prevents the apparition of artifacts
outside of the expected target areas, especially for the sequential difference strategy, more prone
to artifacts. For both time-lapse strategies, target-orienting the inversion can significantly
improve the results compared to the conventional inversion (top and bottom panels of Figure
2.10). By applying a stronger model weighting outside the target zones, the second term of
the sequential-difference data misfit (2.8) (i.e. dobsb

− dcalcrec−b
) plays a minor role in driving

the inversion procedure. The model constraints outside the target do not allow these non-fully
fitted baseline data to update the monitor model. For target-oriented inversion, the dynamic
prior weighting cannot be applied and the prior regularization parameter λ2 has to be kept
constant until the end of optimization.

2.1.5.5 Noisy data S/N=6 dB

In this section, we study the robustness of the two aforementioned time-lapse strategies in
presence of random noise. In particular, we present a sensitivity analysis of the time-lapse
models obtained by the sequential difference strategy and the double-difference strategy with
respect to the inaccuracy of the recovered baseline model. How accurate should the baseline
model be? This is the question that is addressed in this section.

An artificial Gaussian noise in the range of 1−25 Hz (the bandwidth of the source wavelet)
has been added to the true noise-free data (we have used the ‘suaddnoise’ procedure of Seismic
Unix (Cohen and Stockwell, 2008)). The signal-to-noise ratio is around 6 dB. Figures 2.5c
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Figure 2.10: Local resolution analysis with spike tests, top panel without target-oriented inver-
sion: (a) using time-lapse inversion (sequential difference or double-difference) starting from
the true baseline model (Figure 2.4a); (b) using the sequential difference strategy starting from
the recovered baseline model (Figure 2.7a); (c) using the double-difference strategy starting
from the recovered baseline model (Figure 2.7a); (d), (e), and (f) similar as (a), (b), and (c) in
case of using the target-oriented model weighting (Figure 2.9).

and 2.5d show the noisy baseline and the difference seismograms, respectively. The difference
seismograms are amplified by a factor of 10 to be plotted at the same scale as the baseline
seismograms. Clearly, the low-energy time-lapse signal is below the level of random noise.
First of all, the noisy baseline data are inverted by the dynamic regularized FWI including the
prior model built by well logs (Figure 2.6b). The recovered baseline model and its corresponding
error map are illustrated in Figures 2.11a and 2.11b. As expected, the result with noisy data is
less accurate compared to the result for the noise-free case, since the inverse problem becomes
more ill-posed. However, using the prior model helps to fill in the lack of low wavenumbers
and ensures that the inversion converges to a more robust model. To perform the sensitivity
analysis, in addition to this final recovered model, another baseline model with less accuracy
is used. One of the intermediate updated models, obtained during optimization but before
reaching the convergence, is chosen (Figure 2.11c).

2.1.5.6 Sensitivity to the inaccuracy of baseline model

We perform four different inversions using the conventional sequential difference and the con-
ventional double-difference strategies starting from the intermediate recovered baseline model
(Figure 2.11c) and from the final obtained baseline model (Figure 2.11a). The results are
shown in Figure 2.12. The double-difference strategy delivers almost the same results in both
cases and the time-lapse perturbations are reconstructed quite well. Nevertheless, the result
obtained with a more accurate baseline model is more precise, especially for the smaller reser-
voir. The results of the sequential difference are completely different when different baseline
models are used as the initial monitor model. When the accurate baseline model is chosen, this
method converges to similar result as the double-difference one. However, there are some small
anomalies below 1 km depth and the smaller reservoir is less recovered. When the inaccurate
baseline model is used as the initial model, the time-lapse model obtained by the sequential
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Figure 2.11: The recovered baseline model by regularized FWI using the interpolated prior
velocity model with inversion of noisy data S/N = 6 dB: (a) the final obtained model; (b) the
normalized Vp error at each grid point, V err

p = (V true
p − V rec

p )/V true
p , used as a quality control

for the recovered model (a); (c) the intermediate updated model during optimization with less
accuracy compared to (a); (d) the normalized Vp error for the recovered model (c).

difference strategy is affected by several artifacts, inside and outside the target zones. These
artifacts are caused by the non-fully explained events of the baseline data (dobsb

− dcalcrec−b
),

and FWI keeps updating the model in the time-lapse inversion due to these residuals. The
sequential difference strategy attempts to recover the parts of the model which have not been
reconstructed during the baseline reconstruction step. Therefore, this strategy can only be at-
tractive when one has confidence in the baseline model reconstruction, which would be difficult
case on real application. On the other hand, the double-difference strategy is less sensitive to
the inaccuracy of the recovered base model.

2.1.5.7 Strongly noisy data S/N=4.5 dB

What will be the efficiency of our different strategies for strongly noisy data? Does the added
noise change the behavior of the two time-lapse strategies in the conventional mode and the
target-oriented mode? Same as before, an artificial Gaussian noise in the range of 1 − 25 Hz
has been added to the true noise-free data with signal-to-noise ratio around 4.5 dB. The noisy
baseline data are inverted by the dynamic regularized FWI including the prior model. The
recovered baseline model and its corresponding error map are illustrated in Figures 2.7c and
2.7d. It appears that the baseline model is not recovered accurately, even at shallow depths,
due to the high level of noise.
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Figure 2.12: Sensitivity of time-lapse models with respect to the inaccuracy of baseline model,
in case of noisy data S/N = 6 dB, time-lapse models obtained by: (a) the sequential difference
strategy starting from the final recovered baseline model (Figure 2.11a) as the starting model;
(b) the double-difference strategy starting from the final recovered baseline model; (c) the
sequential difference strategy starting from the intermediate recovered baseline model (Figure
2.11c) as the starting model; (d) the double-difference strategy starting from the intermediate
recovered baseline model.

2.1.5.8 Conventional time-lapse inversions

In a first investigation, the conventional sequential difference and double-difference strategies
are tested in this strongly noisy environment (i.e. without target-oriented model weighting).
Figure 2.13 shows the results of these inversions. In the conventional mode, the result of the
double-difference strategy is more robust than the one from the sequential strategy: however,
in both cases, most of the recovered model is dominated by the uncorrelated noise. The result
of the sequential difference strategy is contaminated by the artifacts so that it is difficult to
interpret even the location of the real time-lapse variations. To improve this result, we propose
to apply the sequential difference strategy in target-oriented mode with an appropriate model
weighting matrix.

2.1.5.9 Target-oriented time-lapse inversions

In a second investigation, the two time-lapse strategies are applied in target-oriented inversion
mode. The results are shown in Figure 2.13. The target-oriented inversions can prevent the
apparition of perturbations outside the expected target zones: most of the image noise artifacts
and artifacts due to continuing baseline updates (in sequential difference case) are removed,
thanks to the target-oriented weighting matrix Wm. Therefore, the sequential difference strat-
egy in target-oriented mode behaves similar to the double-difference strategy and can deliver
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Figure 2.13: The recovered time-lapse Vp models by regularized FWI of the strongly noisy data
(S/N = 4.5 dB) and two QC vertical logs passing through the two target areas at x = 1.1 km
and x = 2.8 km using: (a) the conventional sequential difference strategy; (b) two vertical logs
corresponding to the model (a); (c) the conventional double-difference strategy; (d) two vertical
logs corresponding to the model (c); (e) the target-oriented sequential difference strategy;
(f) two vertical logs corresponding to the model (e); (g) the target-oriented double-difference
strategy; (h) two vertical logs corresponding to the model (g).

78



2.1 Time-lapse seismic imaging using regularized FWI with prior model: which strategy?

the same robust results as the double-difference method, if some information exists on the
location of the expected perturbed zones.

In this case, the recovered monitor model is almost frozen and is not allowed to be updated
outside of the target zones, due to the prior model and model weighting matrix. Therefore,
the unexplained baseline events cannot contaminate the reconstruction of the time-lapse per-
turbations. In this case, the velocity variations in the larger reservoir are better recovered and
better positioned with the sequential difference strategy in target-oriented mode, compared to
the conventional mode (see Figures 2.13b and 2.13f). Please note that another numerical tests
have shown that less accurate knowledge of the target positions in the prior weighting (wider
expected target area) still leads to robust results, compared to the conventional approach.
Clearly, the smaller reservoir change is missed in all inversion sequences because of the high
level of noise, the small size of the perturbation area, and the inaccuracy of the baseline model.

In some situations where the double-difference method is not applicable, for example non-
perfectly matched acquisition geometries, we must consider the sequential difference strategy
for time-lpase inversion. By performing this strategy in target-oriented mode, it is possible
to obtain a time-lapse result as robust as that would be delivered by the double-difference
strategy. In this case, we can focus only on the time-lapse areas and reduce the drawbacks of
the conventional sequential strategy.

2.1.6 Discussion

Nowadays, techniques such as full waveform inversion and amplitude versus offset (AVO) in-
crease our capabilities for better characterizing reservoir changes spatially and quantitatively.
We have shown in this paper that the double-difference and the sequential difference strate-
gies could be promising techniques for time-lapse imaging, however, with some advantages and
drawbacks.

When the quality of data is acceptable in terms of signal-to-noise ratio, the double-difference
strategy can be more interesting than the sequential one, since it can focus on the target
areas. In the case of very strongly noisy data, the double-difference strategy is more sensitive
to the non-repeatable noise at the subtraction step. The subtraction between two datasets
increases the standard deviation of noise, and the amplitude of noise overwhelms the low-
energy true time-lapse signal. Therefore, the time-lapse energy cannot be detected by the
inversion scheme and the inversion is strongly driven by the noise. This is what happens for
the smaller reservoir in a strongly noisy environment in our synthetic examples. Making the
crude subtraction between two datasets may not be a good idea in a noisy environment and we
need other ways to preserve small time-lapse responses in the middle of a high level of noise:
pattern recognition techniques, etc., for instance. In this case, the target-oriented sequential
strategy could be an alternative. In the sequential strategy, there is no subtraction between two
datasets, therefore the standard deviation of random noise will not change and it makes this
strategy less sensitive to the random noise. On the other side, by including a target-oriented
prior model in this strategy, we can make the sequential strategy to focus on the time-lapse
variation areas. Therefore, the target-oriented sequential strategy can behave similarly to the
double-difference strategy, but without its sensitivity to noise. In addition, we benefit from the
applicability of the sequential strategy to the non-perfectly matched acquisition geometries. In
all cases, adding the prior information into the time-lapse inversion has been found to be really
helpful.
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For double-difference, it is essential to have perfectly matched surveys (e.g. permanent
sensors or OBC configurations) to perform subtraction between datasets, if not, it is possible
to perform extra pre-processing steps and make data interpolation to match two surveys.

2.1.7 Conclusions

We have studied the robustness of three strategies for time-lapse imaging with regularized
FWI in noise-free and noisy environments. Using the Marmousi synthetic case, it has been
shown that the parallel difference strategy is highly sensitive to the differential artifacts in
the images coming from two independent inversions. The sequential difference strategy can be
more attractive when the baseline model is accurately recovered, because this method attempts
to recover the parts of the model which have not been fully reconstructed before. Therefore,
this method is more sensitive to the inaccuracy of the recovered baseline model. In case of a
low level of noise, the double-difference strategy is more robust than the sequential one, since
the double-difference inversion only focuses on the difference (time-lapse) data. As shown with
local resolution analysis, the difference data are better localized and better focalized at their
correct positions using the double-difference strategy. In addition, we have illustrated that the
double-difference strategy is less sensitive to the inaccuracy of the reconstructed baseline model
used as initial model.

We also propose a target-oriented time-lapse imaging with regularized FWI including prior
model: in the misfit function, we apply strong prior model constraints outside the areas of
expected 4D changes and we apply relatively smaller prior constraints in the target zones. The
target-oriented inversion steers the recovery of the monitor model towards the target areas,
where the smaller prior model constraints give more relative weight, in the misfit function,
to the data-misfit term. This target-oriented option could be performed as a final focused
strategy in real application, if the prior information exists on the location of expected time-
lapse variations. In the application to the Marmousi dataset, the local resolution analysis with
spike tests shows that the target-oriented inversion prevents the apparition of artifacts outside
the target areas. In the strongly noisy case, the target-oriented weighting matrix Wm leads to a
similar behavior for the sequential and the double-difference time-lapse strategies and delivers
more robust images. In particular, for the sequential difference approach, the unexplained
baseline events cannot contaminate reconstruction of the time-lapse perturbations and the time-
lapse variations are better recovered and better positioned with the target-oriented inversion
mode than with the conventional one. The next step will be the analysis of the reconstruction
capacities of these strategies on real field datasets.
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2.2 Supplementary tests of target-oriented inversion

In real applications, it may be difficult to identify the area where time-lapse variations are
expected to occur, as illustrated in the paper where two small and well-separated targets were
considered. Consequently, it would be better to have a larger (wider) target area which is
extended in horizontal axis along the reservoir. We assume here that the depth of reservoir
is known, but that we have no prior information about potential lateral extension. Hence, we
can design the target-oriented prior model weighting in the manner illustrated by Figure 2.14
for the Marmousi application.
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Figure 2.14: Another kind of target-oriented Wm which includes prior information where only
the depth of reservoirs is known.

This target-oriented weighting model is applied to the strongly noisy data (S/N = 4.5 dB)
using the sequential difference and the differential strategies. Clearly, the obtained time-lapse
results appear improved compared to the conventional inversion (without any target-oriented
weighting), even when taking into account the larger target area (compare Figures 2.15a and
2.15b with Figures 2.13a and 2.13c). The time-lapse variation corresponding to the large
reservoir is properly recovered in the target-oriented sequential difference strategy. For both
target-oriented inversions, we obtain almost similar results. However, the uncorrelated noise is
also reconstructed in the rectangular target area for both strategies, sequential and differential.
Even with this wider rectangular shape for target weighting, the sequential difference strategy
is forced to invert only the misfit related to the time-lapse signals. In fact, by including the
target-oriented prior weighting into the inversion scheme, the objective function shape will
change and monitor inversion is forced to stay inside the local minimum around the baseline
model point. In other words, reducing the size of model space for the time-lapse inversion,
implies that the new objective function has less local minima.

2.3 Application to the Dai model

In this section, we apply our time-lapse inversion to another synthetic and realistic dataset.
Dai et al. (1995) have investigated the influence of steam injection onto a reservoir. We design
a similar model, named here as the Dai model, with slight changes such as curved and tilted
layers in order to consider more realistic media than only a model with flat layers, as the original
Dai model investigated. The true P-wave velocity models for our acoustic time-lapse analysis
are shown in Figure 2.16. Baseline model consists of eight layers; all of them being saturated
with water except the sixth one which is saturated with oil. After steam injection into this
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Figure 2.15: Time-lapse results obtained with new target-oriented prior model weighting: (a)
the sequential difference strategy, (b) the differential strategy. Even with taking into account
less accurate target-oriented prior information, the target-oriented inversion provides an im-
provement of time-lapse variation as compared to the conventional inversion result.

layer, the heat leads to two concentric areas, one saturated with steam and the outer one with
heated oil. The Vp velocity values were computed considering a poroelastic approach taking
into acount the rock physic and fluid parameters (Dupuy, 2011) and then the seismograms are
generated by an acoustic modeling.

2.3.1 Sensitivity of recovered baseline model with respect to initial and prior
models

A sensitivity study on this synthetic model has been done. In this synthetic test, the accuracy of
baseline models obtained by regularized FWI with respect to different initial and prior models
is studied.

The acquisition configuration considers 27 sources, located along a horizontal line with
interval of 25 m, below the surface at a depht of 75 m. We consider one line of receivers at
the same depth as sources and two additional lines of receivers inside two vertical boreholes
at the horizontal positions x = 75 m and x = 725 m with a spacing of 12.5 m between
sensors. We do not consider sources in wells, but receivers could be installed permanently in
wells for time-lapse imaging and will increase dramatically our illumination for the baseline
reconstruction. An explosive Ricker source with a central frequency of 20 Hz is used for all
shots. The time seismograms are generated using an acoustic finite-difference modeling in time
domain with a fourth-order stencil in space and a second-order integration in time (Levander,
1988). Perfectly-Matching-Layer (PML) absorbing boundaries condition are set all around the
model, even at the zero-level surface. Figure 2.17 shows seismograms of the shot located at the
center of the source line before steam injection (baseline model).

Surface receivers record direct and reflected waves but no diving waves because of the short
offsets used, while the receivers inside wells record the reflected and the transmitted waves.
Therefore, considering the receivers inside wells could mimic an enlargement of the horizontal
offset range, and could increase our spatial wavenumber sampling.

In this section, we only focus on the reconstruction of the baseline model. We analyze
the effect of initial models and the impact of prior information on a constrained inversion. In
particular, we study how the accuracy of the reconstructed models could be improved thanks
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Figure 2.16: The true synthetic models and acquisition geometry: (a) baseline model, before
steam injection, (b) monitor model, after injection.

to prior information, which mitigates the lack of illumination. We perform sensitivity tests
using three different quality of initial models. For each initial model, three tests are performed
without prior and with two different types of prior model, leading to nine configurations.

The three initial models are built from a smoothed version of the true baseline model, using
different smoothness factors. A Gaussian smoothing function is used. The less smoothed one
with a smoothness length of 150 m (in both directions) is referenced as m0a (Figure 2.18a). A
highly smoothed version (smoothness length of 300m)) is referenced asm0c (Figure 2.18c). This
model does not ensure a correct kinematic consistency of all arrivals. A model of intermediate
quality m0b is also considered with a smoothness length of 250 m (Figure 2.18b). In this time-
lapse application, we consider to have two acquisition wells and associated sonic-log that give
an accurate estimation of local velocity. Based on this sonic-log prior information, we build
two different prior models for inversion: a first prior model mp1, called smooth prior model,
combines local well measurements near the well positions and the smooth background of the
starting model (Figure 2.19a). A second prior model mp2, called 1D prior model, is built by
horizontal linear interpolation between the measured velocity values inside wells (Figure 2.19b).

The formulation suggested by Asnaashari et al. (2013a) is used for inversion (equation 1.29),

C(m) = Cd(m) + λ1C1m(m) + λ2C2m(m). (2.9)

This equation has been explained in details in Chapter 1.

The model weighting Wm, which allows to weight the penalty associated to the model
residual (m −mp), is selected as a diagonal matrix. For this example, the uncertainties are
weak near wells where sonic-log measurement have been done, while increasing as one moves
away from wells. The shape of this uncertainty is built with a Gaussian function varying in x
direction, with maximum uncertainty in the center and minimum uncertainty near wells. Then,
this uncertainty model is combined with a depth weighting (Figure 2.19c). This final σ model
is used to compute the model weighting (diag(WT

mWm) = 1/σ2(m)).

The regularization parameter λ2 has been chosen in such a way that having a ratio between
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Figure 2.17: The seismogram of pressure data for the source located at the center of model
x = 400 m; the first 61 traces related to receivers inside well located at the left part of model,
trace numbers 62-114 corresponding to surface receiver line, and 115-175 correspond to receivers
inside right well: (a) baseline dataset, (b) differential dataset due to the injected steam.

prior-model and data terms of objective function around 1 × 10−2 at first iteration, in case
of the moc starting model. Then λ2 are kept fixed for others tests. For all cases, Tikhonov
regularization parameter λ1 is chosen as a small at value before numerical instabilities.

The baseline dataset is first inverted through a regularized FWI without any prior penalty
(λ2 = 0) using the three initial models. The recovered models for each starting model and one
associated vertical profile at position x = 400 m are shown in Figure 2.20. As expected, the
recovered models from starting models m0a and m0b allows to converge toward acceptable and
similar solutions, as the kinematic of arrivals is preserved. For model m0c, inversion converges
toward a local minimum in the right part where illumination is weaker, and due to kinematic
issue, that can lead to cycle-skipping issues. This test illustrates that poorly illuminated targets
are much more sensitive to an inaccurate initial model. Indeed, the classical FWI converges
to a secondary minimum instead of global minimum and this problem comes from the non-
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Figure 2.18: The smoothed versions of true baseline model by different smoothness factors
are used as three initial models for FWI, (a) less smoothed (with 150 m length of Gaussian
smoothing), the accurate initial model m0a, (b) medium smoothed (with 250 m smoothness
length), intermediate model m0b, and (c) highly smoothed (with 300 m smoothness length),
the approximate model m0c.

uniqueness of ill-posed inverse problem.

The question can be raised up whether there is any way to improve the obtained model
from the inaccurate initial model. Could the prior information solve these mentioned problems?
Therefore, the baseline dataset is inverted by regularized inversion using the smooth prior model
mp1 for all three initial model cases. Figure 2.21e shows that adding prior model to the inversion
leads to a significant improvement on the obtained model when using a kinematically inaccurate
initial model. Compared to the case of without prior model, the recovered baseline model is
closer to global minimum and there is no issue of cycle-skipping and partial illumination. In
fact by adding prior model misfit to the objective function, this model penalty term changes
the direction of gradient of objective function as compared to the case when only the gradient
is driven by data misfit and Tikhonov terms. This change in gradient helps the inversion
to converge to the correct valley of descent. Therefore, regularization and prior model, when
adequately introduced, can solve the non-uniniqueness of ill-posed problem. However, we should
mention that the recovered baseline models for both other cases, the accurate initialm0a (Figure
2.21a) and the intermediate initial model m0b (Figure 2.21c), are degradated compared to the
cases of without prior model, because of very high value of λ2 which was the optimal value
found for the third initial model case, because of using less appropriate prior model, and also
not applying the dynamic prior weighting. The recovered logs in all three cases show that the
interfaces especially the deeper curvature interfaces are reconstructed very well but going into
depth, below the z = 400 m, problem of lack of low wavenumber exists. The λ2 should be
chosen for each initial model case independently, based on the ratio between prior-model and
data-misfit terms. Here, we kept it as a constant for all cases to have comparable results.

Is there any way to compensate the problem of lack of low wavenumber by changing the
prior model? Hence, the previous regularized inversions are performed again using the 1D prior
model mp2 which is a linear interpolation between velocities of two wells. Figure 2.22 shows
the results for the case of 1D prior model. The first observation is that even with including
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Figure 2.19: Based on prior information and well measurements, it is possible to design prior
models in two different ways: (a) smooth prior model, and (b) 1D prior model. (c) The
uncertainty attached to prior model is chosen as Gaussian function varying in x direction
which is combined with a depth weighting in z direction, (σ2) model.

deeper flat interfaces inside the prior model, the inversions are able to reconstruct the curvature
interfaces based on the data-misfit term of objective function. In addition, compared to the
case of inversion with smooth prior model, this new prior model can compensate the lack of low
wavenumber in the deeper part of model. Even though, at the center and inside the seventh
layer of recovered models, we still have problem of higher velocity anomaly, which is due to
illumination issue and not using the dynamic weighting approach. Later, we show how the
dynamic prior weighting approach can solve this problem.

To sum up, adding prior model helps FWI to go to the global minimum and makes inversion
less sensitive to the initial models. In addition, lack of low wavenumber could be partially
compensated by choosing appropriate prior model. In the next section, the sensitivity of time-
lapse inversion with respect to these baseline models will be discussed.

2.3.2 Time-lapse reconstruction by Differential FWI

Once the baseline models have been correctly obtained, the time-lapse inversion can be per-
formed. Here, we focus on the differential (double-difference) FWI strategy, which has been
found to be more reliable and more robust. The nine baseline models obtained from different
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Figure 2.20: The recovered baseline Vp models obtained by regularized FWI without prior
model, i.e. small λ1 and λ2 = 0 in all cases and the vertical logs associated to the center of
each model (x = 400 m); (a) and (b) in case of the accurate initial model m0a, (c) and (d) the
intermediate initial model m0b, and (e) and (f) the approximate initial model m0c.

inversion configurations in previous section are used to perform nine differential inversions. In
this investigation, no prior model is applied in time-lapse inversion scheme for all nine time-
lapse configurations, in order to see the impact of different reference models (starting models
for the differential strategy) on the time-lapse inversion. Figure 2.23 illustrates the obtained
time-lapse variation models from the baseline models (Figure 2.20) which are recovered without
any prior model. Obviously, the accurate initial model used for the baseline inversion leads
to more accurate baseline model and consequently this one results to get a robust time-lapse
variation (Figure 2.23a). In case of inaccurate baseline model, the obtained time-lapse model
contains several artifacts and anomalies (Figure 2.23c).

It has been shown that by using the prior model for the baseline inversion, especially
in case of the inaccurate initial model, we honor a significant improvement in recovering the
baseline model. Therefore, it is certainly expected that the time-lapse model would be improved
(compare Figure 2.24c and 2.23c). The time-lapse result of second initial model with smooth
prior model (Figure 2.24b) is degradated and less accurate than the same case obtained without
any prior model (Figure 2.23b). First, this observation shows the sensitivity and robustness of
time-lapse variation recovering with respect to the reference model used for time-lapse inversion.
Second, the recovered baseline model, in case of second initial model (m0b) and using the smooth
prior model, is less accurate as we have not performed the dynamic prior weighting. Later, we
will show how the dynamic approach leads to an almost perfect baseline model.

In the last configurations, the differential inversions (Figure 2.25) are performed from the
baseline models obtained by including the 1D prior model (Figure 2.22). In all three cases, we
obtain almost similar results. These results are more accurate at reservoir regions compared
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Figure 2.21: The recovered baseline Vp models derived by regularized FWI with smooth prior
model, small λ1 and fixed λ2 in all cases and the vertical logs associated to the center of each
model (x = 400 m) in case of (a) and (b) the accurate initial model m0a, (c) and (d) the
intermediate initial model m0b, and (e) and (f) the approximate initial model m0c.
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Figure 2.22: The recovered baseline Vp models derived by regularized FWI with 1D prior model,
small λ1 and fixed λ2 in all cases and the vertical logs associated to the center of each model
(x = 400 m) in case of (a) and (b) the accurate initial model m0a, (c) and (d) the intermediate
initial model m0b, and (e) and (f) the approximate initial model m0c.
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Figure 2.23: Time-lapse variation models and the QC vertical logs at x = 400 m obtained by
the differential FWI with small Tikhonov regularization starting from the recovered baseline
models obtained without using any prior model: (a) from the baseline model shown in Figure
2.20a, (b) from the baseline model shown in Figure 2.20c, (c) from the baseline model shown
in Figure 2.20e.
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Figure 2.24: Time-lapse variation models and the QC vertical logs at x = 400 m obtained by
the differential FWI with small Tikhonov regularization starting from the recovered baseline
models obtained with the smooth prior model: (a) from the baseline model shown in Figure
2.21a, (b) from the baseline model shown in Figure 2.21c, (c) from the baseline model shown
in Figure 2.21e.
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Figure 2.25: Time-lapse variation models and the QC vertical logs at x = 400 m obtained by
the differential FWI with small Tikhonov regularization starting from the recovered baseline
models obtained with the 1D prior model: (a) from the baseline model shown in Figure 2.22a,
(b) from the baseline model shown in Figure 2.22c, (c) from the baseline model shown in Figure
2.22e.

to the results obtained from the smooth prior model (Figure 2.24). However, we can see the
footprints of the 1D prior model used for the baseline inversion. Below the real time-lapse
variation and near to the last high contrast interface (depth 650 m), there is a high velocity
variation which is incorrect. This anomaly coming from the inaccuracy of baseline model
could be removed by performing the target-oriented inversion using the prior model and prior
weighting.

It has been shown that the time-lapse inversion is sensitive to the baseline models used for
the inversion. When more accurate baseline model is used, more robust time-lapse variation can
be recovered. To get more accurate baseline model, it is necessary to include the appropriate
prior information into the inversion scheme.

Here, in order to remove the footprints of the prior model on the baseline inversion and
also better improve the baseline result, we apply the dynamic prior weighting approach to the
case where the approximate initial model m0c and the 1D prior model are used (Figure 2.26a)
for the baseline inversion. This approach leads to improve the baseline result and inversion
converges to the quasi-perfect model. In case of fixed prior weighting, there is a large high
velocity zone approximately at 600m depth (Figure 2.22e), which is incorrect and cannot be
solved by optimization due to a fixed prior weighting. By performing the dynamic approach,
after solving the cycle-skipping problem, the effect of 1D prior model gradually reduces. This
leads to decrease the data residual as much as possible and delivers more precise model. It is
possible to compare the baseline result of the classical FWI and the dynamic prior weighting
FWI starting both from the same inaccurate initial model (Figure 2.20e and 2.26a). Then, if
we perform time-lapse inversion (differential FWI) starting from this accurate baseline model,
the most accurate time-lapse variation can be delivered (Figure 2.26b).
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Figure 2.26: (a) The baseline model obtained by the dynamic prior weighting and the QC
vertical logs at x = 400 m. The inversion starts from the approximate initial model m0c and
with the 1D prior model. (b) The time-lapse model from the recoverd baseline model (a) and
its corresponding vertical log.

Now, we would like to perform the target-oriented time-lapse inversion (differential FWI)
in order to focus only on the target region. The recovered baseline model is used as the starting
and the prior model for the inversion. We design a prior weighting model Wm to introduce
strong weight of the prior model outside of the interested target and less weight inside it. As
outside of the interested target, there is no variation. Figure 2.27 shows the σ2 model (recall
diag(WT

mWm) = 1/σ2(m)). The target-oriented method is applied to invert the differential
dataset starting from one less accurate recovered baseline model and the quasi-perfect model
obtained by the dynamic approach (Figure 2.26a). The less accurate baseline model is chosen
from that obtained by starting from the approximate initial model m0c and using the fixed
weighting and the smooth prior model (Figure 2.21e). The results of target-oriented inversion
are shown in Figure 2.28. The impressive results illustrate how the target-oriented inversion
can focus on the recovering of variations inside the target and how it can remove the artifacts
outside of the interested zone (Figures 2.28a and 2.28b to be compared with Figures 2.24c
and 2.26b, respectively). Target-oriented inversion provides almost similar time-lapse results
which are now less sensitive to the reference baseline model. This leads to have an easier and
consistent quantitative interpretation.

2.4 Discussion

In this chapter, we mainly focused on the quality of recovered baseline model, for the time-lapse
strategies. However, the quality of baseline data-fitting would be important as well. How well
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Figure 2.28: Results of the target-oriented time-lapse inversion starting from two different base-
line models: (a) starting from the baseline, obtained by using fixed weighting and the smooth
prior model (Figure 2.21e); (b) starting from the baseline, obtained by dynamic approach
(Figure 2.26a.)

the baseline data are explained? In synthetic case, when the true model is known, the good
quality of model can ensure the good quality of fitting data. In reality, the good quality of
the data fitting cannot totally ensure the accuracy of obtained model (due to non-uniqueness
issue). However, it can tell that the obtained model is located in the interested valley of misfit
function. Suppose that the baseline data are fitted very well, but with a wrong baseline model
(although this assumption would be rare if the data contain several arrivals and complexity).
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Is it possible to recover the time-lapse variation on this wrong baseline model? It appears
that the differential strategy, since it inverts the difference data, could find the time-lapse
variation, but probably not at appropriate depth. The difference data should be propagated
inside the baseline model (which is non-kinematic and wrong here), leading to misposition
time-lapse perturbation. The differential strategy cannot change the background velocity (i.e.
the kinematic of velocity model used for starting differential inversion) and it cannot update
the parts of model which are invariant between baseline and monitor model.

The sequential strategy, since it uses directly the monitor dataset which contains time-
lapse data and repeatable baseline data, could possibly change the repeatable parts of model
between baseline and monitor model. By using monitor dataset, because of time-lapse data, the
monitor data space will change with respect to the baseline data space. Therefore, there would
be a possibility to move into another local minimum and repeatable baseline data are better
explained by other model parameter values. Hence, the repeatable parts of velocity (between
two models) can be updated as well in good or wrong directions. In this case, by simple
subtracting between two obtained models, baseline and monitor, all these variations appearing
could be seen as incorrect time-lapse variations, which would be difficult to distinguish them
from real 4D changes.

The residuals left in the baseline reconstruction step (dobsb
− dcalcrec−b

) exist in the misfit
function of the sequential difference strategy. If these baseline residuals are still left unchanged
during monitor inversion, there must be no problem for identifying the time-lapse variation,
because the model parameters related to these residuals stay invariant for both recovered models
(baseline and monitor). However, if these residuals are recovered during monitor inversion,
the final time-lapse model will be affected by spurious variations. These spurious time-lapse
variations come from the fact that we make a simple subtraction (point by point) between
two depth images (baseline and monitor) to get the time-lapse model. A question can be
raised up, is there any other way to extract the real time-lapse variation from two images? For
example, by computing the coherency between two images, one can extract the real time-lapse
variation. Similar as the data space in FWI, where several misfit functions between observed
and calculated data have been introduced such as difference-based or correlation-based misfit
(van Leeuwen and Mulder, 2008, 2010) to better extract the information, we may need a better
difference method to extract time-lapse vaiation from two obtained images. This would be
considered as a perspective for depth domain time-lapse imaging.

In target-oriented mode, by applying the target-oriented prior model weighting, the misfit
function is changed. The standard misfit function contains several local minima where it is more
possible to get trapped in. By constraining inversion to the target areas, the misfit function is
reshaped and it seems to become more convex. Therefore, the paths of mimimizing both misfit
functions, in conventional and target-oriented modes, are not the same at all which leads to get
different time-lapse results even inside the target areas. In other words, we can mention that
by adding the prior model information to the inversion, the model parameter space is reduced.
Hence, the time-lapse inversion becomes more well-posed.

2.5 Conclusions

In this chapter, we have studied the robustness of three strategies for time-lapse imaging with
regularized FWI. Using the Marmousi synthetic case, it has been shown that the parallel
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difference strategy is highly sensitive to the differential independent artifacts in the images.
The sequential difference strategy can be more attractive when the baseline model is accurately
recovered, since this method attempts to recover the parts of the model which have not been
fully reconstructed before. The differential strategy is more robust than the sequential one,
since the differential inversion only focuses on the differential (time-lapse) data.

In synthetic steam injection model, we have shown the major impact of the appropriate
prior model on the inversion, in order to reduce the sensitivity of baseline inversion to the
inaccurate smooth initial model. Consequently, this reconstructed robust baseline model leads
to recover the time-lapse variation in more accurate and more robust way.

We also propose a target-oriented time-lapse imaging with regularized FWI including prior
model and prior weighting model. In the application to the Marmousi and the Dai datasets, it
has been shown that the target-oriented inversion prevents the apparition of artifacts outside
of the target areas and leads to retrieve a more precise time-lapse model for quantitative and
qualitative interpretations.

When the quality of data is acceptable in terms of signal-to-noise ratio, the differential
strategy can be more interesting than the sequential one, since it can focus on the target areas.
In the case of very strongly noisy data, the double-difference strategy is more sensitive to the
non-repeatable noise at the subtraction step. The high noise level can mask the weak time-
lapse signals. In this case, probably using the target-oriented sequential difference could be an
alternative strategy.

In the next chapter, we study the time-lapse FWI in frequency domain. Which sampling
frequency can be efficient to recover baseline accurately, and consequently efficient for recon-
structing small time-lapse perturbations? What would be the sensitivity of different time-lapse
strategies to the different sampling frequencies for inversion? We investigate whether limited
number of inverted frequencies is sufficient for the time-lapse inversion or not. We are interested
to perform time-lapse inversion in frequency domain, especially in terms of sparce sampling and
data compression which could be crucial to reduce computational cost for 3D inversion as a
perspective.
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Chapter 3

Time-lapse FWI and Frequency
Sampling Strategy
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This chapter contains one article which is in preparation and will be submitted to Geophysi-
cal Prospecting. In earlier chapters, the baseline reconstruction and several time-lapse strategies
have been discussed. The inversion was performed in the time domain. In this paper, we study
the time-lapse inversion in frequency domain. Moving to frequency domain, it can keep the
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data complexity low and can also provide sparce sampling of data for FWI. In other words, data
in frequency domain are compressed as compared to time domain data. Therefore, frequency
domain inversion could be crucial for 3D inversion. However, number of selected frequencies
for inversion is important, and there is a trade-off between frequency-domain inversion and
time-domain inversion, based on their computational expenses. In time-lapse applications, the
accuracy of recovered time-lapse changes by these two different domain inversions would also
be important.

Several studies will be investigated in order to find which domain, time or frequency, would
be more efficient for a time-lapse application. We propose to compare the results of an inversion
approach in frequency domain inverting all the frequencies simultaneously (similar to the time
domain inversion) and several decimations on the selected frequencies on the Marmousi syn-
thetic data. Which sampling frequency can be suitable to recover baseline accurately, and con-
sequently efficient for reconstructing small time-lapse perturbations? What are the differences
in resolution between time-lapse models derived from different sampling frequency strategies?
In addition, the sensitivity of time-lapse strategies to the multi-group multi-frequency inversion
will be studied in case of noise-free and noisy data.

Time-lapse full waveform inversion in frequency domain: which frequency
decimation?

Amir Asnaashari, Romain Brossier, Stéphane Garambois, François Audebert, and Jean
Virieux

2013, Geophysical Prospecting, in preparation.

3.1 Introduction

Monitoring is an important issue for oil and gas production and CO2 sequestrations to track the
time-lapse variations in target areas. Full waveform inversion (FWI) is an attractive technique
for velocity model building that reconstructs high resolution velocity models of the subsurface
through the extraction of the full information content of seismic data (Tarantola, 1984b; Virieux
and Operto, 2009). Since the FWI approach delivers high resolution quantitative images of
macro-scale physical parameters, it could be a good candidate for monitoring applications to
recover the parameter variation through a time evolution.

The seismic waveform inversion has been used for the reconstruction of the model param-
eters during last decade. This inversion formulation can be done either in time or frequency
domain. In 1980s, the time-domain formulation has been initiated by Lailly (1983b); Taran-
tola (1984a) and Mora (1987). Later, Pratt and Worthington (1990); Pratt (1990b) and Pratt
(1999) have proposed the same idea of inversion problems in the frequency domain. Always,
there is a question about which domain is more robust and efficient for inversion. Time-domain
and frequency-domain methods are analytically equivalent when all the frequency components
are inverted simultaneously (Pratt et al., 1998).

The advantages of time-domain modeling and inversion are its less demanding for computer
memories for the forward modeling. The interesting point of this method is its well-posedness
in terms of frequency component, since the gradient is calculated in time domain, which means
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that all frequency contents are used simultaneously. However, by taking into account all fre-
quency contents, the complexity of data incearses. Freudenreich and Singh (2000) have shown
that in a simple example, the frequency-domain approach works fine for wide-angle data but
fails in the case of limited offset range, while the time-domain approach appears more robust.

Most of the advantages of frequency domain are related to the forward modeling and also
sparce sampling for FWI in 3D. One of the main reasons to move to the frequency domain
to solve the Hemholtz equation is that, the matrix of discrete operator of wave propagation
can be factorized only once for all the sources. In case of a large number of sources, the time-
domain strategy is less interesting because of the increased computation time. Therefore if we
have a significant number of sources, the frequency domain is the method to choose (Marfurt,
1984), since the LU decomposition is performed only once per frequency (Amestoy et al., 2003;
Press et al., 2007; MUMPS-team, 2009). However, in frequency domain, it is important to
correctly select the number of frequencies to be inverted. It has been shown that the large
aperture seismic surveys could be inverted using only a limited number of frequencies (Pratt,
1990a; Sirgue and Pratt, 2004), thus asking for a lesser number of forward modeling solutions.
However, the LU decomposition should be performed for each frequency and in the case of
multifrequency inversion, including a large number of frequencies, the computational cost is
expensive. In case of choosing a smaller number of frequencies, the inverse problem remains
ill-posed and there is a risk to be trapped in local minima. Consequently, the main question
to address, with such an approach, regards the optimal number of frequencies for an efficient
FWI. Perhaps, a limited number of frequencies could be sufficient for the reconstruction of
model parameters for an exploration project, but is it the case for monitoring applications
where small variations and changes should be detected?

The process of time-lapse FWI could be performed in two steps: first the baseline recon-
struction and second the monitor reconstruction. In the second step of monitoring, several
methods can be used for the monitor reconstruction. The differential method (double differ-
ence) is one of the proposed approaches for such applications (Watanabe et al., 2004; Denli
and Huang, 2009; Asnaashari et al., 2012). This procedure is focused on inverting the dif-
ferential dataset from the reconstructed baseline model obtained at the first step. A second
approach, called the parallel difference method, independently inverts the two datasets (baseline
and monitor) starting from the same initial model. The time-lapse changes will be assessed
by subtracting the final derived monitor model from that of the baseline (Plessix et al., 2010).
A third approach, called the sequential difference method, uses the final baseline model as a
starting model for inverting the monitor dataset (Asnaashari et al., 2012).

Which sampling frequency can be optimal for recovering the baseline accurately, and conse-
quently efficient for reconstructing small time-lapse perturbations? What would be the sensitiv-
ity of different time-lapse strategies to the different sampling frequencies for inversion? What
are the differences in resolution between models derived from different sampling frequency
strategies?

In this paper, we propose to compare on the Marmousi synthetic dataset the results of an
inversion approach in frequency domain inverting all the frequencies simultaneously, with the
results of inversion after several decimations on the selected frequencies, for baseline recon-
struction and time-lapse recovering. In addition, the sensitivity of time-lapse strategies to the
multi-group multi-frequency inversion will be studied in case of noise-free and noisy data.
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3.2 Formulation in frequency domain

Full waveform inversion is an iterative approach aiming to recover model parameters based on
the local optimization of residuals between the observed and the calculated wavefields at receiver
positions. The forward and inverse problem can be written either in time or in frequency
domain.

In this section, we briefly introduce the waveform inversion in the frequency domain using
multifrequency approaches (Pratt and Worthington, 1990; Liao and McMechan, 1996). Before
doing inversion, we need to compute precisely the calculated data which is produced by the
forward modeling engine.

3.2.1 Forward modeling

Frequency-domain forward modeling is of special interest for multi-source experiments, because
of its computational efficiency if there are many sources (Pratt and Worthington, 1990; Stekl
and Pratt, 1998). Several techniques of discretization of the Wave Equation have been studied,
such as finite-differences (FD) or finite-elements (FE). Among them, one of the possible methods
is the finite element Discontinuous Galerkin (DG) method (Käser and Dumbser, 2006; Dumbser
and Käser, 2006; Brossier et al., 2008). This DG method allows the use of triangular/tetrahedral
meshes, which is suitable for the handling of strong physical contrasts in the medium, including
liquid/solid contact. However this method demands higher computational costs compared to
the finite-difference and is more difficult to be implemented. Therefore in this study, we use
the finite-difference method to solve the acoustic wave equation.

A classical five-point stencil for 2D acoustic wave equation requires at least 10 gridpoints per
shortest wavelength (Pratt and Worthington, 1990). Jo et al. (1996) have proposed a mixed-
grid stencil method where the required number of gridpoints per shortest wavelength reduces
to four points for accurate modeling. This approach consists of a linear combination of two
discretizations of the second derivative operator, the discretizations on the classical Cartesian
coordinate system and the 45̊ rotated system. This mixed-grid stencil is one of the strategies
proposed to increase the accuracy of the numerical operators. In fact, we can increase the
accuracy by incorporating gridpoints in the FD stencil along several directions (Jo et al., 1996;
Stekl and Pratt, 1998; Shin and Sohn, 1998). An alternative strategy to increase the accuracy
of FD operators is to go to higher order operators (Hustedt et al., 2004). The fourth-order
staggered-grid method with 13-point stencil has been suggested by Hustedt et al. (2004).

It has been shown that the accuracy of the fourth-order staggered-grid stencil is slightly
better than the mixed-grid stencil when averaging of the mass acceleration term is applied
to the staggered-grid stencil. However, the mixed-grid stencil using 9-point stencil appears
to be more efficient than the 13-point staggered-grid stencil in terms of CPU and memory
performance for matrix factorization (Hustedt et al., 2004). In our study, we use the mixed-
grid stencil to solve the acoustic wave equation in frequency domain. In the following, I explain
briefly this method.

3.2.1.1 Finite-difference frequency domain (FDFD)

The acoustic wave equation is first expressed as a first-order hyperbolic system (Virieux, 1984)
including the pressure and the particle velocity wavefields. The system of hyperbolic equation
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in frequency domain is given by:

−iωξx(x)
K(x, z)

Px(x, z, ω) =
∂Q(x, z, ω)

∂x
+ s(x, z, ω)

−iωξz(z)
K(x, z)

Pz(x, z, ω) =
∂R(x, z, ω)

∂z

−iωQ(x, z, ω) =
b(x, z)
ξx(x)

∂P (x, z, ω)
∂x

−iωR(x, z, ω) =
b(x, z)
ξz(z)

∂P (x, z, ω)
∂z

, (3.1)

where Q(x, z, ω) and R(x, z, ω) are particle velocity wavefields on Cartesian grid. The unphysi-
cal pressure components Px(x, z, ω) and Pz(x, z, ω) are used to separate the horizontal and ver-
tical derivatives and also to take into account for the PML absorbing condition (Operto et al.,
2002). The real pressure wavefield can be obtained by P (x, z, ω) = Px(x, z, ω) + Pz(x, z, ω).
b(x, z), K(x, z) and s(x, z, ω) represent the inverse of density (buoyancy), bulk modulus and
the pressure source term, respectively. The coefficients ξx(x) = 1 + iγx(x)/ω and ξz(z) =
1 + iγz(z)/ω contains the PML damping values (γ) which are equal to zero outside the PML
layers.

The system 3.1 is discretized using second-order centered finite difference. After discretiza-
tion and elimination of particle velocities from the coupled first-order equations, we can end up
with a parsimonious second-order staggered-grid formulation (Luo and Schuster, 1990; Hustedt
et al., 2004). The mixed-grid method combines two second-order staggered-grid stencils on the
classical Cartesian coordinate system and the 45̊ rotated system (Jo et al., 1996). The two
second-order derivations provide a tool to discretize the frequency-domain second-order acous-
tic wave equation. At the end, five C coefficients corresponding to the staggered-grid five-point
stencil on a classical grid are exteracted (Figure 3.1). As another alternative, the spatial deriva-
tives of the system 3.1 can be discretized along the rotated axes (x′, z′). It leads to have R
coefficients (see Figure 3.1). The mixed-grid stencil method combines two mentioned staggered-
grid stencils using the averaging coefficient to take into account the coupling between the grid
points on the classical Cartesian and the rotated grids.

3.2.1.2 Direct solver for wave equation

At the end, the discrete system of wave equation can be expressed in a matricial form:

A(m(x, z), ω)u(x, z, ω) = s(x, z, ω), (3.2)

where A(m(x, z), ω) is the impedance matrix and m(x, z) denotes the model parameters. ω
is the angular frequency. The solution of this equation is u, the pressure wavefield vector, and
s is the vector of source term. For the mixed-grid stencil, the impedance matrix A contains
(nx × nz)2 elements but only (9 × nx × nz) are non-zero. The system of linear equation in
matricial form is solved by decomposition of the matrix A into two upper-diagonal (U) and
lower-diagonal (L) matrices (Press et al., 2007). The method is known as LU decomposition
(Amestoy et al., 2003; MUMPS-team, 2009). The equation Au=s is transformed into LUu=s,
which is solved in two steps. Firstly Ly=s and then Uu=y. The matrix A is only dependent
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Figure 3.1: Schematic view of two staggered-grid stencils, classical and rotated grids (after
Hustedt et al. (2004)).

on the acoustic model parameters and on frequency, and is source-independent. Therefore the
factorization is performed only once (for each frequency) with a multi-frontal method and the
wavefields generated for multiple sources are computed effectively by forward and backward
substitutions (Duff and Reid, 1983; Amestoy et al., 2000). This is the main advantage of the
factorization of the impedance matrix for a large number of sources (Marfurt, 1984).

3.2.2 Inverse problem

The inverse problem relies on an iterative local optimization problem that is generally in-
troduced as a linearized least-squares problem. The optimization attempts to minimize the
residuals between the observed and the modeled wavefields at receivers (Tarantola, 1987). We
can define the residual vector ∆d, considering one seismic source and one frequency,

∆d(ω) = dobs(ω)− dkcalc(ω), (3.3)

where the data misfit error ∆d(ω) denotes the difference between the observed data dobs and
the modeled data dcalc computed in the model mk at the iteration k of the inversion. The
synthetic data dcalc is obtained by applying a sampling operator S to the incident wavefield
u resulting from the forward problem resolution Au = s. The data vector contains complex
pressure wavefield in frequency domain recorded at receiver positions.
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The inversion is based on the `2 norm of the data residuals in a multifrequency approach.
The objective function can be written as

C(mk) =
1
2

∑
nω

∑
ns

∆d†(ω)Wd∆d(ω), (3.4)

where superscript † indicates the adjoint operator (transposed conjugate). Wd is the weight-
ing matrix in data space and contains prior information on the data (Tarantola, 2005). The
summations in equation 3.4 are performed over the ns sources and over nω simultaneously in-
verted frequencies. In this case, the unknown model parameters m describe the P-wave velocity
model. In this approach, there is a summation over all the selected frequencies for inversion,
in other words all frequencies are inverted at the same time (simultaneously).

The model penalty terms, the Tikhonov regularization and the prior model terms, can
be added to this data objective function in the same way as presented in Asnaashari et al.
(2013a). Here, only the effect of frequency decimation on the inversion will be studied. Since
this frequency decimation effect might be affected by the model regularization terms, these
additional model penalties are not applied in this study.

Minimizing the misfit function classically leads to the normal equation system which can
be written as,

Hk−1
m ∆mk = −Gk−1

m , (3.5)

where the gradient and the Hessian of the misfit function at iteration k−1 are denoted Gk−1
m and

Hk−1
m respectively. The gradient of the objective function with respect to the model parameters

can be written as

Gm =
∂C(m)
∂m

= −1
2

∑
nω

∑
ns

[(
∂dcalc(m)

∂m

)†
Wd(dobs − dcalc(m)) + (dobs − dcalc(m))†Wd

(
∂dcal(m)
∂m

)]

= −
∑
nω

∑
ns

<
[(

∂dcalc(m)
∂m

)†
Wd(dobs − dcal(m))

]
= −

∑
nω

∑
ns

<
[
J†Wd∆d

]
. (3.6)

< denotes the real part of a complex number. The sensitivity matrix J = ∂d(m)/∂m is
composed by the Fréchet derivatives of the synthetic data with respect to the model parameters.
In our implementation, we never compute explicitly the matrix J. The gradient with respect
to the model parameters m = {mi}i=1,N , where N denotes the number of unknowns, can
be efficiently derived from the adjoint-state formulation using the back-propagation technique
(Plessix, 2006). This formulation gives for the ith component of the gradient G:

Gmi = −
∑
nω

∑
ns

<
{

ut
( ∂A
∂mi

)t
λ∗
}
, (3.7)

where t and ∗ denote the transpose and conjugate operators, respectively. The gradient can
be computed as a product between the incident wavefield u from the source, and the adjoint
back-propagated wavefield λ∗ which is computed as Atλ∗ = StWd∆d∗, using residuals at
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Algorithm 3.1 Simultaneous all inverted frequencies algorithm for FWI
1: while (NOT convergence AND k < itermax) do
2: for ωi = 1 to nω do
3: Compute incident wavefields u from sources
4: Compute residual vectors ∆d and objective function Ck−1

5: Compute adjoint back-propagated wavefields (A−1)tStWd∆d∗ from receivers
6: Build gradient vector Gk−1 and make summation over all frequencies
7: end for
8: Compute perturbation vector ∆mk and optimal step length αkwith L-BFGS-B optimiza-

tion
9: Update model mk = mk−1 + αk∆mk

10: end while

receiver positions as a composite source. Therefore, for computing the gradient, only two
forward problems per shot are required. The radiation pattern of the scattering of the model
parameter mi is represented by the sparse matrix ∂A/∂mi.

The gradient of the objective function is then used in an optimization algorithm to update
the model vector with the perturbation vector ∆mk through the expression

mk = mk−1 + αk∆mk, (3.8)

where the step length at iteration k is denoted by αk.

The Hessian matrix is based on the second derivative of the misfit function and is not
computed in our implementation. Instead, we minimize our problem with a bounded quasi-
Newton method using the L-BFGS-B routine (Byrd et al., 1995). This routine allows to take
into account an approximate non-diagonal inverse Hessian from previous gradient and model
vectors, and performs a line-search satisfying Wolfe’s conditions. This bounded limited-memory
quasi-Newton method is an efficient alternative to preconditioned steepest-descent or conjugate-
gradient methods based only on gradients and/or approximate diagonal Hessian approaches
(Brossier et al., 2009). The summary of simultaneous frequency inversion is shown in Algorithm
3.1.

Time-domain approach behaves similar as the frequency-domain approach when all fre-
quencies are taken for the inversion.

3.2.3 Time-lapse FWI strategies

Once the baseline model is reconstructed, several strategies could be used for time-lapse pro-
cedure. In this section, we briefly introduce three different workflows for time-lapse imaging
with FWI (details can be found in Asnaashari et al. (2013b)).

3.2.3.1 Parallel difference FWI

The parallel difference method considers independent inversion of the baseline and monitor
datasets, using a similar starting model. After inversion, the time-lapse response can be ob-
tained by making a subtraction between the recovered monitor and the reconstructed baseline
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models. The main advantage of this approach is its applicability to acquisition geometries that
do not match between the two experiments. As the two inversions are performed independently,
a drawback is the potential interpretation of inversion artifacts as a real time-lapse response.

3.2.3.2 Sequential difference FWI

As the time-lapse response in data is often weak with regard to the full data complexity, the
sequential difference method uses the recovered baseline model as a starting model for the
monitor data inversion. This means that the baseline is reconstructed first, and subsequently
the baseline model is used to invert the monitor dataset. As the time-lapse response is weak,
the baseline model should be a good candidate for a starting model and should prevent a large
number of iterations in the second step. The main drawback is that this strategy cannot focus
only on the differential signals caused by the time-lapse variation.

3.2.3.3 Differential FWI

In the differential method, we attempt to minimize the residual of the differential data between
baseline and monitor datasets (Watanabe et al., 2004; Denli and Huang, 2009; Asnaashari et al.,
2013b), giving the expression

∆d = (dobsm − dobsb
)− (dcalcm − dcalcb), (3.9)

where dobsm and dobsb
are the monitor and baseline observed data at each frequency respectively,

and dcalcm and dcalcb are the computed data for these experiments.

For the differential analysis, we first need the construction of a composite dataset defined
as

dcomposite = dobsm − dobsb
+ dcalcrec−b

, (3.10)

which is composed of (a) the time-lapse differential observed data (dobsm −dobsb
) which should

only represent the time-lapse changes of the two datasets and (b) the calculated data dcalcrec−b

computed using forward modeling in the reconstructed baseline model. This composite dataset
dcomposite can be used as a new observed dataset dobs in equation 3.3, which is now used to
minimize the differential residual 3.9 with a standard FWI algorithm. Finally, the time-lapse
model changes δmtime−lapse = mcomposite −mrec−b can be computed.

3.3 Sensitivity of reconstructed baseline with respect to fre-
quency decimation

In this section, we perform the sensitivity analysis of the recovered baseline model with respect
to the sampling frequency used for inversion. This study is done on Marmousi acoustic synthetic
data, noise-free and noisy data. The inversion is performed by taking all the selected frequencies
at the same time. In other words, the misfit function and its gradient are computed with
summation on all the selected frequencies at each iteration.

The true baseline model is identical to that chosen in Asnaashari et al. (2013b) (Figure 2.4a).
The monitor velocity model is created from the baseline model through a relative (40 m/s)
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variation of velocity inside two gas reservoirs (Figure 2.4b). A surface acquisition geometry
with a free-surface condition is used to generate the synthetic data, with seventy-seven isotropic
explosive sources, located along a horizontal line at a depth of 16 m, equally spaced by a distance
of 50 m. A horizontal receiver line at a depth of 15 m with a sensor interval of 10 m is used
for recording the pressure data for each shot. A Ricker wavelet source with a central frequency
of 10 Hz is used, for baseline and monitor surveys. The time seismograms are generated
using acoustic finite-difference modeling in the frequency domain with a mixed staggered-grid
9-point stencils (Jo et al., 1996; Hustedt et al., 2004). To generate the time seismograms, the
forward modeling in frequency domain is performed between 1 to 30 Hz (frequency bandwidth
of source wavelet) with a sampling rate of df = 0.2 Hz, and then the Inverse Fourier Transform
is performed to come back to time domain. This sampling frequency is the Nyquist frequency,
in other words the maximum recording time is 5 s. As the inversion will be done in frequency
domain, the complex frequency data for each simulated frequency were saved at all receiver
positions, to be used directly for inversion. The time domain seismograms are only needed
to generate synthetic noisy data later. Perfectly-matched layer (PML) absorbing boundary
conditions (Berenger, 1994) are used for non-reflecting boundaries except at the top where a
free-surface condition is implemented.

3.3.1 Noise-free data

In the first investigation, a noise-free dataset is investigated. Six inversion configurations are
done with different sampling frequencies. The inversion starts from 2 Hz until 30 Hz for all
cases, since below 2 Hz the energy of source signal is very low. In the first case, all frequencies
between 2 and 30 Hz with df = 0.2 Hz are selected to be inverted simultaneously, this strategy
being denoted B0. This case could be seen as a time-domain inversion using all the frequency
components of the signals. In the second case, a decimation on the selected frequencies is
performed and only one frequency out of five is selected, which means df = 1 Hz (strategy
denoted B1). For the third case, one out of ten frequencies is selected and so on. Table
3.1 shows the sampling frequency and the number of frequencies used for inversion of each
configuration.

B0 B1 B2 B3 B4 B5

sampling frequency (df) Hz 0.2 1.0 2.0 3.0 4.0 5.0
Number of frequencies 138 28 14 10 7 6

Table 3.1: Sampling frequency and number of frequencies are selected for inversion at each
configuration.

For all the computations, a smoothed version of the true baseline model is used as the initial
model (Figure 3.2). The smoothness factor used for smoothing the true model is smaller than
that used for building the initial model in Asnaashari et al. (2013b), therefore this initial model
is kinematically accurate enough for inverting all the frequencies at the same time. Therefore,
there is no need to use any regularizations and/or the prior models. This strategy has been
chosen, in order to study only the effect of frequency decimation of the data on the inversion
without studying the impacts from the model part of objective function. Otherwise, making
clear conclusion would be difficult and be affected by several factors. The stopping criterion
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of L-BFGS-B optimization is selected to keep constant for all configurations. The stopping
criterion is based on the flatness of the objective function for two consecutive iterations.
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Figure 3.2: The Vp initial model used for inversion. This model is a smoothed version of true
baseline model.

Figure 3.3 shows the results of baseline reconstruction for B0 to B5 configurations. When
all frequencies are selected to be inverted (df = 0.2 Hz), almost the perfect model can be
obtained with high resolution. Near the border and the bottom of model, the model presents
less accuracy due to lack of illumination in those parts. Increasing the sampling frequency
results in the degradation and a loss of resolution and accuracy of the derived model. In
addition, we can see many inversion artifacts. Due to large sampling frequency (Figure 3.3e and
3.3f), most of the wavenumbers, especially the low and intermediate wavenumbers between two
selected frequencies are not recovered, therefore the optimization procedure goes to local minina
and several ringing artifacts (high frequency artifacts) appear on the model. By increasing
the sampling frequency for inversion and reducing the number of inverted frequencies, the
ill-posedness issue of inverse problem increases, and therefore there is higher risk of getting
trapped in local minima. The aspect concerning to a hierarchy in the data, introducing data
gradually from low to high frequency into the inversion scheme, will be discussed in section 3.5.

Table 3.2 shows the average computational time (Elapsed-time) per core for performing
one iteration in several discussed configurations. For all of the configurations, we perfom the
inversion with parallel calculation on 8 cores. It can be seen that by increasing the number of
inverted frequencies, the computational time will increase almost linearly.

B0 B1 B2 B3 B4 B5

Number of frequencies 138 28 14 10 7 6
Average Elapsed time per core and per iteration (s) 332.5 68.7 32.3 24.1 15.5 14.1

Table 3.2: Average Elapsed time per core for performing one iteration for each configuration.

To have a quantitative interpretation of the results, the root mean square (RMS) of velocity
error is computed based on equation 3.11. This RMS value (η) is used as a model quality
factor.
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Figure 3.3: Recovered baseline models obtained by FWI of noise-free data in frequency domain
and by inverting all selected frequencies at the same time: (a) B0 (df = 0.2 Hz), (b) B1
(df = 1 Hz), (c) B2 (df = 2 Hz), (d) B3 (df = 3 Hz), (e) B4 (df = 4 Hz), (f) B5 (df = 5 Hz).

η =

√√√√ 1
N

N∑
i=1

(
mirec−b

−mitrue−b

)2
, (3.11)

where N , mrec−b and mtrue−b represent the number of unknown model parameter, the recovered
and the true baseline model values respectively. Here, the model parameters only contain the
P-wave velocity parameters.

The RMS of Vp error versus sampling frequency is plotted in Figure 3.4 for each obtained
baseline models . By increasing the sampling frequency and reducing the number of inverted
frequencies, the RMS of error increases which means the model quality decreases (as we can
observe from Figure 3.3). From Figures 3.3 and 3.4, one can decide that the first three results
can be acceptable and they are close to the true model. It means, for the noise-free case,
even with quasi-large sampling frequency, we can get acceptable results, i.e. we can recognize
appropriately the different geological layers. This conclusion is suitable for any exploration
project, but may be not valid for time-lapse application. To answer this question, a sensitivity
analysis of time-lapse FWI with respect to different obtained baseline models and with respect
to frequency decimation will be performed in section 3.4.
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Figure 3.4: RMS of Vp baseline error value for each sampling frequency used for inversion of
noise-free data.

3.3.2 Noisy data

Is inversion still robust to the coarse sampling frequency in case of noisy data? In this sec-
tion, the sensitivity of the recovered baseline model with respect to the sampling frequency is
performed in presence of random noise.

An artificial Gaussian noise in the range of 2−30 Hz (the bandwidth of the source wavelet)
has been added to the true noise-free data in time domain (using the ‘suaddnoise’ procedure of
Seismic Unix (Cohen and Stockwell, 2008)). The signal-to-noise ratio is around 8 dB. Then the
frequency components of all the traces are extracted by Fourier transform, and these complex
datasets in frequency domain are used as observed data for inversion.

Different inversion configurations with different sampling frequencies have been investigated,
similar to the noise-free case. We stop the investigation at df = 3 Hz, because beyond this
point the baseline model is very poorly recovered with a huge number of artifacts. The results
of baseline inversion are shown in Figure 3.5. The degradation of resolution and accuracy
when increasing the sampling frequency is fairly faster in this noisy environment than in the
noise-free case (compare Figures 3.5 and 3.3). In noisy environment, the ill-posedness of the
inverse problem increases. The higher values of RMS of Vp error in noisy case confirm this
statement (Figures 3.6 and 3.4). In this case, by reducing the number of frequencies to be
inverted simultaneously (or increasing sampling frequency), the gradient of objective function
is more noisy. In fact, by making summation over the gradients computed for each frequency
component, it is possible to reduce the impacts of random noise on inversion procedure (due
to increasing signal-to-noise ratio). Therefore, if the number of frequencies increases (using
smaller sampling frequency), there are lesser random noise artifacts on the recovered model.
We can clearly see this issue in Figures 3.5a to 3.5d. On the other hand, using higher number
of frequencies, the computational time and memory resources will rise. Therefore, finding the
trade-off between acceptable accuracy and computational expenses is necessary.

In the next section, we will see whether such accuracy of recovered baseline models is
sufficient to find small time-lapse variation or not.
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Figure 3.5: Recovered baseline models obtained by FWI of noisy data in frequency domain
and by inverting all selected frequencies at the same time: (a) BN0 (df = 0.2 Hz), (b) BN1
(df = 1 Hz), (c) BN2 (df = 2 Hz), (d) BN3 (df = 3 Hz).
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Figure 3.6: RMS of Vp baseline error value for each sampling frequency used for inversion of
noisy data.

3.4 Sensitivity of time-lapse models with respect to frequency
decimation

Which baseline sampling frequency can deliver more robust and precise enough baseline model
for time-lapse inversion? As proposed in this section, a sensitivity analysis of obtained time-
lapse model with respect to: 1) baseline frequency decimation used to get the baseline model,
and 2) time-lapse frequency decimation on the monitor or composite datasets is performed.
It has been shown that even df = 2 Hz can give an acceptable baseline model (at least in
noise-free case), but is this precision of baseline model sufficient to recover small time-lapse
variations? The second question is related to which sampling frequency is required in second
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step of time-lapse imaging (monitor reconstruction) to get correctly the desired variations.
Do we need the same sampling frequency for time-lapse imaging as the one used for baseline
reconstruction? Does the selection of frequencies depend on which time-lapse strategy is used?
These types of questions will be answered in this section, for noise-free and noisy environments.

3.4.1 Noise-free data

In (Asnaashari et al., 2013b), it has been shown that the parallel difference strategy is very
sensitive to the inversion artifacts coming from two independent inversions, which makes it less
interesting for time-lapse imaging. However, we should mention for the applications where there
is a large time shifts between arrival events in seismograms of baseline and monitor datasets, it
is necessary to use the parallel difference strategy (starting both inversion from a same smooth
initial model). The kinematics between the two datasets are different, which means there have
different background velocity models.

For sensitivity analyses of synthetic Marmousi dataset, we mainly focus on the sequential
difference and differential strategies. Here, only for noise-free dataset, some of parallel difference
results are shown (Figure 3.7). For each case shown in Figure 3.7, frequency components of
both baseline and monitor datasets are extracted with same sampling frequency and the two
inversions start from the same smooth initial model (Figure 3.2). It appears that when all
the frequencies are inverted (df = 0.2 Hz), the obtained time-lapse model is robust and the
location of the two reservoirs is well resolved, although some artifacts are visible due to the two
independent inversions. By decreasing the number of frequencies, the time-lapse model starts
to degrade, especially in the zones presenting a lesser coverage of illumination. In this case, the
convergence path of optimization procedure for the two datasets is totally different and this
leads to have different recovered velocity values (for baseline and monitor models). Therefore,
it is really difficult to even detect the location of true time-lapse variations.
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Figure 3.7: Time-lapse variation models obtained from the parallel difference strategy applied
to noise-free dataset, using similar sampling frequency for both baseline and monitor recon-
struction: (a) df = 0.2 Hz, (b) df = 1 Hz, (c) df = 2 Hz, (d) df = 3 Hz.
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For the sequential difference and differential strategies, the recovered baseline model is used
as an initial model to invert respectively monitor and composite datasets. With six different
sampling frequencies, six different baseline models have been obtained. The models with RMS
of Vp error less than 200 m/s are selected for time-lapse inversion (first five models in Figure
3.3). For each baseline model, six tests are done using six different sampling frequencies (same
as Table 3.1), leading to thirty configurations for each time-lapse strategy, sequential difference
and differential.

Only the most interesting results are displayed here. Figures 3.8 and 3.9 show the re-
sults of time-lapse variation obtained by the sequential difference and differential strategies,
respectively, for the baseline model B0 (Figure 3.3a) obtained by inverting all the frequencies
(df = 0.2 Hz). The sequential difference strategy is more sensitive to the time-lapse sampling
frequency than the differential strategy. In the sequential difference strategy, increasing the
sampling frequency results in decreasing the robustness of the obtained time-lapse model. A
coarse time-lapse sampling frequency cannot deliver a robust time-lapse variation model (even
starting from the most accurate baseline model B0). However, in the differential method, the
rate of degradation of the time-lapse model is slower and even with a large time-lapse sampling
frequency of df = 5 Hz (Figure 3.9f), acceptable time-lapse results can be recovered although
the velocity of the smaller reservoir is under-estimated. The reason is that the differential strat-
egy inverts directly the difference data related to the time-lapse variations. In clean (noise-free)
dataset even with a coarse sampling frequency, we are able to roughly sample the difference
data while in the sequential strategy, the sampled difference data are contaminated by data
residuals coming from non-fully fitted baseline events.
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Figure 3.8: Time-lapse variation models obtained from the sequential difference strategy ap-
plied to noise-free dataset, starting from the recovered baseline model B0 (df = 0.2 Hz) and
frequency decimation on monitor dataset: (a) df = 0.2 Hz, (b) df = 1 Hz, (c) df = 2 Hz, (d)
df = 3 Hz, (e) df = 4 Hz, (f) df = 5 Hz.

Figures 3.10 and 3.11 show the results of time-lapse variation obtained by the sequential
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Figure 3.9: Time-lapse variation models obtained from the differential strategy applied to noise-
free dataset, starting from the recovered baseline model B0 (df = 0.2 Hz) and frequency
decimation on composite dataset: (a) df = 0.2 Hz, (b) df = 1 Hz, (c) df = 2 Hz, (d)
df = 3 Hz, (e) df = 4 Hz, (f) df = 5 Hz.

difference and differential strategies, respectively, for the baseline model B1 (df = 1 Hz)
(Figure 3.3b). This baseline model seems accurate enough visually and in terms of velocity
error RMS, but for the sequential difference strategy in time-lapse application it is actually
not satisfactory. Indeed, the sequential difference is very sensitive to the inaccuracy of baseline
model (Asnaashari et al., 2013b). When the time-lapse sampling frequency does not match
with and is smaller than the baseline sampling frequency, it seems the sequential difference
method attempts to recover the frequency components of baseline model which have not been
recovered before. The monitor dataset contains the time-lapse information and the repeatable
information between baseline and monitor. Therefore, when the monitor dataset is used for
inversion with denser frequency samplings, these new frequency components are able to update
the model outside of the reservoir variation. Thus, there is a risk to interpret them as a potential
time-lapse variation.

When the time-lapse sampling frequency is larger than the baseline sampling frequency,
due to the missing frequencies between the baseline and monitor datasets, the monitor dataset
used for time-lapse inversion contains less repeatable information than the baseline inversion.
In other words, the redundant data, which can constrain the sequential difference inversion
around the baseline points, are removed from the observed data. Therefore, due to the lack
of these repeatable data constraints, the optimization procedure in time-lapse step goes to the
incorrect direction of changing the model outside of time-lapse target. As we can see from
Figure 3.10, for sequential difference strategy, only minimal artifacts are visible and a more
robust result is obtained when the same sampling frequency is used for both baseline and
time-lapse reconstructions dftime−lapse = dfbaseline. The differential strategy is less sensitive
to the time-lapse sampling frequency, because only the differential dataset is inverted during
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optimization. However, using a larger number of frequencies of differential data leads to a
better focusing of the energy of the time-lapse signal on the area of changes, especially for the
smaller reservoir.
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Figure 3.10: Time-lapse variation models obtained by the sequential difference strategy applied
to noise-free dataset, starting from the recovered baseline model B1 (df = 1 Hz) and frequency
decimation on monitor dataset: (a) df = 0.2 Hz, (b) df = 1 Hz, (c) df = 2 Hz, (d) df = 3 Hz,
(e) df = 4 Hz, (f) df = 5 Hz.

The time-lapse models obtained from the baseline model B3 (df = 3 Hz) (Figure 3.3d) are
shown in Figures 3.12 and 3.13. All the already discussed problems can be seen in this case as
well. In the sequential difference strategy, even with the same sampling frequency for time-lapse
and baseline reconstruction, the true time-lapse variation is not recovered. The reconstruction
of time-lapse inside the reservoirs is affected by many artifacts due to the inaccuracy of the
baseline model. However, the differential strategy is still robust despite the inaccuracy of the
baseline model. We can clearly observe in Figure 3.13 that the time-lapse energy spreads
everywhere because of the inaccuracy of the baseline model. The time-lapse model contains
ringing effects and discontinuity on time-lapse variation. This effect is reduced when the same
sampling frequency is used for both time-lapse and baseline step (Figure 3.13d). However,
this issue is less evident for the differential strategy than for the sequential one, therefore this
requirement is less important for the differential to be satisfied.

In order to have a better global view and a quantitative interpretation of the time-lapse
results, the RMS of time-lapse Vp error is computed,

ε =

√√√√ 1
N

N∑
i=1

(
δmirec−timelapse

− δmitrue−timelapse

)2
. (3.12)

In this equation, N , δmrec−timelapse and δmtrue−timelapse represent the number of unknown
model parameters, the recovered and the true time-lapse variation model values respectively.
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Figure 3.11: Time-lapse variation models obtained by the differential strategy applied to noise-
free dataset, starting from the recovered baseline model B1 (df = 1 Hz) and frequency deci-
mation on composite dataset: (a) df = 0.2 Hz, (b) df = 1 Hz, (c) df = 2 Hz, (d) df = 3 Hz,
(e) df = 4 Hz, (f) df = 5 Hz.
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Figure 3.12: Time-lapse variation models obtained by the sequential difference strategy applied
to noise-free dataset, starting from the recovered baseline model B3 (df = 3 Hz) and frequency
decimation on monitor dataset: (a) df = 0.2 Hz, (b) df = 1 Hz, (c) df = 2 Hz, (d) df = 3 Hz,
(e) df = 4 Hz, (f) df = 5 Hz.
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Figure 3.13: Time-lapse variation models obtained by the differential strategy applied to noise-
free dataset, starting from the recovered baseline model B3 (df = 3 Hz) and frequency deci-
mation on composite dataset: (a) df = 0.2 Hz, (b) df = 1 Hz, (c) df = 2 Hz, (d) df = 3 Hz,
(e) df = 4 Hz, (f) df = 5 Hz.

The RMS of time-lapse velocity errors for the sequential and differential strategy are plotted
in 2D maps (Figure 3.14). The horizontal and vertical axes of this map represent the time-lapse
and baseline sampling frequencies, respectively.
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Figure 3.14: RMS map of time-lapse Vp error versus time-lapse and baseline sampling frequency
used for inversion of noise-free data: (a) sequential difference strategy, (b) differential strategy.

Generally, the differential strategy is less sensitive to the frequency decimation in baseline
and time-lapse step compared to the sequential one, as shown by very low RMS errors (at least
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for noise-free case). The minimum of RMS error for each baseline model happens when a same
sampling frequency is used for time-lapse step (it means that on the main diagonal line of map,
dftime−lapse = dfbaseline). This issue is more important for the sequential difference because of
larger differences between RMS values on this line and other points of the map. Another piece
of information that we can extract from comparing both maps is that the sequential method
is more sensitive to the inaccuracy of baseline model (or to the baseline frequency decimation)
than the differential strategy. The RMS error increases faster in vertical direction in case of
sequential strategy.

3.4.2 Noisy data

Similar sensitivity tests have been conducted for noisy data. Here, only three baseline models
have been chosen (i.e. BN0, BN1, BN2 in Figure 3.5), because for df > 2 Hz the recovered
baseline model is poorly recovered and has a high RMS error value. Also, only the first three
time-lapse sampling frequency values are selected for time-lapse inversion, leading to nine time-
lapse inversion configurations for each strategy (sequential difference and differential).
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Figure 3.15: Time-lapse variation models obtained by the sequential difference strategy applied
to noisy dataset, starting from the recovered baseline model BN0 (df = 0.2 Hz) and frequency
decimation on monitor dataset: (a) df = 0.2 Hz, (b) df = 1 Hz, (c) df = 2 Hz.

Figures 3.15 and 3.16 show the results of time-lapse variations obtained by the sequential
difference and differential strategies, respectively, for the baseline model BN0 (Figure 3.5a).
In presence of random noise, the complexity of data increases, therefore we need to take into
account more frequencies to reduce the ill-posedness issue. When all the time-lapse frequencies
are used (Figure 3.15a and 3.16a), both strategies converge to almost similar results, although,
the sequential strategy tries to recover a little below the bigger reservoir. Also, due to high level
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Figure 3.16: Time-lapse variation models obtained by the differential strategy applied to noisy
dataset, starting from the recovered baseline model BN0 (df = 0.2 Hz) and frequency deci-
mation on composite dataset: (a) df = 0.2 Hz, (b) df = 1 Hz, (c) df = 2 Hz.
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Figure 3.17: Time-lapse variation models obtained by the sequential difference strategy applied
to noisy dataset, starting from the recovered baseline model BN1 (df = 1 Hz) and frequency
decimation on monitor dataset: (a) df = 0.2 Hz, (b) df = 1 Hz, (c) df = 2 Hz.
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Figure 3.18: Time-lapse variation models obtained by the differential strategy applied to noisy
dataset, starting from the recovered baseline model BN1 (df = 1 Hz) and frequency decima-
tion on composite dataset: (a) df = 0.2 Hz, (b) df = 1 Hz, (c) df = 2 Hz.
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Figure 3.19: Time-lapse variation models obtained by sequential difference strategy applied
to noisy dataset, starting from the recovered baseline model BN2 (df = 2 Hz) and frequency
decimation on monitor dataset: (a) df = 0.2 Hz, (b) df = 1 Hz, (c) df = 2 Hz.
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Figure 3.20: Time-lapse variation models obtained by differential strategy applied to noisy
dataset, starting from the recovered baseline model BN2 (df = 2 Hz) and frequency decima-
tion on composite dataset: (a) df = 0.2 Hz, (b) df = 1 Hz, (c) df = 2 Hz.

of noise, the smaller reservoir is not well detected. By reducing the number of inverted time-
lapse frequencies, both strategies are affected by the presence of noise. In case of df = 1 Hz,
the location of the larger reservoir can still be detected but for df = 2 Hz it is very difficult to
identify the location of the true time-lapse variation. It appears that the differential strategy
is driven by random noise. By reducing the number of simultaneous inverted frequencies, the
signal-to-noise ratio decreases and this affects the computation of the gradient of objective
function; therefore the low energy time-lapse signal has a lesser impact on the model updating
and the optimization is controlled by random noise.

Comparison of the time-lapse results for other baseline models in noisy case shows the
consistency of our conclusions between noisy and noise-free cases, where the noisy case is
more sensitive to the time-lapse frequency decimation, due to the complexity of data. Another
interesting point is that the artifacts in the sequential strategy have a structured shape while in
the differential case they are similar to high frequency artifacts and noisy images. This means
the sequential difference strategy goes to another local minimum and attempts to recover the
baseline structure (either in good recovering direction or wrong direction), but the differential
strategy is driven by high level of the noise in differential dataset.

In case of baseline BN2 (df = 2 Hz) (Figures 3.19 and 3.20), since the baseline model is
not accurate and precise enough and also because of noise, the sequential difference cannot
converge to robust results. However, the differential strategy at least for dftimelapse = 0.2 Hz
can provide the correct time-lapse variation of the larger reservoir.

Time-lapse velocity RMS errors for the sequential and differential strategies are plotted
in 2D maps (Figure 3.21). Generally, for the same inversion configuration, the RMS error
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is higher in presence of noise than in the noise-free case. Similar to the noise-free case, for
the sequential difference strategy, the minimum of RMS error for each baseline model occurs
when the same sampling frequency is also used for time-lapse step (dftime−lapse = dfbaseline). In
noisy environment, we can see that the differential strategy is more sensitive to the time-lapse
frequency decimation than to the baseline sampling frequency. There is a faster and larger
variation of RMS error in horizontal direction than in the vertical one, because reducing an
already limited number of frequencies leads to a decrease of the signal-to-noise ratio of the
differential dataset.
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Figure 3.21: RMS map of time-lapse Vp error versus time-lapse and baseline sampling frequency
used for inversion of noisy data: (a) sequential difference strategy, (b) differential strategy.

After these sensitivity analyses, we can conclude that to get accurate time-lapse variations,
it is necessary to increase the number of inverted frequencies in order to obtain a more pre-
cise baseline model. This issue is more crucial for the sequential difference strategy. On the
other hand, in order to have less time-lapse artifacts in the inversion process, a same sam-
pling frequency for the baseline and time-lapse inversions should be used (related to the data
repeatability issue), neither greater nor smaller. The differential strategy is less sensitive to
the baseline frequency decimation. The rate of model degradation is slower compared to the
sequential difference cases. For noisy data, we need a smaller baseline sampling frequency
to get an accurate baseline model and also a smaller time-lapse sampling frequency for both
time-lapse strategies. Therefore, it is crucial to increase the number of inverted frequencies for
time-lapse applications as compared to the general exploration project. On the other hand,
in simultaneous frequency inversion due to high computational cost for LU decomposition of
impedance matrix and solving the wave-equation for each frequency component, it might be
better to move to time-domain modeling and inversion for time-lapse applications, so as to
solve the wave-equation once for all the frequencies. However, an efficient time-domain inver-
sion algorithm is required.
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3.5 Multi-group multi-frequency strategy

In frequency domain, several hierarchical multi-scale strategies that proceed from low frequen-
cies to higher frequencies have been proposed to reduce the non-linearity of the inverse problem
and the cycle-skipping problem (Pratt and Worthington, 1990; Bunks et al., 1995; Pratt, 1999;
Sirgue and Pratt, 2004; Brossier et al., 2009). In the previous section, we used the approach
of inverting all the selected frequencies simultaneously. There is however a possibility to com-
bine the two approaches, low to high frequencies and simultaneous frequency inversion, by a
multi-group approach where each of this group contains a small number of frequencies (Brossier
et al., 2009; Brossier, 2011). The inversion within each group of frequencies is done by inverting
all the frequencies of the group at the same time, then after a limited number of optimization
iterations, inversion moves to second group of frequency and so on. In order to have a more
robust result, we can have redundant information between groups. Therefore, we can repeat
the last frequency of each group on the first frequency index of the next group (making overlap
between groups). This approach, because of solving first for low wavenumbers and gradually
moving to higher frequencies, could reduce the cycle-skipping problem. The attraction basin of
the objective function should start from a wide valley and gradually move to a narrow one. In
this section, some tests are performed to evaluate whether the time-lapse strategies are com-
patible with these consecutive multi-group inversions. Which frequency strategy, simultaneous
inversion of all selected frequencies or gradually sweeping frequencies, can deliver more robust
time-lapse images?

3.5.1 Baseline model reconstruction

It has been shown before that the best case of simultaneous frequency inversion is the case when
all the frequencies (138 frequency components) are used for time-lapse application. However,
the sampling frequency df = 1 Hz (28 frequency components) delivered acceptable time-
lapse results for both time-lapse strategies, at least in noise-free case, with huge reduction
in computational time (Table 3.2). Instead of doing forward modeling for 138 frequencies
at each iteration, it is only performed for 28 frequencies, therefore we have a large gain in
computational time. Thus, df = 1 Hz is chosen to select the frequencies of multi-group multi-
frequency strategy. We choose to have three frequency components at each group with last
frequency repeating for the next group. Table 3.3 shows the selected frequencies for each group.

G1 G2 G3 ... G12 G13

Frequency (Hz) 2, 3, 4 4, 5, 6 6, 7, 8 ... ... ... 24, 25, 26 26, 27, 28

Table 3.3: Table of multi-group multi-frequency, each group contains three frequencies and
there is an overlap of one frequency index between two consecutive groups.

This multi-group inversion (Algorithm 3.2) has been applied to baseline noise-free and noisy
datasets. For the baseline reconstruction, the maximum number of optimization iterations for
each inversion group is chosen to be 20 iterations, although there is a possibility that the L-
BFGS-B procedure can stop before if it satisfies the convergence criterion. The final model of
each group is used as an initial model for the next group. Figure 3.22 shows the final results for
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3.5 Multi-group multi-frequency strategy

Algorithm 3.2 Multi-group multi-frequency FWI algorithm
1: for Gi = 1 to ng do
2: while (NOT convergence AND k < itermax) do
3: for ωi = 1 to nω do
4: Compute incident wavefields u from sources
5: Compute residual vectors ∆d and objective function Ck−1

6: Compute adjoint back-propagated wavefields A−1StWd∆d∗ from receivers
7: Build gradient vector Gk−1 and make summation over frequencies
8: end for
9: Compute perturbation vector ∆mk and optimal step length αkwith L-BFGS-B opti-

mization
10: Update model mk = mk−1 + αk∆mk

11: end while
12: end for

this multi-group inversion in noise-free and noisy cases. Comparison between these results and
the results of simultaneous inversion (Figure 3.3b and 3.5b) illustrates that for noise-free case
the two inversion strategies deliver almost the similar baseline model with small differences
(see the QC vertical logs in Figure 3.23). For noisy case, the result of multi-group inversion is
less accurate and contains more random artifacts due to random noise. This can be explained
by the stack of a smaller number of frequencies at each iteration. In simultaneous inversion, a
summation of gradient of objective function over all the selected frequencies at each iteration
is performed, while in multi-group inversion there is a summation only over three frequencies
(for each group). Therefore the gradient and consequently the Hessian contain more imprints
of noise.
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Figure 3.22: Baseline models obtained by multi-group multi-frequency inversion of: (a) noise-
free data, (b) noisy data.

3.5.2 Time-lapse model reconstruction

The recovered baseline models are used to recover time-lapse variations through the sequential
difference and the differential strategies. At the time-lapse stage, five iterations are chosen
for the maximum number of iterations. As there is no large variation between baseline and
monitor models, we need a smaller number of iterations for the time-lapse reconstruction. The
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Figure 3.23: Two QC vertical logs passing through the two target areas at x = 1.1 km and
x = 2.8 km, comparing the true baseline model, the recovered model using simultaneous
frequency inversion (Figure 3.3b) and the recovered model using multi-group inversion (Figure
3.22a) in noise-free case.

results of the noise-free case are shown in Figure 3.24. It appears these results are less accurate
and less robust than the time-lapse results obtained for simultaneous inversion (Figures 3.10b
and 3.11b and compare the QC vertical logs in Figure 3.25). We can see that the differential
result is less accurate and contains large wavelength artifacts especially at the border. The
problem shown here is that the high resolution baseline model is used as the starting model
for time-lapse imaging and at the first step (group 1), the inversion tries to reconstruct the
low wavenumbers on the high resolution baseline model. Probably, the reconstruction of long
wavelengths on the model which already contains short wavelengths makes problems. In the
differential strategy, these problems and artifacts are less important than in the sequential
difference, as the differential inversion concentrates on the low energy difference datasets.

In noisy environment, in addition to the previous problems we should add other problems
such as the increasing ill-posedeness issue caused by the presence of noise and also the fact that
we are using a smaller number of frequencies at each iteration (thus reducing signal-to-noise
ratio). Therefore, the obtained time-lapse models are not robust and trustable at all (Figure
3.26).

To conclude this part, it seems the multi-group multi-frequency inversion can provide the
acceptable precision of baseline model (or generally for exploration project), but this approach
can be less interesting for time-lapse applications. For time-lapse applications, starting from
a high resolution baseline model and using multi-group inversion from low to high frequency,
it appears the reconstruction of low frequency components on the initial high frequency model
causes problems. This leads to the introduction of many artifacts on the time-lapse model,
even in the noise-free case. Therefore, inversion of all the selected frequencies at the same time
appears more compatible with both the sequential difference and the differential strategies.
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Figure 3.24: Time-lapse variation models obtained by multi-group multi-frequency inversion of
noise-free dataset through: (a) the sequential difference, (b) the differential strategy.
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Figure 3.25: Two QC vertical logs passing through the two target areas at x = 1.1 km and
x = 2.8 km, comparing the true time-lapse model, the recovered time-lapse model using simul-
taneous frequency inversion and the recovered model using multi-group time-lapse inversion in
noise-free case with: (a) the sequential difference strategy, (b) the differential strategy.

3.6 Conclusions

For simultaneous frequency inversion, we can conclude that getting an accurate time-lapse
variations requires to increase the number of inverted frequencies in order to obtain a more
precise baseline model. This fact is more important for the sequential difference strategy. On
the other hand, in order to have less time-lapse artifacts in the inversion process, a same sam-
pling frequency for the baseline and time-lapse inversions should be used (related to the data
repeatability issue). The differential strategy is less sensitive to the baseline frequency deci-
mation. The speed of model degradation is slower compared to the sequential difference cases.
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Figure 3.26: Time-lapse variation models obtained by multi-group multi-frequency inversion of
noisy dataset through: (a) the sequential difference, (b) the differential strategy.

For noisy data, we need a smaller baseline sampling frequency to get accurate baseline model
and also smaller time-lapse sampling frequency for both time-lapse strategies. Therefore, it is
crucial to increase the number of inverted frequencies for time-lapse applications as compared
to the general exploration project. Due to the large number of inverted frequencies, it might
be better to move into time-domain modeling and inversion for time-lapse applications to solve
the wave-equation once for all the frequencies.

Multi-group multi-frequency inversion is another interesting strategy for FWI in frequency
domain, but this approach appears less interesting for time-lapse applications. Starting from
a high resolution baseline model and using multi-group inversion from low to high frequencies
of the monitor or composite datasets, the multi-scale strategy does not work properly, since
the inversion attempts to reconstruct low wavenumbers on a model that already contains high
wavenumbers. This leads to the generation of many artifacts on the time-lapse model, even
in the noise-free case. In this case, it is possible that considering a prior information could
mitigate the problem. We can conclude that the inversion of all the selected frequencies at the
same time is more compatible with both the sequential difference and the differential strategies.
Probably, the inversion of low to high frequency hierarchy could be more compatible with the
parallel difference strategy, where two independent inversions (baseline and monitor) start from
a same smooth initial model. In this case, the wavenumbers are gradually recovered from low
to high contents, independently, for two datasets.

These sensitivity analyses provided in this study suggest that a more interesting approach
for time-lapse imaging could be the full waveform inversion conducted in the time domain where
all the frequency components are inverted together at the same time. An efficient time-domain
inversion algorithm is required. If we have reasonable number of sources, doing inversion in
time domain is really less expensive and less time-consuming compared to doing inversion in
frequency domain for all the frequencies. Probably, including proper prior information into the
time-lapse inversion may reduce demanding of large number of frequencies to be considered. If
it is possible, in this case, we can keep the frequency-domain inversion and reach the aim of
data compressing. This would be considered as a future research.
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Chapter 4

Application to Real Field Data
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In this chapter, the different time-lapse inversion strategies presented before are applied to
real field data where steam injection has been monitored.

4.1 Introduction

The field is located in North Canada. A geology overview of this field is shown in Figure 4.1.
The lower Cretaceous McMurry Fm layer is the principal oil sand reservoir. These Fluvial and
estuarine channelized deposits are located on top of Devonian unconformity. An unconformity
is a buried erosional or non-depositional surface separating two rock masses or strata of dif-
ferent ages, indicating that sediment deposition was not continuous. The high velocity of the
Devonian layer implies that it will be considered as a basement. The main reservoir contains
unconsolidated sands at depth of 250 to 500 m with a thickness of 30 to 70 m. Due to the high
viscosity of oil sands, a thermal production is required. It consists in injecting high temperature
steam into the reservoir at different places, to change the property of oil, especially its viscosity
in order to make it less viscous and facilitate the production.



APPLICATION TO REAL FIELD DATA

In literature, rock physics studies show that thermal enhanced oil recovery (EOR) processes,
especially steam injection, should be visible in repeated surface seismic surveys (Greaves and
Fulp, 1987; Lumley, 1995a; Jenkins et al., 1997; Lumley, 2001). Indeed, the injected steam in
a reservoir can significantly decrease the rock seismic impedance, due to substitution of fluid
(presence of free gas) and also to associated temperature change.

Several 3D monitoring surveys have been acquired on this field at different times, in order
to study the variations of reservoir and analyze the geometry of injected steam area. In our
study, we deal with two monitor datasets which were acquired after the initial steam injection.
I should mention that the M1 dataset already contains the effect of injected steam, because
this dataset does not correspond to the ideal baseline case acquired before steam injects in.
Between these two seismic acquisition times, more steam has been reinjected into the reservoir.
Therefore, the goal of this time-lapse study is to identify and detect potential velocity anomalies
related to this new injection.

Figure 4.1: Geological overview of the field. Lower Cretaceous McMurry Fm is the principal
oil sands reservoir.

4.2 Seismic datasets

For this study, two 2D repeated datasets (M1 and M2) are provided. The original datasets were
acquired as a 3D land acquisition, whose location of receivers is shown in Figure 4.2. The 2D
acquisition line studied here, which intersects steam chambers, has been extracted from the 3D
dataset by interpolation. This step was performed by CGG company using a 5D interpolation
(inline, crossline, offset, azimuth and time) strategy.

The obtained pseudo 2D line consists of a series of virtual shot and receiver points spaced
by 10 m all along the line (Figure 4.3). There are 140 shot points and 140 receivers. As all the
receivers are active for each shot, the total number of interpolated traces is 140× 140 = 19600.
The minimum and maximum offsets correspond to 5 m and 1395 m, respectively.

Several processing steps were performed to prepare the datasets for the 5D interpolation
(by CGG):

• M2 seismic moved to the M1 floating datum by applying M1 regional correction. Indeed,
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Figure 4.2: Receiver point map for M1 and M2 and location of the interpolation line.

since the geology was not changed between the two acquisitions, the same (M1) velocities
for M1 and M2 are applied (statics and regional corrections), as it is the use for 4D data.

• An anti-aliasing filter, Butterworth 200 Hz, is applied.

• Low-cut filter, Butterworth 13 Hz, is used to attenuate the low frequency noise.

• NMO correction: for M2, which is at the floating datum, M1 velocities are applied, in
order to process the two monitors in a comparable way. The velocity used is a 1D velocity
without any lateral variation.

• Mute for 5D interpolation: for 5D interpolation, it is recommended not to integrate
stretching associated with long offsets. Gathers are hence slightly muted before being
used for interpolation. The mute law depends only on offset.

• Data selection for interpolation: only the traces whose distance from the interpolation
line is less than 200 m are kept for the interpolation.

• 5D interpolation: this interpolation performs multi-dimensional Fourier data mapping.
Dimensions are inline, crossline, azimuth, offset and time.

I should mention that these two processed datsets are the only datasets that were provided
and I have to deal with them for FWI. It seems the datasets are processed towards the classical
reflection processing. I have no access to the raw datasets.

At the end, M2 gathers have been moved back to their proper initial floating datum. The
interpolation line prestack data are at the floating datum. CGG also provide us the interpo-
lation line stacks (Figure 4.4). Stacks are at the final datum. For M2, the M1 velocities have
been applied at the M1 floating datum, before moving back to the final datum. Because of
that there is a time-shift (about 0.1 s) between stack and prestack data (compare Figure 4.4
and Figure 4.5).
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Figure 4.3: 2D interpolation schematic line.
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Figure 4.4: Interpolated 2D line stack (provided by CGG) for (a) M1, (b) M2 and (c) difference
between the two. Please note that the difference section is multiplied by a factor of 2 to be
plotted at the same scale as others, for visualization purpose.

After making a raw subtraction between M1 and M2 stack images, the main 4D signals
can be seen around the main reflection event (Figure 4.4c). This is the interested area which
is looked for. In addition, at time 0.4 s , another anomaly can be observed in the overburden
zone which is probably affected by the production activities of the field.

The interpolated prestack data exhibit a frequency spectrum content between 13 Hz to
170 Hz. For performing 2D acoustic FWI, the data are filtered below 80 Hz. The filtered
seismic data are shown in Figure 4.5 for the shot located at the center of the 2D line. We can
clearly see the time-lapse seismic differences due to injection of steam (Figure 4.5c). It seems
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that the main reflection event corresponds to the reflection from the Devonian layer (base of
reservoir). After new injection, due to time-lapse variation, there are some changes in phase
and amplitude of seismic response around this region. During processing step of early raw
dataset, the surface waves were attenuated, but we can see that the difference data contain
the imprint of surface waves. The surface waves may not be identical between two acquistions,
because of seasonal changes and temperature variation of weathering zone.

Figure 4.5: Seismic data for one shot located at the center of 2D line, (a) M1, (b) M2, and (c)
the difference dataset.

4.3 Main problems

For these datasets, there are three main difficulties:

• Absence of direct waves and diving waves: as it can be seen in Figure 4.5, the direct
waves and diving waves were removed from the dataset (probably at muting step before
5D interpolation).

• Problem of low frequency content: as mentioned, because of low frequency noise attenua-
tion, a low-cut filter was used. The minimum frequency content in the datasets is around
13 Hz.

• Problem of source estimation: since there are no direct waves or first arrivals in the
dataset, we have a problem to estimate the source wavelet. I must estimate source
wavelet on a reflected event. This issue will be explained later.

It appears that the performed processing step on these datasets is more oriented towards
the processing of classical reflection analysis. Therefore, the inversion of these datasets by FWI
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is not ideal, but these were the only datasets available. In this configuration, it is expected
that the FWI method behaves like a quantitative non-linear migration technique, because the
low content of the wavenumber cannot be retrieved (Plessix and Mulder, 2004).

4.4 Inversion of M1 dataset

First of all, the M1 dataset must be inverted to obtain the recovered M1 model. In this study,
regularized 2D acoustic FWI in time domain is used. During inversion, only P-wave velocity
is inverted. A homogeneous density model with 2000 g/cm3 is considered for the forward
modeling. Before starting the inversion, we need to have an initial velocity model and to
estimate a source wavelet.

4.4.1 Initial model

A velocity model (Figure 4.6a) has been provided by Total. This 2D velocity model was
extracted from the interpolated velocity cube which has been built from interpolation between
several well logs located in this field. This velocity model is built at the base time, that is,
before any injection and it does not contain any effects of injected steam. Note that the origin
(x = 0, z = 0) corresponds to the position of the first shot. Is this velocity model accurate
enough?

The shallow part of this interpolated model has a low velocity value. If the forward modeling
is performed with this model, the direct waves contaminate the reflection events. Because of
absence of the direct waves in the real dataset, we should modify the low velocity zone at the
top in such a way that the direct arrivals do not appear in the calculated data. The velocity
of low velocity zone at the top of model has been replaced by a value of 1850 m/s. This value
comes from a velocity analysis (semblance method) of reflected events. Then, during inversion,
the calculated data are muted in order to remove the direct waves, so that they are consistent
with the observed data.

However, this modified velocity model, coming from the interpolation of well logs, is not
kinematically accurate for all the arrivals (especially for the main reflection event, please see
Figure 4.7). Figure 4.7 shows the observed data and the calculated data inside the modified
model (Figure 4.6b). Clearly, it can be seen that most of the reflection events observed in the
calculated and observed data are time-shifted, except the first reflection event. Therefore, this
interpolated velocity model cannot be directly used as an initial model in inversion optimization,
due to a large cycle-skipped issue. Probably, a smoothed version of this modified model (Figure
4.11a) could be a good candidate for the initial model.

4.4.2 Source-wavelet estimation

Estimation of source wavelet is a crucial step before inversion. In our case, where the real pro-
vided data do not contain direct arrivals and diving waves, it would be difficult to estimate the
wavelet. The estimation must be done on the reflection events, a process which is limited and
increases uncertainties. If the smoothed initial model is used for the source-wavelet estimation,
it is not possible to have proper reflection events in calculated data which mimic the observed
reflection events. Therefore, we have to use the modified interpolated velocity model without
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Figure 4.6: (a) 2D velocity model extracted from the interpolated velocity cube which was built
by interpolation between well logs. (b) Modified velocity model at near surface. Low velocity
at top of model has been replaced by a value of 1850 m/s. This value comes from a velocity
analysis (semblance method) and is also provided by CGG.

any smoothing. The wavelet estimation on reflection seismic events is done considering the
following points:

• In order to be less sensitive to the effects of reflectivity variations and converted waves on
the amplitude and phase of source wavelet, the estimation is performed only on the first
reflection event (shown by an arrow in Figure 4.7) and for the short offset traces (offset
in this range ±200 m). If the estimation is performed on the deeper reflection event, due
to energy partition at previous reflectors, we have a high uncertainty on the estimated
source. In the observed data, for far offset, partial energy of P-wave is converted to S-
wave, a mechanism not taken into account in our acoustic modeling. Hence, for source
estimation, only the short offsets are taken into account.

• It is assumed that the velocity contrast related to the first reflector, included into the
interpolated model, mimics the real contrast, otherwise, the effect of differences in reflec-
tivity coefficients (observed and calculated data) will be included in amplitude of source
wavelet.

• I should also assume that the wave propagation does not create too much dispersion
phenomena.

Our acoustic FWI is implemented in the time domain for both the forward and the ad-
joint problems. The source-wavelet estimation is however straightforwardly implemented in
the frequency domain by a linear inverse problem resolution. The computed and observed
time-domain data are Fourier transformed to apply the Pratt (1999) (his equation 17) source
estimation equation for each frequency. The Fourier coefficients of the wavelet are then trans-
formed back to the time domain and appropriately processed (anti-causal mute and band-pass
filtering) before performing FWI. This estimation is performed once before the optimization.

In this case, the observed data and the calculated data are windowed to select the first
reflection (using hyperbola formulation and a Hanning window). The estimation is performed
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on short offset traces for all shots and then the average source wavelet is computed from them
(Figure 4.8). The wavelet behavior is similar for all the shots (as we are informed), therefore
we use a global averaging.
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Figure 4.7: (a) The observed shot gather for the first shot, (b) the calculated data computed
inside the modified interpolated velocity model using an estimated source wavelet. Please note
that the direct waves are muted in both datasets. The arrow shows the first reflection event
which is used to estimate the source wavelet.

As mentioned, the non-smoothed model cannot be used as the initial model for the inversion
because of inaccurate kinematic issue. To overcome this problem, this model is smoothed by
an intermediate smoothness factor (Figure 4.11a) and is considered as the initial model for
M1 reconstruction. In order to decrease the uncertainty related to the estimated amplitude of
wavelet inside this smooth model, we perform a simple amplitude scaling based on the misfit
function at first iteration. The sensitivity analysis on the amplitude of wavelet is studied.
The misfit functions (`2 norm of misfit between observed and calculated data) are computed
at first iteration using different multiplicative factors (α) which are applied to the estimated
wavelet. Figure 4.9 shows the plot of the misfit function curve with respect to the different α
factors. The minimum of objective function is provided by α = 8. Therefore, the estimated
source wavelet which will be considered for FWI, is multiplied by this factor to have a proper
amplitude.

4.4.3 Inversion without prior model

The provided M1 dataset (before it has been filtered below 80 Hz) is migrated (Kirchhoff
depth migration) using the smooth initial model (migration procedure of Seismic Unix package
is used (Cohen and Stockwell, 2008)). Migration technique puts the reflectors at their positions
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4.4 Inversion of M1 dataset

Figure 4.8: Average estimated source wavelet computed by windowing on the first reflection
event and using near offset traces. The estimation is performed on all shots. The estimated
wavelet is appropriately processed by an anti-causal mute and band-pass filtering.

Figure 4.9: The objective function computed at first iteration using different amplitude mul-
tiplicative factors (α) of estimated source. From this plot, the minimum objective function is
provided by α = 8.

(Figure 4.10). As the dataset does not contain the diving waves and low frequency contents,
we expect that FWI provides a similar result as the migrated section but no more details.
However, the advantage of FWI is that it delivers a quantitative image as compared to the
migration process, which may be of great interest to monitor subtle velocity changes. In this

133



APPLICATION TO REAL FIELD DATA

configuration, FWI will behave like as a quantitative iterative non-linear migration technique
(Plessix and Mulder, 2004).
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Figure 4.10: Migrated section of M1 dataset using the smoothed initial velocity model (Figure
4.11a).

In the first step, the M1 dataset is inverted by FWI without including any prior model infor-
mation into the inversion scheme. For that, I consider a small value for Tikhonov regularization
to ensure a small smoothness on the result. There is no large variation for the topography,
we have almost 70 m differences in elevation between position of first shot to the last one.
However, Due to non-flatness of the surface, the free-surface conditions cannot be considered
in our finite-difference implementation (our code can consider the free-surface conditions only
for a flat topography). However, in this land dataset, the surface waves and the multiples were
almost removed during processing step.

The 2D acoustic FWI in time domain is used to invert the M1 dataset starting from the
smoothed initial model. The inversion parameters, such as grid distance (h = 3 m) and
time-sample interval (dt = 0.33 ms), are chosen in such that the inversion can be done until
80 Hz. Here, no multi-scale approach on frequency content such as the frequency-continuation
approach of Bunks et al. (1995) is used. L-BFGS-B routine is used for the optimization to get
model parameter perturbations (Byrd et al., 1995). An Identical stopping criterion based on
flatness of misfit function is used to stop the optimization for all the following inversions.

For M1, the inversion stopped after 35 iterations which leads to have 18% reduction of
data-misfit function at the end with respect to the initial data-misfit function. The recovered
M1 velocity model is shown in Figure 4.11b. Clearly, it can be seen that the inversion procedure
reconstructs the reflectors inside the initial model. The obtained result of FWI is consistent with
the stack migrated section, but slight depth shifts between them are observed (compare Figures
4.11b and 4.10). As expected, the FWI provides similar result as the migration technique, but
a quantitative image. Clearly, it appears that the background velocity used in the initial
model does not essentially change during inversion, due to lack of low frequency contents and
transmission waves. The low velocity zone, at depth of around 430 m, is related to the main
reflection event in dataset. We cannot clearly interpret this low velocity zone, but it probably
corresponds to the production activities of the reservoir. Moreover, a slide-lobe effect around
this main reflector can also intensify velocity variation in this zone, due to the band-limited
frequency and limited aperture inversion. The base of this low velocity zone (the red refletor)
might be the base of the reservoir, corresponding to the lithological basement (Devonian layer).
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4.4 Inversion of M1 dataset

Probably, the W shape which can be seen in the obtained model, could be related to the
sensitivity kernel for a reflector line. Indeed, for this dataset, there are less transmission events
and the inversion is dominated by the reflection data. Therefore, there is less contribution of
a transmission sensitivity kernel to recover the low content wavenumbers.
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Figure 4.11: (a) The smoothed initial model which comes from smoothing the modified inter-
polated velocity model, (b) the recovered M1 velocity model obtained by FWI without using
any prior model.

As a quality control (QC), the observed data and the final calculated data are plotted in
Figure 4.12 to compare them. In Figure 4.12a, the observed and final calculated data are
normalized by maximum value of the observed data for each trace. This plot can be used as
an indicator to compare how the relative amplitude between the recorded and calculated data
is fitted. In Figure 4.12b, both datasets are normalized independently by their own maximum
value. This could be used as another indicator to compare how the phases of signals are fitted
after inversion. Please note that the inversion is performed without any normalization of data.
For the trace number less than 50, the predicted phases have a phase shift with respect to the
recorded data, especially for the main reflection. In addition, the amplitude of data is poorly
explained, certainly due to not considering a proper density model. When we observe a scan of
all the traces (a video of these plots for all shots), for some shots the phases are not accurately
predicted with this final model.

These observations leads to ask for the search of a better reconstruction of M1 model, which
is a crucial step for monitor reconstruction, as shown in Chapter 1. As suggested in Chapter 1,
the prior model can be accounted for the inversion to better and more accurately recover the
model parameters.

4.4.4 Inversion with prior model

The modified interpolated velocity model can be a good candidate to be used as the prior model
(Figure 4.13a), because it has been built from well logs located in this field. From the way of
designing the 3D cube of interpolated velocity model, there is a vertical log located at this 2D
line at distance of x = 1040 m and another well near to this 2D line around x = 250 m. If we
assume there would not be any other wells to contribute for building this 2D velocity section,
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Figure 4.12: Comparison of the final calculated and observed data for the centered shot for
inversion of M1 dataset without using any prior model: (a) both data are normalized by
maximum value of observed data (trace by trace), indicator to compare the relative amplitude;
(b) each data are normalized by their own maximum value (trace by trace), independently.
This is an indicator to compare the phase of signals. Please note the normalization is done
only for visualization purpose.

there is a lesser uncertainty near to these wells and higher uncertainty between these two well
locations. Therefore, the prior uncertainty model σ2 is designed in the same way as suggested
in Asnaashari et al. (2013a). The second type of uncertainty is related to the surface acquisition
and geometrical spreading of data. After combining these two kinds of uncertainties, we can
end up with the prior uncertainty model shown in Figure 4.13b.
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Figure 4.13: (a) The modified interpolated velocity model, slightly smoothed, is used as the
prior model. (b) Prior uncertainty model (σ2), the Gaussian function varying in the x direction
with maximum value at the center of model, which is complemented by a quadratic evolution
in the z direction.
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The regularized FWI including a prior model suggested by Asnaashari et al. (2013a) has
been used to invert the M1 dataset. The prior regularization parameter λ2 is chosen such that to
have a ratio between the prior-model misfit term and the data-misfit term around γ = 5×10−3,
at first iteration. Therefore, by selecting this reasonable ratio between prior-model and data-
misfit terms, the FWI is prevented to minimize the model norm heavily at early iterations.
Then, during the optimization the dynamic weighting method is used to gradually reduce the
effect of the prior model.

By including the prior model and using the dynamic weighting approach, the inversion
goes through more iterations (89 iterations) than the classical FWI in previous inversion. In
addition, this new inversion leads to have 22% reduction of data-misfit function at the end
with respect to the initial data-misfit function. Comparing to the classical FWI (without prior
model), the data-misfit term is more reduced. The recovered M1 velocity model is shown in
Figure 4.14. Comparing Figures 4.14 and 4.11b illustrates that the velocity below the main
reflector is better recovered thanks to the prior model. The effect of the prior model can be
seen in the final obtained model (below 450 m depth). A QC vertical log at x = 1040 m confirm
this issue (Figure 4.15). The lower velocity zone below the Devonian reflector (which can be
seen as a white layer in the prior model) affects the recovering of M1 model.

In addition, comparing the observed data and final calculated data shows that by adding
the prior model into inversion, the phases are better estimated and the amplitudes are better
fitted (compare Figures 4.16 and 4.12). For this specific shot at the center of acquisition line,
we can clearly see that for the trace number less than 50, especially, the phases of signals are
better predicted by using the prior model information.
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Figure 4.14: The recovered M1 velocity model obtained by regularized FWI using the prior
model (Figure 4.13) and a dynamic weighting approach to gradually decrease the importance
of the prior model during inversion.

For these datasets where there is a lack of low frequency content and of transmission waves,
the prior model appears crucial to partially retrieve the low spatial wavenumbers. If we have
a more precise prior model (after injection), probably we can improve the result of M1. The
prior model, which is already used, does not contain any effect of injected steam because it is
built from well logs acquired before steam injection. Due to this issue, we cannot put stronger
weight into this prior model for the optimization.

I should mention that, since the inversion updates only the velocity model without consid-
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Figure 4.15: QC vertical logs at x = 1040 m coming from the models: the smooth initial
model, the recovered M1 model without prior model, and the recovered M1 model using the
prior model and dynamic weighting approach. The effect of the prior model can be easily seen
on the recovering of velocity model, especially for the main reflector and below it.

Figure 4.16: Comparison of the final calculated and observed data for the centered shot for
inversion of M1 dataset using the prior model: (a) both data are normalized by maximum
value of observed data (trace by trace), indicator to compare the relative amplitude; (b) each
data are normalized by their own maximum value (trace by trace), independently. This is
an indicator to compare the phase of signals. Please note the normalization is done only for
visualization purpose.
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ering updating the density model, the effect of impedance is entirely carried by the velocity. In
other words, the variation of density is transferred explicitly to the update of velocity; therefore
the obtained velocity model contains the effect of impedance.

As another quality control, Common Image Gathers (CIG) are computed by Kirchhoff
migration of the original M1 dataset (before filtering for FWI purpose). The CIGs are computed
using the smooth initial model and the final FWI model derived with prior model. This final
FWI model has been slightly smoothed before using for computing the arrival time related
to the computed rays. An example of some CIGs are shown in Figure 4.17. Comparison of
CIGs in two models (Figures 4.17a and 4.17b) shows that the reflector events become more
flat after FWI inversion. I should mention, however, that in some positions and some other
CIGs, the smooth initial velocity model can provide better and flatter CIGs as compared to
high resolution FWI result. Generally, the Kirchhoff migration technique better works using
a smooth model. Since the high resolution FWI result already contains the velocity contrasts
(the reflectors), Kirchhoff migration does not work properly to compute the associated ray
arrival times, especially near the interested zone in the FWI model.
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Figure 4.17: An example of some Common Image Gathers (CIG) of M1 dataset which is
migrated using: (a) the smooth initial model, (b) the final FWI model with prior model. It
seems that the CIG gathers become more flat after FWI, however for the main reflector it is
not the case.
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4.5 Time-lapse inversion

Once the M1 velocity model is obtained, we focus on the recovery of the time-lapse variations.
Here, the three different time-lapse strategies which are discussed in Asnaashari et al. (2013b)
have been used. The sequential difference and the differential (double-difference) strategies are
first applied in the conventional mode (without target-oriented option), and then using the
target-oriented prior weighting. The recovered M1 model, obtained by regularized inversion
including the prior model (Figure 4.14), is used as the initial model for the sequential difference
and the differential inversion.

As a first step, the difference dataset between two surveys data is migrated using the slightly
smoothed M1 model (Figure 4.18). By doing so, we can have some ideas about the location of
expected time-lapse variations. In the right part, around the reservoir depth, three elliptical
zones (black areas) can be identified, which are probably related to the steam chambers after
reinjection. In the left part, it appears that we expect to have some time-lapse variations. In
the overburden zone, we can see a continuous reflector which is coherent with our observation
from the difference stacked data (compare Figures 4.18 and 4.4c).
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Figure 4.18: Migrated section of difference dataset using the recovered M1 velocity model. This
velocity model is slightly smoothed before performing migration. This section can show the
location of the expected 4D changes.

4.5.1 Conventional inversion

Parallel difference: for the parallel difference strategy, we invert the M2 dataset with the
same configuration and inversion parameters as for the M1 reconstruction, starting from the
same smooth initial model, using the same prior model, and the same parameters of the dynamic
approach. Figure 4.19a shows the time-lapse model obtained by the parallel difference strategy
after 85 iterations for the second inversion. At reservoir depth, three areas of negative velocity
variations are recovered (shown by three arrows in Figure 4.19a). These three zones are affected
by injection of steam. The P-wave velocity appears to decrease, certainly due to reinjection
of steam in the period between the two acquisitions. The presence of steam and increase of
temperature lead to have a velocity decrease and an expansion of steam chambers. These
patches of injected steam are validated by the configuration of injected equipments and wells.
The result of parallel difference for these steam chambers are consistent with the migrated
section of difference data.
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Underneath these steam zones, there are two continuous lines with positive and negative
velocity variations. These are the 4D artifacts related to the parallel difference strategy, in some
places of these continuous lines. Even in the migrated section, we cannot observe this strong
continuity everywhere along the reservoir. These artifacts are coming from the reconstruction
of main reflector, through two separate inversions. The inversion of M1 and M2 datasets,
starting from the same smooth initial model, cannot probably converge to reconstruct the
main reflector at the same depth. Because of that, we have strong continuous variations, due
to a simple subtraction between two final images. In addition, this problem could also be
caused by side-lobe issue because of band-limited inversions. In distance x = 300− 600 m and
at depth of around the main reflector, a velocity variation is observed which can be seen in the
migrated section as well. It seems this kind of variation exists in the dataset and the parallel
difference FWI strategy tries to recover these variations, but we cannot yet interpret them.
The reservoir specialists of this project do not expect any positive velocity variations in this
area.

Sequential difference: the recovered M1 model, obtained by including the prior model
penalty, is used as an initial monitor and a prior monitor model to invert the real M2 dataset.
In a first investigation, the sequential difference strategy is applied in conventional mode, i.e.
without any target-oriented prior weighting. A homogeneous prior weighting model is used with
a low weight of the prior model into the inversion. Figure 4.19b shows the time-lapse result after
19 iterations. It is difficult to distinguish the time-lapse variations area, without knowing the
result of the parallel difference strategy. The obtained time-lapse variation model is dominated
by a strong negative velocity variation line (blue line). This sequential difference strategy
attempts to continue updating the M1 model during the M2 inversion. The second inversion
tries to fit the data residuals left from previous inversion, especially for the main reflector
event. However, the real time-lapse variations (patches of injected steam) are recovered by
this strategy, but the 4D artifact is dominating the time-lapse result. I should mention that
this issue (keep updating the common events between two surveys) related to the sequential
difference strategy is not due to convergence in a wrong direction. Since the qualification of
time-lapse variations is based on a simple subtraction between two final models, this continued
updating of the model is considered as a 4D artifact.

Differential: in this strategy, the composite dataset is inverted which is focusing on inver-
sion of the difference dataset. Similar to the sequential difference configuration, the obtained
M1 model is used as the initial and prior monitor model for this inversion. In a first step, the
differential strategy is applied in conventional mode. The obtained time-lapse result after 61
iterations is shown in Figure 4.19c. In this case, the time-lapse dataset is better focused and
better focalized at their position by the double-difference inversion. Comparing to the result
obtained by the parallel difference, we can observe that the three steam anomalies (shown with
three arrows) are better identified and better focused by the differential strategy (see Figures
4.19a and 4.19c). In addition, the 4D artifacts, continuous lines underneath of 4D responses in
parallel difference result, do not exist in the differential result. In the differential case, below
the three steam chambers, velocity increases. Perhaps these velocity increases might be due to
migration of steam and/or probably fluid substitution between two acquisition times, it would
be difficult to interpret these increasing velocity anomalies.

It seems that this result is more coherent with the migrated section of the difference data,
particularly at the right part of model where the steam injection zones are identified. However,
the strong continous 4D anomaly, which is present in the migrated section (distance x =
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Figure 4.19: Time-lapse variation velocity models obtained by different strategies: (a) the
parallel difference, (b) the conventional sequential difference without using the target-oriented
option, (c) the conventional differential (double-difference) strategy. The arrows show the
location of negative velocity variations caused by reinjection of steam.

300−600 m), is not recovered by the differential strategy. I should mention that this continous
4D anomaly is not expected by the specialists. It is possible to have some steam injection
activities above this area (as it can be underlined by some negative velocity anomalies in the
differential result), but a strong continous line is not expected to have the positive velocity
variation (as we observe in the migrated section for this area).

Comparison of the obtained time-lapse results (obtained by the parallel difference and the
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conventional differential strategy) and the migrated section of difference dataset shows that
probably time-lapse variations, below the reservoir zone presence in the migrated image (below
550 m depth), are migration artifacts due to velocity variations occuring in the reservoir areas
(push down-pull up effect). Due to changes in the reservoir area because of steam injection
and oil production, the image of underneath areas are affected. This kind of artifacts are not
observed in the FWI time-lapse results, because the M2 velocity model is iteratively improved
during inversion and the time-lapse anomalies are recovered. Therefore, the time-lapse signals
are focalized at their correct depth positions.

Above each velocity decreasing zone (due to steam reinjection), in both sequential and dif-
ferential results, a vertical column of negative velocity variations can be observed. There is a
possibility to interpret them as a leakage of steam above the injected points. After discussion
with reservoir specialists of this project, there is no evidence of the leakage of steam in this
area. Therefore, these anomalies could be interpreted as inversion artifacts. In the overburden
zone, there are several low wavenumber artifacts. These artifacts are probably produced by
two causes: 1) the difference dataset contains imprint of surface waves which are not identical
between two surveys after processing, so they are not completely cancelled out by data sub-
traction (clearly, it can be seen in Figure 4.5c); 2) Since the data were acquired at different
seasons, we have differences on seasonal noise. This issue can also produce some 4D artifacts.

4.5.2 Target-oriented inversion

Is there any way to improve the real time-lapse responses and reduce the artifacts? In a second
investigation, the two time-lapse strategies (sequential and differential) are applied using a
target-oriented inversion mode. The recovered M1 model is used as the prior model. For the
target-oriented inversion, we need to design the model weighting matrix Wm based on the
location of expected changes. Based on the previous inversion results, the migrated section
of difference dataset, and information about the depth of reservoir, it is possible to build the
target-oriented model weighting. Two Gaussian functions varying in z direction are laterally
used all along the reservoir and in the overburden zone (where the 4D anomaly can be observed
in the migrated section). These Gaussian functions are summed up with a constant small value
at other places. The target-oriented σ2(m) model (Figure 4.20) applies strong weights of the
prior model (M1 model) everywhere outside these target zones and relatively lower constraints
inside these expected variation areas (recall diag(WT

mWm) = 1/σ2(m)). The first target zone
in the overburden area is considered to recover the small 4D variation in this area which is
observed in the migrated section (Figure 4.18) and the difference stacked data (Figure 4.4c).

The results of time-lapse model obtained using this method, for the sequential and differ-
ential inversions, are shown in Figure 4.21. The artifacts in the overburden zone are reduced
for both strategies. In sequential difference case, the target-oriented inversion better focuses
on the area of expected variations and provides more focused results. At least compared to
the conventional case, the areas affected by injected steam can be identified. In target-oriented
differential, the 4D anomalies are better recovered; it is possible to detect another potential
steam chamber at the left part of model. The expected 4D variation in the overburden zone
seems to be also recovered (depth around 280 m) and it is easier to identify this variation area
by removing other artifacts in the overburden zone. By using a target-oriented prior weighting,
the model space is reduced for inversion and hence, the time-lapse inversion becomes better-
posed. Although, the value of velocity variation related to the artifacts (discussed before as
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Figure 4.20: The target-oriented σ2 model which is built by two Gaussian functions varying in
z direction all along the reservoir and in the overburden zone (where the 4D anomaly can be
observed in the migrated section). These Gaussian functions are summed up with a constant
small value at other places.

a potential steam leakage) decreases more. They are more emphasized in this target-oriented
differential inversion, which are probably incorrect (discussion with reservoir specialists).

Figure 4.22 shows QC vertical logs at x = 1040 m coming from the time-lapse models
obtained by: the parallel difference, the target-oriented sequential difference, and the target-
oriented differential strategy. The marker shows the negative anomaly due to the reinjection
of steam. Using target-oriented inversion, the 4D artifacts in the overburden, particularly
near surface zone, are removed. The value of negative velocity variations, obtained by the
parallel difference and the differential, are almost coherent. Below the marker (steam area), the
differential strategy provides a better result as compared to the strong fake negative anomaly
in the parallel difference result (at depth around 460 m in the log).

As another QC to verify how the time-lapse data are fitted by different strategies, the final
calculated and the observed difference data are plotted together. The final calculated difference
data are computed by a raw subtraction between final calculated M2 (obtained from three
strategies) and final calculated M1 datasets. Figures 4.23, 4.24 and 4.25, respectively, show
this comparison between the observed and calculated difference data, for the parallel difference,
the target-oriented sequential difference and the target-oriented differential strategies. First,
in terms of prediction of phases, it seems that both target-oriented strategies better predict
the phase of the difference data as compared to the parallel difference, especially, for the
wavelets near the main reflection and for the traces with number less than 60. In addition,
the target-oriented strategies do not allow inversion to fit the noise, which can be seen at
earlier time (please compare trace number 70 in Figures 4.23b, 4.24b and 4.25b). This type of
noise is related to the surface waves and seasonal temperature variation. Generally, the target-
oriented inversion appears to be more robust than the parallel difference strategy. However,
it is possible to have some traces which are out of phase for the target-oriented differential
strategy, for example trace number 80. It seems the receiver of trace number 0 did not work
properly during acquisition, since this observed trace is not coherent with other traces.
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Figure 4.21: Time-lapse variation velocity models obtained by the target-oriented inversion:
(a) the sequential difference, (b) the differential (double-difference) strategy. The arrows show
the location of negative velocity variations caused by reinjection of steam. The vertical dashed
line shows the location of vertical well at x = 1040 m to illustrate QC vertical logs.

A comparison of the relative amplitude between the calculated and observed difference data
shows that the target-oriented differential inversion can better fit the amplitude (see Figures
4.23a, 4.24a and 4.25a). The reason is that the differential strategy directly inverts the difference
dataset, without any contribution from residuals left from previous inversion (recovering M1).

As the last data comparison, the final calculated difference data in case of the conventional
and the target-oriented differential strategies are plotted in Figure 4.26. It shows how the
target-oriented inversion behaves differently from the conventional mode in fitting the dataset.
For the earlier arrivals, the calculated data appears different which can slightly affect the
simulation of late arrivals as well. If we assume that there is no change in overburden for this
field (except in the first considered target zone), the difference data existing at earlier time will
be considered as noise. By focusing inversion on the target zone, there is a possibility to avoid
fitting this 4D noise.
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Figure 4.22: QC vertical logs at x = 1040 m coming from the time-lapse models obtained
by: the parallel difference, the target-oriented sequential difference, and the target-oriented
differential strategy. The marker shows the negative anomaly due to the reinjection of steam.

Figure 4.23: Comparison of the final calculated and observed difference data for the centered
shot for the parallel difference inversion: (a) both data are normalized by maximum value
of observed difference data (trace by trace), indicator to compare the relative amplitude; (b)
each data are normalized by their own maximum value (trace by trace), independently. This
is an indicator to compare the phase of signals. Please note the normalization is done only for
visualization purpose.
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Figure 4.24: Comparison of the final calculated and observed difference data for the centered
shot for the target-oriented sequential difference inversion: (a) both data are normal-
ized by maximum value of observed difference data (trace by trace), indicator to compare
the relative amplitude; (b) each data are normalized by their own maximum value (trace by
trace), independently. This is an indicator to compare the phase of signals. Please note the
normalization is done only for visualization purpose.

Figure 4.25: Comparison of the final calculated and observed difference data for the centered
shot for the target-oriented differential inversion: (a) both data are normalized by max-
imum value of observed difference data (trace by trace), indicator to compare the relative
amplitude; (b) each data are normalized by their own maximum value (trace by trace), inde-
pendently. This is an indicator to compare the phase of signals. Please note the normalization
is done only for visualization purpose.

4.6 Conclusions

In this real field steam injection datasets, we have applied several time-lapse strategies which
were proposed in previous chapters. The provided filtered datasets have not been processed to
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Figure 4.26: Comparison of the final calculated difference data between the conventional and the
target-oriented differential strategy: both data are normalized by maximum value of calculated
difference data coming from the conventional differential strategy (trace by trace).

fit FWI requirements. During early processing steps, the low frequency content (until 13 Hz)
has been filtered out. Moreover, the real dataset does not contain the direct and transmission
waves (due to muting and to an intermediate offset acquisition), as the data were initially
acquired with a reflection survey design.

For the inversion, due to the muting of the direct waves, we must estimate the source wavelet
on reflection events. This step is performed under some assumptions and estimation on first
reflection event for short offsets, which probably leads to an estimated source-wavelet that
contains large uncertainty. We assumed that the velocity contrast related to the first reflector,
included into the interpolated model, mimics the real contrast and there is no dispersion effect.

Due to the lack of low frequency content in the data and lack of diving and transmission
waves, the FWI method can be considered as a quantitative non-linear migration technique, as
the lower part of the wavenumbers cannot be retrieved from the data part. In order to partially
balance this issue, it has been shown that it is necessary to add prior model information into
the inversion. By including the interpolated velocity model deduced from well information
as the prior model and using the dynamic weighting approach, the regularized FWI improves
the reconstruction of M1 model and the data-misfit function is further decreased compared to
the case when no prior model was used. It is clearly shown here that a precise prior model
is required to increase accuracy of inverted velocity models. In a second step, we focused on
the monitoring approach, and applied our different strategies to two datasets between steam
injection was done.

The parallel difference strategy reconstructs the time-lapse variation zones caused by rein-
jection of steam. However, the 4D anomalies are less focused and the time-lapse model contains
several artifacts coming from reconstruction of the main reflector, through two separate inver-
sions. We obtain strong continuous variations, when looking the simple subtraction between
two final images. In addition, this problem could also be caused by side-lobe issue because of
band-limited inversions.

The recovering of residuals left from M1 inversion is mainly an issue when the conventional
sequential difference inversion was performed. Therefore, the time-lapse model obtained by
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this inversion strategy is mainly affected by this issue and it is difficult to identify the real 4D
variation zones due to steam injection. The second inversion (in sequential difference) attempts
to better explain the amplitude of the main reflection event which is not fully explained during
inversion of M1 data.

The conventional differential strategy provides a better time-lapse result around the reser-
voir depth, with less artifacts below the three steam chambers as compared to the parallel
difference. The result obtained by the differential strategy suffers from several artifacts in the
overburden. One of the reasons could be the inaccuracy of the recovered M1 model which does
not allow the difference data energy to be properly focalized at the correct positions. Another
reason could be related to the presence of the imprint of surface waves in the difference dataset
and related to differences in the noise content between the two datasets.

In the last investigation, the target-oriented inversion using a target prior weighting all along
the reservoir is applied. The target inversions, for both sequential and differential strategies,
deliver more robust time-lapse results by focusing only on the target zones. Especially, for the
target-oriented sequential difference case, at least some of the steam areas can be identified, as
compared to the conventional case. Including the target-oriented prior model does not allow
inversion to fit the 4D noise outside the target areas. Comparing the final calculated and the
observed difference dataset shows that the phase and amplitude of signals are better explained
and fitted by the target-oriented differential strategy.

We conclude that there is no unique strategy which can work properly for all the cases. The
use of specific time-lapse strategy depends on the application case, on the quality of the data,
on how matched the two acquisition surveys are, and on how accurately the baseline model is
recovered. For example, in this case study, the parallel difference strategy could provide better
results than the conventional sequential difference strategy. By neglecting the continuous line
(4D artifacts corresponding to the main reflector), the parallel difference could recover the
patches of injected steam which were not detected by the sequential difference. While in
synthetic cases shown in earlier chapters, usually the conventional sequential difference delivers
more robust result than the parallel difference.

In this study, we did not take into account the density model since it was not provided.
In this configuration, since the dataset contains essentially reflection data, it is important to
consider the density model, even at least for computing more accurately the calculated data.
In addition, recovering a density model could be crucial for this dataset, because the presence
of steam induces density change as well. In this case, the amplitude of reflected data could be
better explained during inversion.
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Conclusions and Perspectives

General conclusions
In this manuscript, it has been shown that full waveform inversion is a promising technique

to be used for time-lapse applications, in order to recover small time-lapse changes quantita-
tively. I first developed a methodology designed to include prior model information into the
classical FWI framwork, and showed how crucial it is for time-lapse inversion (Chapters 1 and
2). Three time-lapse strategies (parallel difference, sequential difference and double-difference
(differential)) are proposed for time-lapse inversion. On Marmousi synthetic dataset, I showed
that the double-difference strategy can deliver more robust and more accurate time-lapse ve-
locity variations (Chapter 2). I also proposed a target-oriented time-lapse inversion based on
the specific design of the prior weighting model, in order to make inversion focus only on the
expected area of changes. This target-oriented option can be used with the sequential difference
and the double-difference strategies, where the recovered baseline model is used as the prior
model (Chapter 2).

A sensitivity study time-lapse variations reconstruction according to different frequency
decimations (with frequency-domain FWI) showed that, as anticipated, increasing the number
of inverted frequencies increases the accuracy of time-lapse variations. In this case, probably
it may be more efficient (in terms of computational cost) to use time-domain FWI for time-
lapse applications (Chapter 3). Finally, the suggested baseline recosntruction method including
the prior model and the proposed time-lapse strategies were applied to a real field time-lapse
dataset (steam injection). The negative velocity variations due to the reinjection of steam are
quantitatively recovered (Chapter 4). The differential strategy provides a better time-lapse
variation result with less 4D artifacts and compared to the classical migrated images, the FWI
delivers a quantitative image of changes.

Including prior model
It has been shown that including prior model information is crucial for time-lapse applica-

tions, where there are several kinds of prior information. I have shown the major impact of
the appropriate prior model on the inversion, mainly in reducing the sensitivity of baseline
inversion to the inaccurate smooth initial model. Consequently, this obtained robust baseline
model leads to recover the time-lapse variation in more accurate and more robust ways.

The prior information can be deduced from non-seismic data, well-logging and geological
constraints that are generally available for specific exploration applications and for monitoring
during production. It has been shown that this prior information improves the well-posedness
of the problem as compared to the standard FWI approaches, and allows to partially mitigate
potential kinematic inaccuracy of the starting model. Therefore, the inversion becomes less
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sensitive to the starting model in terms of cycle-skipping issues. The introduction of prior in-
formation would allow to help recover poorly illuminated zones, thus broadening the application
of the full waveform inversion.

The prior model definition, may include structures that can help drive the inversion towards
the global minimum valley without being kinematically as accurate as the initial model for wave
propagation, since the prior model is not used directly to solve the wave equation. However,
in poorly illuminated areas where there is less coverage of seismic data, the inversion is driven
mainly by the prior model term. In these areas, the updated model will be affected by the
structures of the prior model, therefore the design of prior model in these areas must be more
precise in terms of kinematic. Moreover, the structures included in prior model may prevent
convergence in the final steps of the inversion (for the areas that we have good data coverage)
and one may wish to decrease the importance of this prior information with respect to the
data information. I have proposed a dynamic weighting of the prior term during the inversion
in order to smoothly reduce the impact of the prior information. Since the data-misfit term
decreases during the optimization, the weight of prior-model misfit should be decreased as well.
The idea of dynamic prior weighting is interesting, but performing it in smart and more efficient
ways could be an open question for future works.

Time-lapse inversion strategies and applications
I have studied the robustness of three strategies for time-lapse imaging with regularized FWI

in noise-free and noisy synthetic cases. Using the Marmousi model, it has been shown that the
parallel difference strategy is highly sensitive to the differential artifacts in the images coming
from two independent inversions. Since this strategy considers two inversions starting from a
same smooth initial model, it requires a large number of iterations for both baseline and monitor
inversions, therfore it would be less interesting in terms of computational costs. The sequential
difference strategy is more sensitive to the inaccuracy of the recovered baseline model (which
is used as the initial monitor model), because this method attempts to recover the parts of the
model which have not been fully reconstructed before. The continuous updating of baseline
structures can contaminate the final time-lapse variation model and there is a risk to interpret
them as potential 4D variations. This strategy can be more attractive when the baseline model
is accurately recovered. In real and practical applications, it would be difficult to ensure the
high accuracy of the recovered baseline model, however adding the prior model can improve the
accuracy of the obtained model. I should mention that this problem of sequential difference
is not related to a convergence of inversion in a wrong direction. This issue rather appears
as a mixing of two different effects: the updating of baseline structure and the recovering of
time-lapse changes. If it would be possible to qualify the time-lapse variations with another
smart way (a kind of intercorrelation technique) rather than a simple subtraction between the
two obtained models (baseline and monitor), we could better distinguish 4D changes from other
effects.

It has been found that the double-difference strategy is more robust than the sequential one,
since the double-difference inversion only focuses on the difference (time-lapse) data, at least
in the case of a low level of noise. As shown with local resolution analysis, the difference data
are better localized and better focalized at their correct positions using the double-difference
strategy as compared to the sequentail difference strategy. In addition, I have illustrated that
the double-difference strategy is less sensitive to the inaccuracy of the reconstructed baseline
model used as the initial monitor model. In high level of noise environments, it seems that
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the double-difference strategy could be more sensitive to the uncorrelated noise which is not
cancelled out at the subtraction step. By making a simple data substraction, the standard
deviation of random noise will increase and this uncorrelated noise may mask the low energy
real time-lapse signals. In this case, we need another way to extract the real time-lapse signals
from the high level 4D noise, before perfoming the time-lapse inversion. For double-difference,
it is essential to benefit from perfectly matched surveys (e.g. permanent sensors or OBC
configurations) to perform subtraction between datasets. In other cases, it is possible to perform
extra pre-processing steps and make data interpolation to match two surveys. However, the
interpolated data may suffer a bit from interpolation errors which can possibly influence the
recovered time-lapse variations.

I also proposed a target-oriented time-lapse imaging with regularized FWI including prior
model. For that, in the misfit function, I apply strong prior model constraints outside the
areas of expected 4D changes and relatively smaller prior constraints in the target zones. The
target-oriented inversion steers the recovery of the monitor model towards the target areas,
where the smaller prior model constraints give more relative weight to the data-misfit term.
This target-oriented option could be performed as a final focused strategy in real applications,
if prior information exists on the location of expected time-lapse variations and when there is
no change in overburden. Application to the Marmousi noisy dataset shows that the target-
oriented inversion prevents the apparition of image-noise and artifacts outside the target areas.
The target-oriented weighting matrix Wm leads to a similar behavior for the sequential and
the double-difference time-lapse strategies and delivers more robust images for quantitative
and qualitative interpretations. In particular, for the sequential difference approach, the unex-
plained baseline events cannot contaminate reconstruction of the time-lapse perturbations and
the time-lapse variations are better recovered and better positioned with the target-oriented
inversion mode than with the conventional one.

In target-oriented mode, by applying the target-oriented prior model weighting, the misfit
function has changed. Before, the misfit function contained several local minima where it
was more possible to get trapped in. By constraining inversion to the target areas, the misfit
function is reshaped and it seems to become more convex. Therefore, the paths of mimimizing
both misfit functions, in conventional and target-oriented modes, are not the same at all which
leads to different time-lapse results even inside the target areas. In other words, I can mention
that by adding the prior model information to the inversion, the model parameter space is
reduced. Hence, the time-lapse inversion becomes more well-posed.

In our particular real case, due to the lack of low frequency content in the data and lack
of diving and transmission waves, the FWI method acts as a quantitative non-linear migration
technique, as the lower part of the wavenumbers cannot be retrieved from the data part. In
order to partially balance this issue, it has been shown that it is necessary to add prior model
information into the inversion.

In our real case, the result of the sequential difference strategy is not satisfactory in terms of
obtained value of velocity variations. The recovering of residuals left from the previous inversion
was mainly an issue when the conventional sequential difference inversion was performed. The
parallel difference strategy reconstructs the time-lapse variation zones caused by reinjection of
steam. However, the 4D anomalies are less focused and the time-lapse model contains several
artifacts coming from reconstruction of the main reflector, through two separate inversions.
The conventional differential strategy provides a better time-lapse result around the reservoir
depth, with less artifacts compared to the parallel difference. Including the target-oriented
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prior weighting into time-lapse inversion scheme has improved the results of the time-lapse
inversions, particularly for the sequential difference strategy. In this case, the zones affected
by steam injection are better identified. In addition, the target-oriented differential strategy
provides a result with less 4D noise artifacts in the near-surface zone and delivers a more
robust time-lapse result. The obtained time-lapse velocity variation model is consistent with
the classical migrated image of the difference dataset, however the FWI method delivers a
quantitative image of parameter changes.

I conclude that there is no unique strategy which can work properly for all the real cases.
Using a specific time-lapse strategy depends on the application case. The selection of a proper
strategy depends on the quality of data, on how well-matched the two acquisition surveys are, on
how accurate the baseline model is recovered and/or on how well baseline data is fitted. In real
applications, for using the sequential difference strategy, it is important to know how accurate
the baseline data are fitted and explained during baseline reconstruction. If the unexplained
residuals left are large (especially for the seismic events related to the target zones), there
would be a risk that the low signals of time-lapse varitions will not be taken into account for
the inversion (masked by the large unexplained residuals). If this issue occurs for the events
corresponding to the target areas, the target-oriented approach can slightly reduce this issue,
but cannot solve it completely.

Frequency sampling strategies
A frequency decimation strategy has been investigated in order to compress the inverted

data and keep a low complexity of them. For simultaneous frequency inversion, I can conclude
that to get accurate time-lapse variations, it is necessary to increase the number of inverted
frequencies in order to obtain a more precise baseline model. On the other hand, in order to
have less 4D artifacts in the inversion process, the same sampling frequency for the baseline and
time-lapse inversions should be considered (this is related to the time-lapse data repeatability
issue). We need a smaller baseline sampling frequency to get accurate baseline model and also
a smaller time-lapse sampling frequency for time-lapse inversions. Therefore, it is crucial to
increase the number of inverted frequencies for time-lapse applications compared to a general
exploration project. Due to the large number of inverted frequencies, it might be better to move
into time-domain modeling and inversion for time-lapse applications to solve the wave-equation
once for all the frequencies and where all the frequency components are inverted at the same
time. An efficient time-domain inversion algorithm is required. If we have a reasonable number
of sources, doing inversion in time domain is really less expensive and less time-consuming as
compared to performing inversion in frequency domain for a large number of frequencies.

However, the observation from this frequency investigation shows that the differential strat-
egy might be performed in frequency domain with a lesser number of frequencies as compared
to the sequential difference strategy, since the differential strategy is less sensitive to the inac-
curacy of the recovered baseline model. Therefore, in this case, probably we can reach the goal
of data compressing, which would be crucial for 3D inversion. On the other hand, probably
we should make more efforts to reduce the size of data space for time-lapse applications by
other techniques like as source encoding and selection of sources based on their sensitivity to
the time-lapse variations, rather than data compressing by a frequency selection.

Multi-group multi-frequency inversion is another interesting strategy for FWI in frequency
domain, but this approach appears less interesting for time-lapse applications. Starting from a
high resolution baseline model and using multi-group inversion from low to high frequency of
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monitor or composite datasets does not work properly, due to the construction of low wavenum-
bers on the model which already contains high wavenumbers. This leads to generate many ar-
tifacts on time-lapse model, even in noise-free case. In this case, the parallel difference strategy
may be more compatible with this low to high frequency hierarchy than the two other time-
lapse strategies, since both inversions (baseline and monitor) gradually reconstruct the model
from low to high wavenumbers. On the other hand, inversion of all the selected frequencies at
the same time is more compatible with the sequential difference and the differential strategies.

Perspectives

As a general perspective, it is suggested to extend these 2D acoustic time-lapse inversion
strategies to an elastic time-lapse inversion and/or to 3D inversion including a prior model
which is designed through more precise techniques. By reconstructing more macro-scale elastic
parameters (multi-parameter inversion), we can better constrain the estimation of micro-scale
parameters and fluid properties (and their variations in time-lapse applications).

In order to move to intermediate and high frequency inversion, which is crucial for time-
lapse applications, it is necessary to reduce the computational costs and required computing
memories. To do so, it is suggested to use an efficient time-domain inversion, considering a
source-selection technique and reducing the size of the inverse problem to the size of areas of
interest.

Prior model
The design of the prior model, for more complex environments and real data applications,

should also consider geostatistical approaches and/or standard quantitative interpretation tech-
niques to honor the geological structures (Isaaks and Srivastava, 1989; Dubrule, 2003). Indeed,
in addtion to well data, the available geology data could also be integrated for building the
model. Moreover, using the prior model penalty term can be extended in 3D FWI.

As a perspective, if we can access the diagonal term of the Hessian, it can be possible
to compute the a posteriori covariance matrix. Recently, Fichtner and Trampert (2011) and
Demanet et al. (2012) suggested how to approximately compute the Hessian in FWI. In this
case, the a posteriori covariance matrix obtained from the baseline reconstruction step can be
used as the prior information and preconditioning for the monitor inversion. In addition, the
diagonal of the Hessian can be used to balance the prior-model misfit and the data-misfit term
for the optimization.

In target-oriented method, it can be suggested to use a dynamic method for changing the
target prior weighting model during inversion, starting the inversion with wider and larger
target areas, and gradually reducing the size of interested areas.

Time-lapse inversion
In order to better fit the amplitude of time-lapse datasets, it is crucial to take into account

a proper density model for forward modeling. Moreover, the inversion of a density model is
suggested for future work. In fluid substitution, particularly in the case of gas and water, there
would also be significant changes on the density model. Probably, it would be better to invert
the impedance parameter.
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In this thesis, as a first step for time-lapse FWI, the 2D acoustic inversion was investigated.
This time-lapse inversion with introducing of the prior model is suggested to be extended to
the elastic approximation and/or to 3D inversion. In case of 3D inversion, the direct solver
encounters the computational memory limitation in frequency domain, therefore we should
move to the time domain modeling, and especially for time-lapse applications, inversion should
also be performed in time domain.

In the case of 3D full waveform inversion, it is necessary to use the data compressing
techniques and to reduce the computational cost in order to be able to invert higher frequencies
to detect small time-lapse variations. I suggest to reduce the number of sources by selection
of sources which are sensitive to the time-lapse variations using elastic wave sensitivity and
visibility analysis (Denli and Huang, 2008; Shabelansky et al., 2011). Another computational
saving method could be to use a grid injection method to simulate the monitor seismogram
based on the computation of the perturbed seismogram only in the variation zones under some
assumptions (Robertsson and Chapman, 2000; Robertsson et al., 2000; Borisov and Singh,
2013).

In terms of optimization methods, I suggest to use the truncated Newton routine. Métivier
et al. (2013) have shown that the truncated Newton method is less sensitive to the starting
inversion at higer frequencies compared to the Gauss-Newton or quasi-Newton methods. There-
fore, this optimization technique is less sensitive to the accuracy of initial model. Hence, the
truncated Newton method may reduce the sensitivity of time-lapse inversion with respect to
inaccuracy of baseline model. In addition, it has been shown that this technique is more robust
to noise (Métivier et al., 2013).

In noisy case, to better subtract two datasets for double-difference inversion, it could be
possible to use pattern recognition method or co-kriging method to identify the coherent signals
between baseline and monitor datasets. By doing so, it is possible to remove the uncoherent
noise between two datasets before performing subtraction.

To better qualify the time-lapse changes from two obtained models (baseline and monitor),
instead of simple subtraction, we need a smart way to compute the coherency between two
images and to extract the real time-lapse variations from other effects such as continuous
updating the baseline model (especially for the sequential difference strategy). Similar to the
data space in FWI, where several misfit functions between observed and calculated data have
been introduced such as difference-based or correlation-based misfit (van Leeuwen and Mulder,
2008, 2010; Masoni et al., 2013) to better extract the information, we may need a better
difference method to extract time-lapse model from two obtained images.

For our real application (steam injection), due to specific configuration of dataset containing
mainly the reflection events, I suggest to use the waveform inversion of reflected waves in the
data domain which is recently proposed by Brossier et al. (2013).

Since for the time-lapse applications, other kinds of data such as electromagnetic and pro-
duction data are available, joint inversion of seismic data with these datasets can be suggested
which could provide a more robust time-lapse model (Liang et al., 2012).

Downscaling
Once the time-lapse variations of macroscale parameters (∆Vp,∆Vs,∆ρ,∆Qp, ...) are recov-

ered by time-lapse FWI strategies, it is possible to obtain fluid and poroelastic parameter varia-
tions, such as porosity and saturation, by downscaling approaches (Gassmann, 1951; Berryman
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et al., 2002; Avseth et al., 2005; Rubino and Velis, 2011; Dupuy, 2011; De Barros et al., 2012).
In Appendix A.2, we present a paper related to the downscaling approaches, which is still a
work in progress.
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Université de Nice-Sophia-Antipolis.

Brossier, R. (2011). Two-dimensional frequency-domain visco-elastic full waveform inversion:
Parallel algorithms, optimization and performance. Computers & Geosciences, 37(4):444 –
455.

Brossier, R., Operto, S., and Virieux, J. (2009). Seismic imaging of complex onshore struc-
tures by 2D elastic frequency-domain full-waveform inversion. Geophysics, 74(6):WCC105–
WCC118.

Brossier, R., Operto, S., and Virieux, J. (2013). Toward data-domain waveform inversion of
reflected waves. In EAGE Technical Program Expanded Abstracts 2013, page Workshop F01.

Brossier, R., Virieux, J., and Operto, S. (2008). Parsimonious finite-volume frequency-domain
method for 2-D P-SV-wave modelling. Geophysical Journal International, 175(2):541–559.

Bunks, C., Salek, F. M., Zaleski, S., and Chavent, G. (1995). Multiscale seismic waveform
inversion. Geophysics, 60(5):1457–1473.

Byrd, R., Lu, P., and Nocedal, J. (1995). A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific and Statistical Computing, 16:1190–1208.

160



BIBLIOGRAPHY

Calvert, R. (2005). Insights and methods for 4D reservoir monitoring and characterization.
SEG Distinguished Instructor Series No. 8.

Castagna, J. P., Batzle, M. L., and Kan, T. K. (1993). Rock physics - the link between
rock properties and avo response, in offset-dependent reflectivity-theory and practice of avo
analysis, edited by Castagna J.P. and Backus M.M.

Castellanos, J. L., Gomes, S., and Guerra, V. (2002). The triangle method for finding the
corner of the L-curve. Applied Numerical Mathematics, 43:359–373.

Červený, V. (2001). Seismic Ray Theory. Cambridge University Press, Cambridge.

Chauris, H. and Noble, M. (2001). 2D velocity macro model estimation from seismic reflection
data by local Differential Semblance Optimization: applications on synthetic and real data.
Geophysical Journal International, 144:14–26.
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Käser, M. and Dumbser, M. (2006). An Arbitrary High Order Discontinuous Galerkin Method
for Elastic Waves on Unstructured Meshes I: The Two-Dimensional Isotropic Case with
External Source Terms. Geophysical Journal International, 166:855–877.

Lailly, P. (1983a). The seismic inverse problem as a sequence of before stack migrations. In
Bednar, R. and Weglein, editors, Conference on Inverse Scattering, Theory and application,
Society for Industrial and Applied Mathematics, Philadelphia, pages 206–220.

Lailly, P. (1983b). The seismic problem as a sequence of before-stack migrations. In Bednar,
J., editor, Conference on Inverse Scattering: Theory and Applications. SIAM, Philadelphia.

Landrø, M. (2001). Discrimination between pressure and fluid saturation changes from time-
lapse seismic data. Geophysics, 66(3):836–844.

Le Stunff, Y. and Grenier, D. (1998). Taking into account a priori information in 3D tomogra-
phy. In SEG Technical Program Expanded Abstracts, volume 17, pages 1875–1878. SEG.

Levander, A. R. (1988). Fourth-order finite-difference P-SV seismograms. Geophysics,
53(11):1425–1436.

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least-squares.
Quarterly of Applied Mathematics, 2:162–168.

Li, Y. and Oldenburg, D. W. (1998). 3-D inversion of gravity data. Geophysics, 63(1):109–119.

Liang, L., Abubakar, A., and Habashy, T. M. (2012). Joint inversion of time-lapse crosswell
electromagnetic, seismic, and production data for reservoir monitoring and characterization.
In SEG Technical Program Expanded Abstracts, volume 31(1), pages 1–7.

Liao, Q. and McMechan, G. A. (1996). Multifrequency viscoacoustic modeling and inversion.
Geophysics, 61:1371–1378.

Loris, I., Douma, H., Nolet, G., Daubechies, I., and Regone, C. (2010). Nonlinear regularization
techniques for seismic tomography. Journal of Computational Physics, 229:890–905.

Lu, R., Lazaratos, S., Wang, K., Cha, Y., Chikichev, I., and Prosser, R. (2013). High-resolution
elastic FWI for reservoir characterization. In EAGE Technical Program Expanded Abstracts
2013, page Th1002.

Lumley, D., Adams, D., Wright, R., Markus, D., and Cole, S. (2008). Seismic monitoring
of CO2 geo-sequestration: realistic capabilities and limitations. In SEG Technical Program
Expanded Abstracts, volume 27(1), pages 2841–2845.

Lumley, D. E. (1995a). 4-D seismic monitoring of an active steamflood. In SEG Technical
Program Expanded Abstracts 1995, pages 203–206.

Lumley, D. E. (1995b). Seismic time-lapse monitoring of subsurface fluid flow. PhD thesis,
Stanford University.

Lumley, D. E. (2001). Time-lapse seismic reservoir monitoring. Geophysics, 66(1):50–53.

Luo, Y. and Schuster, G. T. (1990). Parsimonious staggered grid finite-differencing of the wave
equation. Geophysical Research Letters, 17(2):155–158.

165



BIBLIOGRAPHY

Ma, Y., Hale, D., Gong, B., and Meng, Z. J. (2012). Image-guided sparse-model full waveform
inversion. Geophysics, 77(4):R189–R198.

MacKay, S., Fried, J., and Carvill, C. (2003). The impact of water-velocity variations on
deepwater seismic data. The Leading Edge, 22:344–350.

Malinowski, M. and Operto, S. (2008). Quantitative imaging of the Permo-Mesozoic complex
and its basement by frequency domain waveform tomography of wide-aperture seismic data
from the Polish basin. Geophysical Prospecting, 56:805–825.

Malinowski, M., Operto, S., and Ribodetti, A. (2011). High-resolution seismic attenuation
imaging from wide-aperture onshore data by visco-acoustic frequency-domain full waveform
inversion. Geophysical Journal International, 186(3):1179–1204.

Marfurt, K. (1984). Accuracy of finite-difference anf finite-element modeling of the scalar and
elastic wave equations. Geophysics, 49:533–549.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters.
Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441.

Martin, G. S., Wiley, R., and Marfurt, K. J. (2006). Marmousi2: An elastic upgrade for
marmousi. The Leading Edge, 25(2):156–166.

Masoni, I., Brossier, R., Virieux, J., and Boelle, J. (2013). Alternative misfit functions for FWI
applied to surface waves. In EAGE Technical Program Expanded Abstracts 2013, page Th
P10 13. EAGE.

Matheron, G. (1970). The theory of regionalized variables and its applications. Technical
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This appendix contains two supplementary articles which were presented and prepared
during this thesis.

The first one is an Extended Abstract which was presented in SEG annual meeting 2011
and it has been honored as “SEG Award of Merit”, Best Student paper presented in SEG
2011.

The second one is a paper related to the downscaling approaches after getting the time-lapse
variations of macro-scale parameters. This paper is still in progress. A suggested workflow can
be used for the downscaling approach, however our applications to realistic synthetic cases
are not complete yet and we have not shown here. The ideal workflow can be using a poro-
elastic dataset and performing acoustic and/or elastic inversion to get macro-scale parameters,
and then perform downscaling approach. In the case of poro-elastic dataset, the recovered Vp
and/or Vs contain already an influence of porous parameters.
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SUMMARY

For monitoring purposes, one of the promising techniques ded-
icated to assess physical properties changes in target regions
is the differential waveform inversion, both in the acoustic and
elastic cases. A central question of this technique regards the
choice of the reference model. One solution could be the use
of the reconstructed baseline image provided through the stan-
dard Full Waveform Inversion (FWI) procedure of initial data.
However, how the accuracy of the baseline reconstructed image
will affect the precision of further time-lapse images is of cru-
cial importance. Here, we present a sensitivity analysis of time-
lapse images obtained from differential inversion, with respect
to various reference models. Density, P- and S-wave velocity
changes could be converted into fluid property changes thanks
to an empirical downscaling relationship. For accurate estima-
tion of fluid parameter changes, the construction of highly re-
solved time-lapse images presenting acceptable errors is a key
issue for the downscaling procedure. We illustrate on a specific
synthetic example that the sensitivity analysis over the refer-
ence model variation provides linear convergence towards the
time-lapse image obtained when using the exact baseline. An
accurate baseline reconstruction is essential and could benefit
from other data collected for monitoring purposes.

INTRODUCTION

FWI is a data fitting procedure aiming to develop high resolu-
tion quantitative images of the subsurface, through the extrac-
tion of the full information content of the seismic data (Taran-
tola, 1984). Beside the exploration application, the FWI method
can be also used for monitoring applications, such as oil and gas
reservoirs, steam injection, CO2 sequestration, in order to ob-
tain a quantitative image of changes of physical properties in
target regions from successive seismic experiments.

The conventional difference method for time-lapse inversion
needs to independently invert the two data sets (baseline and
monitor sets) and to subtract the final derived monitor model
from that of the baseline one in order to obtain a perturbation
image of property changes (Plessix et al., 2010). This proce-
dure might not be so robust because spurious features on both
baseline and monitor images could potentially contaminate the
differential model.

An alternative strategy consists in inverting only the differential
data set to recover a differential image. The differential (double
difference) method is widely used in geodesy and in seismology
in order to improve earthquake source locations or to image re-
ceiver areas (Monteiller et al., 2005). This procedure has been
proposed for time-lapse waveform inversion of acoustic data

in frequency domain (Watanabe et al., 2004) and inversion of
elastic data in time domain (Denli and Huang, 2009). The main
advantage of the differential method compared to the difference
approach is that the common noise between surveys can be re-
jected by data differentiation (Watanabe et al., 2004). The final
time-lapse image is then more robust to noise contamination.

In this study, we investigate the influence of the reference model
on the quality of the time-lapse Vp reconstruction by differential
acoustic FWI. In particular, we address the required accuracy of
the Vp reference model to delineate high resolution time-lapse
image of steam injection in the acoustic version of the Dai et al.
(1995) model.

STANDARD FULL WAVEFORM INVERSION

Standard FWI is an iterative optimization problem that is gener-
ally introduced as a linearized least-squares problem which at-
tempts to minimize the residuals between the observed and the
modeled wavefields (Tarantola, 1987). The inverse problem can
be formulated in the frequency domain (Pratt and Worthington,
1990), and the associated objective function to be minimized is
defined by

C =
n fX

i f =1

nsX
is=1

1
2

∆d†∆d, (1)

where the data misfit error ∆d = dobs−dcalc denotes the differ-
ence between the observed data dobs and the modeled data dcalc
computed in the model m(n) at the iteration n of the inversion.
Superscript † indicates the adjoint (transposed conjugate). The
summations in equation (1) are performed over the ns sources
and a group of n f simultaneously inverted frequencies. The
synthetic data dcalc is obtained by applying a sampling oper-
ator S to the incident wavefield u resulting from the forward
problem resolution Au = s, where the impedance matrix A is
the forward problem operator and s represents the source term.

The gradient G of the objective function with respect to the
model parameters m = {mi}i=1,N , where N denotes the number
of unknowns, can be derived from the adjoint-state formulation
using the back-propagation technique (Plessix, 2006). This for-
mulation gives for the ith component of the gradient G :

Gmi =
n fX

i f =1

nsX
is=1

ℜ
n

ut ∂At

∂mi
λ ∗
o

, (2)

where t and ∗ denote the transpose and conjugate operators, re-
spectively, and ℜ denotes the real part of a complex number.
The gradient can be computed as a product between the incident
wavefield u from the source, and the adjoint back-propagated
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Sensitivity analysis of differential FWI

wavefield λ ∗ which is computed as Aλ ∗ = St∆d∗, using resid-
uals at receiver positions as a composite source. Therefore, for
computing gradient, only two forward problems per shot are
required. The radiation pattern of the scattering by the model
parameter mi is represented by the sparse matrix ∂A/∂mi.

The gradient of the objective function is then used in an opti-
mization algorithm to update the model vector with the pertur-
bation vector δm(n) through the expression

m(n+1) = m(n) +α(n)δm(n), (3)

where the step length at iteration n is denoted by α(n). In this
study, a quasi-Newton L-BFGS (Nocedal, 1980) optimization
scheme with line search is used in the FWI algorithm (Brossier,
2011).

DIFFERENTIAL WAVEFORM INVERSION

In differential method, instead of minimizing the difference be-
tween observed and computed data, we attempt to minimize
the difference of the differential data between two sets of data
(Watanabe et al., 2004; Denli and Huang, 2009), giving us the
expression

∆d = (dobsmonitor −dobsbaseline)− (dcalcmonitor −dcalcbaseline), (4)

where dobsmonitor and dobsbaseline are the observed data from moni-
tor and baseline surveys respectively, and dcalcmonitor and dcalcbaseline

are the computed data for these experiments.

For the differential analysis, we first need the construction of a
composite data set defined as

dcomposite = dobsmonitor −dobsbaseline +dcalcre f , (5)

which is composed of (a) the time-lapse differential observed
data (dobsmonitor−dobsbaseline) which should only represent the time-
lapse changes of the two data sets and (b) the simulated data
dcalcre f computed using forward modeling in one arbitrary ref-
erence model. This reference model should explain as much as
possible the dobsbaseline data. This composite data set dcomposite
can be used as a new observed data set dobs in equation (1),
which is now equivalent to minimize the differential residual
(4) with a standard FWI algorithm.

The differential approach requires that the acquisition surveys
of the two experiments match or could be matched easily to per-
form the difference of the data sets. It means that this method is
dedicated to permanent monitoring systems, where sensors are
deployed once and where the repeatability of the source should
be somehow fulfilled. The meaning of such source repeatability
is a question we shall not address here.

The full procedure of differential approach can be summarized
in the algorithm 1. Results of this algorithm depend on the ref-
erence model and one may question the relation between the
accuracy in the time-lapse image and the selection of the refer-
ence model.

Algorithm 1 Preprocessing and inversion procedure with the
differential algorithm

1: Creating the reference model mre f
2: dcalcre f are computed in mre f
3: The composite data dcomposite are computed (equation (5))
4: A standard FWI procedure is used to invert dcomposite data

from the mre f model that gives mcomposite
5: The time-lapse model changes δmtimelapse can be com-

puted from model δmtimelapse = mcomposite−mre f

SENSITIVITY ANALYSIS

Extracting porosity and saturation for reservoir modeling is one
task of the time-lapse processes. A downscaling procedure is
essential to get fluid property changes from seismic parame-
ters P- and S-wave time-lapse images. In order to get accurate
changes in fluid properties, reconstruction of highly resolved
and accurate differential images is crucial.

One of the conditions that has an important effect on final time-
lapse image is the reference model that is used for differential
inversion. As for full waveform inversion, the starting model
is a crucial point to ensure convergence toward the global min-
imum. However, in differential FWI for reservoir monitoring,
the inversion procedure focuses only on the scattered wavefield
due to the time-lapse changes of the reservoir target that affects
mostly the high frequency content of the data. Therefore, be-
cause of this lack of low frequency content in the time-lapse
data, the selection of the starting model is crucial for the quality
of the time-lapse image.

The reconstruction of the baseline model through the applica-
tion of a standard FWI to the baseline data set will provide one
possible starting model. Is this model enough for accurate dif-
ferential time-lapse imaging? In order to address this point,
the sensitivity of time-lapse image with respect to the reference
model is studied. Several differential inversions are performed
using the same differential data set (dobsmonitor −dobsbaseline), but
using different reference models. We vary these starting models
from the FWI baseline model to the exact baseline model using
a linear interpolation at each point of the medium.

The quality control of final images needs an objective criterion.
Let us define the medium perturbation as

δmcomposite = mcomposite−mtrue−baseline, (6)

where mcomposite is the model parameter obtained by differen-
tial inversion of composite data set. Then, the misfit value be-
tween δmcomposite and true time-lapse model changes can be
computed using the expression

ε =

vuut NX
i=1

`
δmicomposite −δmitrue−timelapse

´2
, (7)

where N denotes the number of model unknowns. In order to
have a better comparison, we normalize this misfit value using
this equation,

γ =
ε− εmin

εmax− εmin
×100, (8)
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Sensitivity analysis of differential FWI

where εmin represents the minimum ε that can be achieved from
differential inversion with the true baseline used as a reference
model. The quantity εmax indicates the maximum misfit value
obtained from the FWI baseline model in our case. A second
criterion is introduced for the analysis of the quality of the ref-
erence model through

µ =

vuut NX
i=1

`
mire f −mitrue−baseline

´2
, (9)

where we normalize this model variation through the expression

η =
µ

µmax
×100. (10)

In equation (10), µmax denotes the maximum misfit value ob-
tained when considering the reconstructed baseline image.

The acceptable upper limit of the function η leads to time-lapse
images with an acceptable accuracy for downscaling. For an
estimation of this acceptable range, we have to consider the
downscaling procedure for computing fluid properties through
empirical relationship between macro-scale elastic parameters
(like wave speed) and micro-scale properties related to fluid pa-
rameters. This range is highly dependent on the accuracy that
we expect for computing fluid parameters, since the time-lapse
model should be used to compute the changes in porosity, fluid
saturation and pore pressure using this empirical relationship
(Landrø, 2001).

Therefore, considering the required accuracy on fluid parame-
ters like porosity, we can estimate the required accuracy on the
macro-scale velocity time-lapse models. From the relation be-
tween time-lapse models accuracy / reference model accuracy,
we can determine the required reference model for differential
FWI procedure to ensure a robust work-flow from time-lapse
composite data until microstructure characterization.
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Figure 1: True Vp models: (a) the baseline, (b) the monitor.

SYNTHETIC APPLICATION

We assess the previous methodology on a synthetic example.
We considered an acoustic synthetic version of the field exam-
ple provided by Dai et al. (1995). The true P-wave velocity
models for our acoustic time-lapse analysis are shown in Fig-
ure 1. Baseline model consists of eight layers; the sixth one is
saturated with oil. After steam injection into this layer, the heat
leads to two concentric areas at depth of 450 m, one saturated
with steam and the outer one with heated oil.

0
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1.0
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e 
(S

)

20 40 60 80 100 120
Trace Number

Figure 2: Differential seismogram of pressure data for the
source located at the center x = 350 m.

Our time-lapse configuration considers 23 sources, located along
a horizontal line with interval of 25 m, below the surface at 75
m depth. We consider one line of receivers at the same depth as
the sources and two vertical lines of receivers inside two bore-
holes at x = 75 m and x = 625 m. An explosive Ricker source
with a central frequency of 20 Hz is used for all shots. The time
seismograms in baseline and monitor models are generated us-
ing a P0 finite element Discontinuous Galerkin forward mod-
eling (Brossier, 2011) and Perfectly-Matching-Layer absorbing
boundaries condition all around the model. For all FWI tests,
we use the same set-up and invert the data sets between 10−60
Hz using sequential inverted frequencies with the inversion al-
gorithm proposed by Brossier et al. (2009).

The baseline data set is first inverted through standard FWI to
reconstruct the baseline image. Then, using linear interpolation
between this reconstructed model and the true baseline model,
three other models are created. Thus we ended up testing five
reference models: the FWI baseline model (Figure 4.a), the
true baseline model (Figure 4.e), and three intermediate mod-
els (Figure 4.b-d). These five reference models are used as an
initial model for the differential inversion of differential data
set (Figure 2) to study the sensitivity of time-lapse image. The
normalized error γ (equation (8)) for time-lapse images is com-
puted for each result, and these error values are plotted, in Fig-
ure 3, versus the accuracy of the reference model described by
the parameter η .

The results and sensitivity curve show that the quality of the
reference model directly drives the quality of the time-lapse im-
age, what we expected. A linear relation also appears in Figure
3, meaning that the time-lapse imaging in this case can be re-
lated to a linear regime of the inversion. From downscaling
constraints and Figure 3, we can determine the required accu-
racy of the reference model for micro-scale characterization.

In addition, it should be mentioned that reconstruction of the
baseline model from standard FWI only could potentially not
be sufficient for being used as a reference for differential inver-
sion. However, for monitoring purposes, extra-information can
be used like well data and geological constraints. These data
should be used as a priori information in the framework of con-
strained FWI in order to build high resolution baseline models
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Sensitivity analysis of differential FWI

for time-lapse imaging.
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Figure 3: Sensitivity curve. Vertical axis indicates the γ value
and horizontal one denotes the value of η . η = 100% and
η = 0% represent the cases i) when the reconstructed baseline
image through standard FWI, and ii) when the true baseline are
respectively used as reference models.

CONCLUSIONS

We have studied the sensitivity of P-wave time-lapse imaging
in terms of reference model accuracy for differential waveform
inversion. Through a synthetic test, we have illustrated the re-
lation between reference model accuracy and time-lapse image
accuracy. This relation can be used to determine the required
accuracy on the reference model in the framework of downscal-
ing procedure for fluid characterization in reservoirs. This accu-
racy of reference model in differential approach is much more
important than in standard full waveform inversion, since the
inversion focuses on time-lapse response that affect mostly the
high frequency content of the data. We propose that this level of
accuracy of the reference model cannot be reached from stan-
dard FWI of recorded seismic baseline data only, but should
benefit from available a priori information like well data and
geological constraints. It will allow better building the accurate
reference model from constrained FWI.

Perspectives of the work will focus on visco-elastic differential
FWI and target oriented imaging on synthetic and real data.
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model at the left part.
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Running head: Downscaling poroelastic properties

ABSTRACT

We present a two-steps method to invert poroelastic parameters using a first step of seismic

imaging that allows to obtain visco-elastic effective quantitative properties. From these

visco-elastic parameters, we develop a semi-global optimization method to estimate mi-

croscale properties (porosity, mechanical moduli, fluid phase properties, saturation). The

sensitivity studies show that we need to keep a well-determined system to obtain accurate

estimation. Making appropriate assumptions on fluid and/or solid phases parameters, we

can then invert pretty well the porosity and mechanical moduli, the fluid properties or

the saturation from P- and S-wave velocities and quality factors. We suggest a workflow

for downscaling the time-lapse parameter variation: after a first step of skeleton charac-

terization on the baseline model using P- and S-wave velocity results obtained by FWI

of poroelastic data, we can invert from the time-lapse P-wave and S-wave velocity, the

fluid properties and saturation changes. Therefore, it is possible to downscale the effective

properties obtained by classic seismic imaging methods to obtain high resolution images of

microscale properties.
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INTRODUCTION

The interpretation of the recorded seismograms has been constantly improved in the last

decades. High resolution seismic reflection methods are useful for subsurface structure

characterization but quantitative methods as arrival time tomography are essential to obtain

quantitative acoustic, elastic or visco-elastic properties. Full-waveform inversion (FWI)

methods are the last improvement of these seismic imaging methods and can provide high-

resolution images of these macroscale effective elastic properties (basically, P- and S-waves

velocities). The aim of this work is to propose to go until the microscale in the seismic

imaging, by downscaling the effective medium properties found by FWI to obtain microscale

poroelastic parameters. We use a two-step inverse approach: from macroscale parameters

(velocities and quality factors) determined by a first inversion step, we recover microscale

parameters in a second step by a downscaling method. We move from a macroscopic scale

to a microscopic scale for the description of the medium.

Numerous models aim to link P- and S-wave velocities (VP , VS) to porosity (φ). Mainly,

when porosity increases, P- or S-wave velocity decreases, pressure and shear moduli de-

creases when the pore volume increases. Empirical relations make a link between VP and

φ, however they are dependent on the rock type because they are based on experimental

measurements. For example, Han et al. (1986) have established linear relations between VP ,

VS and the porosity and the clay content for clastic sediments during their full diagenetic

evolution (from unconsolidated sands to sandstones). Other empirical relations exist, as

Wyllie et al. (1956), Raymer et al. (1980) or Raiga-Clemenceau et al. (1988). However,

in these relations, P-wave velocity is only linked to the porosity while, in real media, the

drained medium (skeleton) rigidity plays an important role as well. This skeleton rigidity is
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depending also on the mineral grains rigidity and the grains arrangement (geometry, com-

paction...). Moreover, we need to consider the rigidity of fluids inside pores. On the other

hand, numerous empirical relations between VP and VS have been established for various

rocks (as an example, summarized by Castagna et al. (1993) for limestones, sandstones,

shales and dolomites).

Several authors address the approaches to invert poroelastic parameters from macroscale

data deduced from seismic signals (velocities, attenuations, AVO...). Berryman et al. (2002)

make a relationship between the propagation velocities VP and VS to the porosity and the

water saturation for several rocks based upon experimental data. Tang and Cheng (1996)

settle all other parameters and deduce the permeability from the Stoneley waves generated

in boreholes. Bosch (1999) introduces a stochastic approach (density probability functions

using Monte-Carlo methods) to invert jointly geophysical data (seismic, electromagnetic

and gravimetric data). This kind of approach is also used by Chotiros (2002) on seismic

data for saturated sands. He shows that the interpretation of data by visco-elastic models is

impossible due to energy losses of waves reflections. Then, he uses a poroelastic modelization

for his inversion to deduce the drained bulk modulus KD and the drained shear modulus

GD from P- and S-wave velocities and attenuations (VP , VS , QP and QS). He also puts

forwards some improvements introducing more complex models (composite materials or

porosity variation with fluid pressure).

In the same manner, Bachrach (2006) inverts seismic data to deduce porosity and sat-

uration images. Gunning and Glinsky (2007) try also to invert grains geometrical charac-

teristics as well as porosity to deduce the medium permeability using variable offset AVO

data. As well, van Dalen et al. (2010) show that it is possible to invert simultaneously

the permeability and the porosity using informations contained in the frequency and angle

3



dependencies of reflection coefficients (PP and PS). Rubino and Velis (2009) describe a pre-

stack spectral inversion method using thin layers AVA data to estimate effective properties

of partially saturated media and Rubino and Velis (2011) link these effective properties to

a saturation estimation.

In this paper, we are followed by Gassmann (1951) relations which allow to compute

the variations of the bulk modulus of the drained medium (and then, the variations of VP )

during a fluid substitution in the porous medium. For that, we need to know the fluid

properties (bulk modulus, density and viscosity) (there are summaries for classical fluids in

Batzle and Wang (1992) or Mavko et al. (2009)). However, the Gassmann relations require

the following assumptions:

• the moduli are computed at low frequency. To have frequency dependent moduli,

we can consider complex media (double porosity, patchy saturation, see Pride et al.

(2004)) to have a broad frequency band.

• the medium is assumed to be isotropic. Brown and Korringa (1975) have extended

the relations to poroelastic anisotropic media, but we have to know properly the

anisotropy parameters which is difficult even with well-constrained laboratory exper-

iments.

• the skeleton is constituted by identical grains. To have various mineralogical com-

positions, we can compute the effective skeleton moduli by averages ((Reuss-Voigt or

Hashin-Shtrickman means).

• the pores are saturated with one fluid phase. Domenico (1976) and Brie et al. (1995)

for instance, use simple averages, partly empirical to compute the properties of the
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effective fluid. However, the patchy saturation theory (White, 1975; Dutta and Odé,

1979) allows to take into account the spatial repartition of each fluid phase, which

can have a strong influence on seismic waveforms dispersion and attenuation.

Gassmann relations are the basis for the downscaling of poroelastic parameters. In

case of complex porous media (double porosity, partially saturated, visco-poroelastic...),

these Gassmann equations can be generalized using frequency-dependent moduli (see Pride

et al. (2004); Dupuy et al. (2012)). Inverted macroscale parameters are classically P- and

S-wave velocities, extracted from seismograms by arrival times tomography. By developing

FWI techniques, we can hope to obtain a better estimation for quality factors QP and QS

(Malinowski et al., 2011). The inversion of other parameters sets could be investigated,

as impedances (acoustic, elastic...), the Lame parameters or parameters coming from AVO

(reflection and transmission coefficients, intercepts, gradients...). Moreover, the use of S-

waves is crucial for several reasons:

• it allows to have more data which is important because the inversion system is highly

under-determined,

• the effects of “non-fluid” parameters (porosity, compaction, clay content...) on VP

and VS are similar, but only the fluid saturation has different effects on VP and VS

(Berryman et al., 2002; Avseth et al., 2005).

After the description of the forward models, we explain the inverse theory and the

semi-global optimization algorithm used to solve the inverse problem. Then, sensitivity

studies describe first which parameters can be inverted from which data. Then, we apply

this downscaling step to synthetic realistic cases. After the computation of seismograms
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of poroelastic wave propagation in the reference medium (described by microscale porous

parameters), an inversion step allows to recover macroscale parameters by FWI. Finally, the

last step consists to recover microscale parameters by inversion of macroscale parameters.

This last inversion step is based on global optimization algorithms.

FORWARD MODELING: UPSCALING APPROACHES

Porous media homogenization (forward model)

The description of a porous media requires an homogenization approach of both fluid and

solid phases in order to deduce an equivalent medium (Burridge and Vargas, 1979). The

porosity φ = VV /VT , which is the ratio between void and total volumes, will define respective

proportions of fluid and solid phases.

The fluid and associated flows through the solid matrix, are described by an bulk mod-

ulus Kf , a density ρf and a viscosity η. The viscosity can be formulated with the intrinsic

permeability k0 introduced in the Darcy law. Auriault et al. (1985) and Johnson et al.

(1987) have generalized the Darcy law with a dynamic permeability k(ω) depending on the

pulsation ω. This permeability, which is a complex number, has a significant frequency

dependence as defined through the dispersive relation

k(ω) =
k0√

1− 1
2 ı

ω
ωc
− ı ω

ωc

. (1)

The cut-off pulsation ωc allows separating the low frequency domain where viscous effects

are dominant from the high frequency one where inertial effects prevail. Using Archie law,
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the pulsation ωc is defined as

ωc =
η

ρfk0φ−m
, (2)

where the cementation exponent m is related to the electrical formation factor and to the

pore tortuosities (Brown, 1980). Then, we can introduce the flow resistance density term

ρ̃(ω) which describes the dynamic loss of energy due to the fluid flow with an explicit

frequency dependence. The term is responsible for the intrinsic scattering of waves in the

Biot poroelasticity theory (Biot, 1956) and it is expressed as

ρ̃(ω) =
ıη

ω k(ω)
. (3)

To consider partially saturated media (several fluid phases), the simplest approach con-

sists to build an effective fluid phase (computed by harmonic and arithmetic averages) to

apply the Biot-Gassmann theory for a saturated medium. Domenico (1976) or Berryman

et al. (2000) propose to compute equivalent parameters by average weighted on volume

fraction of the fluid phase i. For densities, we use an arithmetic average (Voigt, 1889) as

ρf =
∑

i

Vi ρfi
. (4)

For the bulk fluid moduli, the arithmetic (Voigt, 1889) and harmonic (Reuss, 1929)

averages are the low and high limits, as

Kf =
∑

i

Vi Kfi
,

1
Kf

=
∑

i

Vi

Kfi

. (5)
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Classically, the harmonic average is used (Hill, 1952), but for liquid/gas mixture, as an

example, there is four orders in magnitude between Kf for water and for air (105 Pa for

air and 109 Pa for water). For a water saturation less than 99.9 %, harmonic averages give

underestimated results. Brie et al. (1995) formulate the effective Kf as

Kf = (Kfl
−Kfg) V e

l +Kfg , (6)

where the subscript l is for the liquid phase and g for the gas phase. The exponent e can

be taken equal to 5 to have a good agreement with experimental results of Johnson (2001)

(Carcione et al., 2006).

In the same way, for a fluid phase constituted by a gas phase (viscosity ηg and volume

fraction Vg) and a liquid phase (viscosity ηl and volume fraction 1−Vg), Teja and Rice (1981)

give a formula (also used by Carcione et al. (2006)) to compute the effective viscosity η as

η = ηg

(
ηl

ηg

)(1−Vg)

. (7)

The solid skeleton is entirely described by the association of grains (defined by an bulk

modulus Ks, a shear solid modulus Gs and a solid density ρs) in a solid frame. A lot of

effective medium theories can be used to compute the effect mechanical moduli KD and

GD (Berryman, 1995; Mavko et al., 2009). In consolidated materials (typically, rocks as

sandstones, limestones, shales...), Pride (2005) has shown that the use of relations including
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a general consolidation parameter cs matches well the real data:

KD = Ks
1− φ

1 + cs φ
,

GD = Gs
1− φ

1 + 3
2 cs φ

(8)

For unconsolidated materials (near surface sediments as sands or clays), the skeleton me-

chanical behavior is mainly controlled by the grains contacts. Various models derived from

Walton (1987) allow to compute KD and GD in a sphere packing assembly with respect

to the effective stress and a compliance parameters (Pride, 2005). In our downscaling pro-

cess, we test two parametrizations: inversion of consolidation parameter cs or inversion of

effective moduli KD and GD.

The density of the porous medium is the arithmetic mean of fluid and solid phases

weighted by their own volumes via the porosity, such that

ρ = (1− φ) ρs + φ ρf . (9)

The introduction of the undrained bulk modulus KU , the Biot C modulus and the fluid

storage coefficient M allows the explicit description of the homogenized porous medium

through the Gassmann relations (Gassmann, 1951). Relationships between coefficients KU ,

C and M and the modulus functions of KD, Ks, Kf and φ are given by

KU =
φ KD + (1− (1 + φ) KD/Ks) Kf

φ (1 + ∆)
,

C =
(1−KD/Ks) Kf

φ (1 + ∆)
, (10)

M =
Kf

φ (1 + ∆)
,
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with the additional expression

∆ =
1− φ
φ

Kf

Ks

(
1− KD

(1− φ) Ks

)
. (11)

The shear modulus of the porous medium G is independent of the fluid characteristics and,

therefore, equal to the shear modulus of the drained solid skeleton through the relation 8

where only the porosity φ and the consolidation parameter cs are involved.

Effective viscoelastic properties (velocities and quality factors)

The Biot poroelastodynamic theory (Biot, 1956) (formulated in frequency by Pride et al.

(1992)) predicts three wave types: a compressional and a shear waves similar to those

propagating inside an elastic body and a slow compressional wave, called Biot wave, which

is strongly diffusive and attenuated at low frequencies. This Biot wave behaves as either

a diffusive signal or a propagative wave depending on the frequency content of the source

with respect to the cut-off pulsation or characteristic frequency, as defined in equation 2.

The slowness of the shear wave is given by the following equation (Pride, 2005)

s2S =
ρ− ρ2

f/ρ̃

G
, (12)

while slownesses of compressional waves, the P and Biot waves, are given by

s2P = γ −
√
γ2 − 4(ρρ̃− ρ2

f )

HM − C2
, s2Biot = γ +

√
γ2 − 4(ρρ̃− ρ2

f )

HM − C2
(13)
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where γ and H terms are

γ =
ρM + ρ̃H − 2ρfC

HM − C2
, H = KU +

4
3
G . (14)

Then, we can deduce the effective visco-elastic velocities and quality factors for P-, S-

and Biot waves as:

VP,Biot,S(ω) =
1

Re(sP,Biot,S(ω))
.

QP,Biot,S(ω) =
1
2
Re (sP,Biot,S(ω))
Im (sP,Biot,S(ω))

. (15)

The visco-elastic velocities (VP and VS) and quality factors (QP and QS), as well as the

mean density ρ, are the data of our inverse problem and are classically estimated by seismic

imaging methods. These effective properties (or seismic attributes) describe the behavior

of the medium at the macroscale (wavelength).

SEMI-GLOBAL OPTIMISATION METHOD

Seismic imaging methods by FWI or first arrival-time tomography are based upon linearized

local optimization methods which use local properties of the misfit function to determine the

perturbation direction (see Menke (1984); Tarantola (1987); Brossier (2009) for complete

theory). These methods run smoothly to find a local minimum in the close neighboring of

the starting model. The global optimization methods look for global minimum of the misfit

function on the whole model domain, avoiding the convergence towards a local minimum.

These methods consist in the exploration of the whole model space (inverted parameters)
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only limited by minimal and maximal values, to find the lowest misfit function. We use

an oriented Monte-Carlo method (semi-global explorations) which is based upon random

exploration but guided towards best models in order to reduce computational costs. The

Neighborhood Algorithm (NA) is introduced by Sambridge (1999a,b). The main advantage

of this method (compared to simulated annealing or genetic algorithms methods) is that it

needs only two control parameters.

The inverse problem consists in the extraction from data (seismic attributes deduced

from seismograms) of models (poroelastic parameters) and is formulated as

d = g(m) , (16)

where d is the data vector, m is the model vector and g is a non-linear function linking

models and data.

In our approach, this function g contains the analytical Biot-Gassmann relations which

allow to compute P-, S- and Biot velocities and attenuations and the mean density with

respect to the microscale porous parameters. This function is non-linear and the inverse of g

can not be computed. The solving of the system m = g−1(d) has to be done by optimization

methods. The system linearization can be done by local optimization methods which require

to have a good a priori starting model, close to the true model to avoid local minima. This

method is the only one for big problems with a high number of unknowns and/or a large

computational time for the direct problem (for instance, the solving of PDE for FWI).

In our case, the direct model computation is very fast (computation of tens of analytical

relations) and the number of parameters/models is low.

The optimization aims to minimize a scalar function (misfit function) describing the
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discrepancy between observed data dobs and calculated data g(m) (by forward modeling).

We use a L2 norm to compute the misfit as

misfit =
[
(dobs − g(m))T (dobs − g(m))

]1/2
. (17)

For the inversion, we use the neighboring algorithm of Sambridge (1999a). The algorithm

principle consists in dividing the model space in Voronoi cells to focus the resampling with

respect to the lower misfit function values. For each iteration, new cells are defined with

respect to previous sample misfit value. The resample is then focused in the lower misfit

areas. In the examples given in this paper, we compute 1000 iterations and we choose a

resample factor equal to 10, so 10.000 models are generated by each inversion.

After each sampling step, Sambridge (1999b) propose a probabilistic estimation step

for the resolution of the models obtained in the first step. By the definition of density

probability functions, we can quantify the errors and the resolution obtained by the first

sampling step. This bayesian analysis step is not used in this paper.

SENSITIVITY ANALYSIS

We determine the sensitivity of poroelastic parameters with respect to various classes of

macroscale data parametrizations: only P-wave propagation velocity (VP ), P- and S-waves

propagation velocities (VP , VS), P- and S-waves propagation velocities and mean density

(VP , VS , ρ), P-wave propagation velocity and quality factor and mean density (VP , QP , ρ),

P- and S-waves propagation velocities and quality factors (VP , QP , VS , QS) and P- and

S-waves propagation velocities and quality factors and mean density (VP , QP , VS , QS , ρ).
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Various parametrizations are studied for saturated and unsaturated media:

• saturated media, inversion of all parameters of Biot-Gassmann model: fluid phase

(Kf , η and ρf ), solid phase (Ks, Gs and ρs) and skeleton (m, φ and cs),

• saturated media, inversion of skeleton parameters: porosity φ and consolidation pa-

rameter cs or bulk and shear effective moduli KD and GD,

• saturated media, inversion of fluid phase parameters: bulk modulus Kf , viscosity η

and density ρf ,

• partially saturated media, inversion of water saturation V1 and skeleton parameters

(φ and cs).

Inversion of all poroelastic parameters (saturated media)

We consider a consolidated medium saturated with water. The microscale parameters

which describe the medium and the macroscale parameters computed by the Biot-Gassmann

relations are given in table 1. We invert all the parameters of the solid phase (Ks, Gs and

ρs), of the fluid phase (Kf , η and ρf ) and of the skeleton (m, cs and φ) from VP , VS , QP ,

QS and ρ data (figure 1). Due to the high under-determination of the system (9 parameters

and 1 to 5 data), we are not showing the inversion results from less data.

In figure 1, we give 2D sections of the model space (Gs with Ks, η with Kf , ρs with

ρf , cs with φ and m with φ). The color of each dot (representing each computed model)

corresponds to the misfit value. More the number of computed models is high, more we

converge towards the one or several best values thanks to the optimization process that

guides the resampling of medium by Voronoi cells. We can then interpret the misfit function
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shape for pairs of inverted parameters.

Microscale parameters

Ks (GPa) 40
Gs (GPa) 10
ρs (kg/m3) 2700
Kf (GPa) 2.2
ρf (kg/m3) 1000
η (Pa.s) 0.001
m 1
φ 0.4
k0 (m2) 10−11

cs 5

Macroscale parameters

VP (m/s) 2570
VS (m/s) 862
QP 1190
QS 161
ρ (kg/m3) 2010

Table 1: Microscale and macroscale parameters for the saturated medium. Velocities and
quality factor are computed at 200 Hz.

The bulk and shear moduli of grains Ks and Gs are roughly well estimated. Even if

the whole model space is investigated, there is only one main minimum, located in the true

value range. The sensitivities of the fluid bulk modulus Kf and the fluid viscosity η are

very low, with no clear minimum in the misfit function. The densities, fluid ρf and solid

ρs, are more or less well recovered, but the misfit function shows two local minima, even if

the lowest misfit value is located in the right minimum. The skeleton properties, cs and φ,

are well estimated, with only one minimum in the model space. However, the cementation

factor m is not recovered. It is important to note that we use all the data available for this

test, the results obtained with less data are not shown here but are strongly worst.

The inversion of all the poroelastic parameters is then possible when we have no a

priori information about the medium characteristics. Nevertheless, some parameters are
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badly estimated and mostly, to invert correctly some of the parameters, we need to use all

available data. In most classic real cases, we have a priori knowledge of several parameters

(especially for grains and fluid phase), so we can have more targeted inversion on a selection

of parameters.

16



109 2.109Kf                                                                      

0.01

0.02

0.03

0.04

0.05

250 500 750 1000

2600

2700

2800

2900

3000

 0.2  0.5  0.8

5.

10.

15.

                                                                        

 0.2  0.5  0.8
φ                                                                     

1.2

1.5

1.8

                                                                        

ρs

ρf

η

φ                                                                     

2.1010 4.1010Ks                                                                     

Gs                                                                     

cs                                                                     

2.1010

4.1010

m                                                                     
0.0 1Misfit

Figure 1: Inversion of poroelastic parameters (grains shear modulus Gs (Pa), grains bulk
modulus Ks (Pa), fluid viscosity η (Pa.s), fluid bulk modulus Kf (Pa), grains density ρs

(kg/m3), fluid density ρf (kg/m3), consolidation parameter cs, cementation factor m and
porosity φ from VP , VS , QP , QS and ρ data. The true model is represented by the red
cross. Each plot shows the values of computed models in the parameter space. The dot
color depends on the misfit value.
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Skeleton parameters inversion in saturated media

In this second sensitivity test, we assume that the fluid and solid phases parameters are

known as prior information (see table 1) and we invert only the porosity φ and the skeleton

properties (consolidation parameter cs or bulk and shear effective moduli KD and GD). We

give the results as 2D sections of the model space for the parametrization (φ,cs) in figure 2

and for the parametrization (φ,KD,GD) in figure 3.

It is quite simple to analyze the results: as soon as the inversion system is no more

under-determined, the skeleton properties are very well recovered (less than 1% of error).

That means that φ and cs can be well estimated with VP and VS data (figure 2(b)) but

not with only VP (figure 2(a), about 50% of error). We clearly see on the 2D sections of

the model space that the area of low misfit is considerably larger on figure 2(a) than on

figure 2(b), with several local minima while the low misfit zone is unique and become more

and more reduced when we add more data (figures 2(c), 2(d), 2(e) and 2(f)), it means the

inversion becomes more and more well-posed. To assess the robustness of the inversion,

several tests have been done using erroneous a priori data. When we consider an error of

5% on a prior parameter (Kf or Ks), the discrepancy between true and estimated values

increases and we need more data to obtain a good estimation.

For the (φ,KD,GD) parametrization (figure 3), we observe similar patterns with a good

estimation of the three parameters as soon as we have three types of input data (figures

3(c), 3(d), 3(e) and 3(f)). When we use only VP data (figure 3(a)), the local minima are

numerous and the parameters are not well estimated. Using VP and VS data (figure 3(b)),

we reduce the low misfit zone but we still have between 20% and 60% of discrepancy between

true and estimated values.
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Figure 2: Inversion of skeleton parameters (porosity φ and consolidation parameter cs) from
(a) VP , (b) VP , VS , (c) VP , VS , ρ, (d) VP , QP , ρ, (e) VP , QP , VS , QS et (f) VP , QP , VS , QS , ρ.
The true model is represented by the red cross. Each plot shows the values of computed
models in the parameter space. The dot color depends on the misfit value.
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Figure 3: Inversion of skeleton parameters (porosity φ, bulk drained modulus KD and
shear drained modulus GD) from (a) VP , (b) VP , VS , (c) VP , VS , ρ, (d) VP , QP , ρ, (e)
VP , QP , VS , QS et (f) VP , QP , VS , QS , ρ. The true model is represented by the red cross.
Each plot shows the values of computed models in the parameter space. The dot color
depends on the misfit value.
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Fluid phase properties inversion (saturated media)

For time-lapse applications in oil, gas or water reservoirs (pumping or storing), it can be

interesting to know which fluid is saturating the rock. As an example, when we inject

steam at high temperature in an oil reservoir, the geometrical extension of oil, heated oil

and steam in the geological layer can be determined by the inversion of macroscale data to

recover the fluid parameters: Kf , η et ρf . Here, we consider consolidated sands (Dai et al.,

1995) where the steam is injected and we want to determine which fluid is saturating the

reservoir layer. The physical parameters are given in table 2 for several fluids filling up the

porous medium (oil, heated oil, steam or water).

Figure 4 shows 2D sections of the model space ((ρf ,Kf ) and (η,Kf )) for each fluid

inverted from VP data or from VP , VS and ρ data. Oil, heated oil and water have properties

in the same order of magnitude and show similar results. Using only VP (figures 4(a), 4(c)

and 4(e)), only the bulk modulus Kf is well estimated, ρf and η has a large spreading of

the low misfit zone. Adding new data (figures 4(b), 4(d) and 4(f)) allow to better constrain

the inversion and to recover the fluid density. Nevertheless, the fluid viscosity is never well

estimated, probably due to its low sensitivity (even using additional QP and QS data, not

shown here).

When the filling fluid is steam, we have 3 orders of magnitude between moduli for oil

and steam, 2 orders between densities, 7 orders between viscosities. The inversion is then

really worst for steam properties, the low misfit zone is broader whatever the data and only

the density is well estimated (lowest difference in value) using VP , VS and ρ data (figure

4(h)). However, even if several fluid parameters are difficult to invert (mainly the viscosity),

we can even though determine the kind of fluid using the information obtained by the Kf
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and ρf estimation from VP and VS velocities and from the density ρ, in order to determine

the nature of the saturating fluid.

Microscale parameters

Ks (GPa) 37
Gs (GPa) 4.4
ρs (kg/m3) 2650
m 1.5
φ 0.33
k0 (m2) 10−12

cs 20
Oil Heated oil Steam Water

Kf (GPa) 1.7 1.2 1.4 10−3 2.5
ρf (kg/m3) 985 900 10 1040
η (Pa.s) 150 0.3 2.2 10−5 0.001

Macroscale parameters

VP (m/s) 1900 1769 1428 2090
VS (m/s) 359 361 390 357
QP +∞ +∞ +∞ 1967
QS 2.6 109 6.1 106 3.1 106 15588
ρ (kg/m3) 2101 2073 1779 2119

Table 2: Microscale and macroscale parameters for the Dai model. Velocities and quality
factor are computed at 20 Hz.
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Figure 4: Inversion of fluid phase parameters: bulk modulus Kf (Pa), viscosity η (Pa.s)
and density ρf (kg/m3) from (a,c,e,g) VP and from (b,d,f,h) VP , VS , ρ data. The true model
is represented by the red cross. The saturating fluid are (a,b) heated oil, (c,d) oil, (e,f)
water and (g,h) steam. The maximum value of the misfit for the steam results (i,j) is lower
(0.0001 or 0.000001 instead of 0.001). Each plot shows the values of computed models in
the parameter space. The dot color depends on the misfit value.
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Saturation and skeleton parameters inversion (unsaturated media)

In this last sensitivity test, we use a Biot-Gassmann model for a partially saturated medium

including an effective fluid phase computed by simple averages. The geological layer is

composed of sands partially saturated with air and water. The parameters values are given

in table 3. We invert jointly the skeleton parameters φ and cs and the water saturation V1.

Microscale parameters

Ks (GPa) 40
Gs (GPa) 10
ρs (kg/m3) 2700
V1 0.4

Kf (water) (GPa) 2.2
Kf (air) (GPa) 1.5 10−4

Kf (effective) (GPa) 0.0227
ρf (water) (kg/m3) 1000
ρf (air) (kg/m3) 1.2

ρf (effective) (kg/m3) 400.72
η (water) (Pa.s) 0.001
η (air) (Pa.s) 1.8 10−5

η (effective) (Pa.s) 2 10−4

m 1
φ 0.4
k0 (m2) 10−11

cs 5

Macroscale parameters

VP (m/s) 2377
VS (m/s) 919
QP 85
QS 82
ρ (kg/m3) 1780

Table 3: Microscale and macroscale parameters for the unsaturated medium. Velocities and
quality factor are computed at 200 Hz.

The results are shown in figure 5 for (VP ), (VP , VS), (VP , VS , ρ) and (VP , QP , ρ) data.

Similarly to previous results, when the system is under-determined (less data than inverted

parameters), it is difficult to obtain a good estimation of the inverted parameters (by about
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5 to 30% of error on φ and cs and between 30 to 80% of error on V1). The misfit functions

(figures 5(a), 5(b) and 5(c)) underline this, showing several local minima, especially for

V1. The shape of the misfit function for φ and cs is more uniform but still broad. Using

(VP , VS , ρ) data, the skeleton parameters are not exactly estimated (12% of error on φ and

25% of error on cs) even if the misfit function has only one global minimum. In this case,

the water saturation is badly recovered as well. Then, it is necessary to use amplitude data

(QP , figure 5(d)) to obtain significant good results (less than 1% of error). The results for

(VP , QP , VS , QS) and (VP , QP , VS , QS , ρ) data are not given here but show similar results

as (VP , QP , ρ) data.
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Figure 5: Inversion of skeleton parameters (porosity φ and consolidation parameters cs)
and water saturation V1 from (a) VP , (b) VP , VS , (c) VP , VS , ρ and (d) VP , QP , ρ data. The
true model is represented by the red cross. Each plot shows the values of computed models
in the parameter space. The dot color depends on the misfit value.
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SYNTHETIC TIMELAPSE EXAMPLES

We apply the downscaling method to realistic cases. We present two kinds of reservoir time-

lapse studies, the first one based on Dai et al. (1995), steam injection into oil reservoir, and

the second one based on a part of the Marmousi model. The approach is the following:

• computation of synthetic poroelastic data for a set of sources and receivers,

• inversion of macroscale parameter changes from poroelastic seismograms by time-lapse

FWI (first, by acoustic FWI and then by elastic FWI),

• downscaling of poroelastic parameters by global optimization.

The work is still in progress and we are not able to show the results before completing

the studies. Here, we briefly describe the Dai model in terms of microscale and macroscale

parameters.

Fluid substitution in a layered reservoir

Model description

This realistic case is based on Dai et al. (1995) works and consists in a oil reservoir where

steam is injected to improve the oil recovery. Eight horizontal sand layers, becoming more

and more consolidated by increasing the depth, are defined by their poroelastic microscale

parameters (see table 4). The fluid phase saturating the porous medium is constituted by

water except for the reservoir layer (layer number 6), saturated with oil before the injection.

During the steam injection, two concentric half-circles are made around the injection point

(top of the reservoir layer) where the porous medium becomes saturated with steam and
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heated oil. These changes in the fluid properties affect the macroscale parameters (velocities

and attenuations) (given in table 4).

Figure 6 sums up the microscale parameters values (Ks, Gs, ρs, Kf , η, ρf , φ and k0)

for the baseline model and their geometrical repartition. The values of grains parameters

(Ks, Gs and ρs) increase with depth, in the same way for skeleton parameters (φ and k0),

except in the reservoir layer which has high porosity and permeability. The parameters cs

and m are constant. Indeed, in the model definition by Dai et al. (1995), the compacity of

the solid phase is carried by the grain parameters KS et GS (which should be defined as

KD and GD). The fluid phase parameters are constant in each layer (water) except in the

sixth one, saturated with oil.

Figure 7 shows the values of the fluid parameters after injection. We can easily observe

the two concentric half-circles for steam and heated oil phases in the reservoir layer. The

macroscale parameters are given in figure 8 for the baseline model and in figure 9 for

the monitor model. Globally, VP , VS and ρ increase with depth (related to the porosity

and compacity values), except in the high porosity reservoir layer which presents velocities

and density lower than overburden layers (which are above and below the reservoir). The

attenuations are relatively low in near-surface layers. The fluid phase change in the reservoir

has an important influence only on VP and ρ values (figure 9).

28



Sa
nd

la
ye

rs
St

ea
m

H
ea

te
d

oi
l

1
2

3
4

5
6

7
8

K
s

(G
P
a
)

5.
2

5.
3

5.
8

7.
5

6.
9

37
9.

4
26

37
37

G
s

(G
P
a
)

2.
4

2.
9

3.
3

4.
2

3.
6

4.
4

5.
6

17
4.

4
4.

4
ρ

s
(k
g
/m

3
)

22
50

23
00

24
00

24
90

22
11

26
50

26
70

27
00

26
50

26
50

K
f

(G
P
a
)

2.
5

2.
5

2.
5

2.
5

2.
5

1.
7

2.
5

2.
5

0.
00

14
1.

2
ρ

f
(k
g
/m

3
)

10
40

10
40

10
40

10
40

10
40

98
5

10
40

10
40

10
90

0
η

(P
a
.s

)
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

15
0

0.
00

1
0.

00
1

2.
2

10
−5

0.
3

m
1.

5
1.

5
1.

5
1.

5
1.

5
1.

5
1.

5
1.

5
1.

5
1.

5
φ

0.
25

0.
1

0.
05

0.
03

0.
01

0.
33

0.
02

0.
05

0.
33

0.
33

k
0

(m
2
)

10
−1

2
10
−1

3
10
−1

3
10
−1

3
10
−1

6
10
−1

2
10
−1

3
10
−1

4
10
−1

2
10
−1

2

cs
20

20
20

20
20

20
20

20
20

20
f c

(k
H
z
)

19
48

17
8

15
30

4.
6

10
6

4.
3

17
1

66
10

4

B
io

t
w

av
e

re
gi

m
e

D
iff

us
iv

e
V

P
(m
/s

)
15

05
16

13
17

49
20

19
21

79
19

00
22

65
32

81
14

28
17

68
V

S
(m
/s

)
33

0
54

8
73

3
93

6
11

16
35

9
11

40
15

71
39

0
36

1
V

B
io

t
(m
/s

)
7.

8
4.

2
6.

2
8.

8
0.

4
0.

03
11

.7
3.

5
3.

5
0.

6
Q

P
94

8
41

3
+
∞

10
54

+
∞

+
∞

+
∞

+
∞

+
∞

+
∞

Q
S

∗1
03

14
.3

3
16

0
17

2
18

0
1.

62
10

5
2.

58
10

6
19

4
19

25
31

14
61

08
Q

B
io

t
0.

5
0.

5
0.

5
0.

5
0.

5
0.

5
0.

5
0.

5
0.

5
0.

5
ρ

(k
g
/m

3
)

19
48

21
74

23
32

24
45

22
00

21
00

26
37

26
17

17
79

20
73

T
ab

le
4:

M
ic

ro
sc

al
e

an
d

m
ac

ro
sc

al
e

pa
ra

m
et

er
s

of
th

e
D

ai
re

se
rv

oi
r

m
od

el
(c

om
in

g
fr

om
D

ai
et

al
.(

19
95

))
.

T
he

ve
lo

ci
ti

es
an

d
th

e
qu

al
it

y
fa

ct
or

s
of

P
-,

S-
an

d
B

io
t

w
av

es
(V

P
,
V

S
,
V

B
io

t,
Q

P
,
Q

S
an

d
Q

B
io

t)
ar

e
co

m
pu

te
d

fo
r

th
e

ce
nt

ra
l

fr
eq

ue
nc

y
of

th
e

so
ur

ce
(2

0
H
z
).

29



0

100

200

300

400

500

600

700

D
e

p
th

 (
m

)

0 100 200 300 400 500 600 700
Distance (m)

0

2

3

4

x1010

U
n

c
o

m
p

re
s
s
ib

ili
ty

 s
o

lid
 m

o
d

u
lu

s
 (

P
a

)

(a) Ks

0

100

200

300

400

500

600

700

D
e

p
th

 (
m

)

0 100 200 300 400 500 600 700
Distance (m)

0.2

0.7

1.2

1.7

x1010

S
h

e
a

r 
M

o
d

u
lu

s
 (

P
a

)

(b) Gs

0

100

200

300

400

500

600

700

D
e

p
th

 (
m

)

0 100 200 300 400 500 600 700
Distance (m)

2210

2310

2410

2510

2610

S
o

lid
 d

e
n

s
it
y
 (

k
g

/m
^3

)

(c) ρs

0

100

200

300

400

500

600

700

D
e

p
th

 (
m

)

0 100 200 300 400 500 600 700
Distance (m)

1.7

2.2

x109

U
n

c
o

m
p

re
s
s
ib

ili
ty

 f
lu

id
 m

o
d

u
lu

s
 (

P
a

)

(d) Kf

0

100

200

300

400

500

600

700

D
e

p
th

 (
m

)

0 100 200 300 400 500 600 700
Distance (m)

0

50

100

F
lu

id
 v

is
c
o

s
it
y
 (

P
a

.s
)

(e) η

0

100

200

300

400

500

600

700

D
e

p
th

 (
m

)

0 100 200 300 400 500 600 700
Distance (m)

985

1005

1025

F
lu

id
 d

e
n

s
it
y
 (

k
g

/m
^3

)

(f) ρf

0

100

200

300

400

500

600

700

D
e

p
th

 (
m

)

0 100 200 300 400 500 600 700
Distance (m)

0

0.1

0.2

0.3

P
o

ro
s
it
y

(g) φ

0

100

200

300

400

500

600

700

D
e

p
th

 (
m

)

0 100 200 300 400 500 600 700
Distance (m)

0

2

4

6

8

x10 -13

P
e

rm
e

a
b

ili
ty

 (
m

^2
)

(h) k0

Figure 6: Microscale poroelastic parameters for the baseline model (before injection): (a)
Ks, (b) Gs, (c) ρs, (d) Kf , (e) η, (f) ρf ,(g) φ, (h) k0. The exact values are given in table
4. The cs and m parameters are constant.
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Figure 7: Microscale poroelastic parameters for the monitor model (after injection): (a)
Kf , (b) η, (c) ρf . The exact values are given in table 4. The other parameters (grains,
skeleton) have the same values for monitor and baseline models (see figure 6).
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Figure 8: Macroscale visco-elastic parameters for the baseline model (computed at 20 Hz,
before injection): (a) VP , (b) VS , (c) QP , (d) QS , (e) ρ. The exact values are given in table
4. The values of QP and QS that are higher than, respectively, 1200 et 500000, are not
distinguished.
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Figure 9: Macroscale visco-elastic parameters for the monitor model (computed at 20 Hz,
after injection): (a) VP , (b) ρ. The exact values are given in table 4. The other parameters
(VS , QP et QS) have similar values than those for the baseline model (see figure 8).
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CONCLUSIONS AND PERSPECTIVES

In this work, we have developed a complete workflow to estimate poroelastic parameters

from seismograms data. We have used a two-step method, consisting of a first step of con-

ventional seismic imaging (FWI) and a second step of downscaling. This paper is focused

on the downscaling step which uses a semi-global optimization method. The forward model

is constituted by analytic equations based on Biot-Gassmann theory for upscaling an ef-

fective porous medium. These equations can be frequency-dependent to take into account

dispersion of propagation velocities and attenuations but these frequency effects are mainly

observed for complex media (patchy saturation, double porosity). The inverse problem of

downscaling is solved using a semi-global optimization method (NA algorithm) which is

efficient for the fast and analytic forward model. Moreover, a probabilistic estimation can

be useful to quantify the uncertainties (but it is not performed in this work).

A sensitivity study has been done first in order to find the best parameters sets to invert

with respect to various macroscale data. Indeed, the jointly inversion of all poroelastic

parameters is not reliable, we need to have some a priori assumptions to reduce the under-

determination of the inverse system. However, the inversion of frame/skeleton parameters

is really good when the system is well determined (two data required for φ and cs set

and three data required for φ, KD and GD set). The fluid properties are well estimated,

especially the bulk modulus Kf (even with only VP data). The sensitivity of fluid density

ρf is lower but the inversion is correct using more data. Nevertheless, it is impossible to

invert the viscosity η due to its very low sensitivity. Moreover, when the fluid has very

low values (steam or gas), it is more difficult to estimate correct values because of high

differences of order of magnitude in the parameters. In these cases, the inversion of the
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logarithmic function of parameters could be a solution. But, even if we invert only Kf , we

can determine the fluid type from it and then, recover the values of density and viscosity.

The inversion of saturation and skeleton properties shows mainly that it is necessary to use

QP to obtain a proper estimation of saturation.

To be continued ...

ACKNOWLEDGEMENTS

We would like to thank M. Sambridge for providing his neighborhood algorithm code used in

this paper. Bastien Dupuy thank the ROSE project for financial support. The project was

supported by the ANR ”Captage et Stockage de CO2” program (ANR-07-PCO2-002) and

by national computer centers IDRIS and CINES through the project 046091. The LU factor-

ization of the impedance matrix was performed with MUMPS available on http://graal.ens-

lyon.fr/MUMPS/index.html. The mesh generation was performed with help of TRIANGLE,

available on http://www.cs.cmu.edu/quake/triangle.html.

34



REFERENCES

Auriault, J.-L., Borne, L., and Chambon, R. (1985). Dynamics of porous saturated media,

checking of the generalized law of Darcy. Journal of Acoustical Society of America,

77(5):1641–1650.

Avseth, P., Mukerji, T., and Mavko, G. (2005). Quantitative Seismic Interpretation: Ap-

plying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press,

Cambridge, UK.

Bachrach, R. (2006). Joint estimation of porosity and saturation using stochastic rock-

physics modeling. Geophysics, 71(5):53–63.

Batzle, M. and Wang, Z. (1992). Seismic properties of pore fluids. Geophysics, 57(11):1396–

1408.

Berryman, J. (1995). Mixture theories for rock properties in Rock Physics and Phase Rela-

tions, A Handbook of Physical Constants. AGU Ref. Shelf, vol. 2, edited by Ahrens, T.J.,

AGU, Washington.

Berryman, J., Berge, P., and Bonner, B. (2000). Transformation of seismic velocity data to

extract porosity and saturation values for rocks. Journal of Acoustical Society of America,

107(6):3018–3027.

Berryman, J., Berge, P., and Bonner, B. (2002). Estimating rock porosity and fluid satu-

ration using only seismic velocities. Geophysics, 67:391–404.

Biot, M. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid. I.

low-frequency range, II. higher frequency range. Journal of Acoustical Society of America,

28:168–191.

35



Bosch, M. (1999). Lithologic tomography : From plural geophysical data to lithology

estimation. Journal of Geophysical Research, 104(B1):749–766.

Brie, A., Pampuri, F., Marsala, A., and Meazza, O. (1995). Shear sonic interpretation in

gas-bearing sands. SPE Annual Technical Conf. 30595, pages 701–710.
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