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Résumé

Le suivi temporel est un processus d’acquisition et d’analyse d’acquisitions multiples répétées
au méme endroit sur la méme cible a différentes périodes de temps. Cela s’applique bien a
I’exploration sismique quand les propriétés de la cible varient au cours du temps comme pour
les réservoirs pétroliers. Cette technique de sismique, dite 4D en raison de l'intégration du
temps dans la construction des images, permet une détection et une estimation des variations
du sous-sol survenues lors de I’évolution en temps du milieu. En particulier, dans ’industrie, le
suivi et la surveillance peuvent améliorer notre compréhension d’'un réservoir de pétrole/gaz ou
d’un site de stockage de CO5y. Analyser la sismique 4D peut aider a mieux gérer les programmes
de production des réservoirs. Ainsi, des acquisitions répétées permettent de suivre I’évolution
des fronts de fluide injecté: on peut optimiser les programmes d’injection de fluides pour une
récupération améliorée des hydrocarbures (enhanced oil recovery).

Plusieurs méthodes ont été développées pour I'imagerie variable dans le temps en utilisant
les informations des ondes sismiques. Dans ma these, je montre que 'inversion de forme d’onde
complété (FWI) peut étre utilisée pour cette imagerie. Cette méthode offre des images sismiques
quantitatives haute résolution. Elle est une technique prometteuse pour reconstruire les petites
variations de propriétés physiques macro-échelle du sous-sol. Sur une cible identifiée pour ces
imageries 4D, plusieurs informations a priori sont souvent disponibles et peuvent étre utilisées
pour augmenter la résolution de I'image. J’ai introduit ces informations grace a la définition
d’un modele a priori dans une approche classique FWI en 'accompagnant de la construction
d’un modele d’incertitudes a priori. De plus, j’ai introduit une pondération dynamique de
maniere a réduire I'importance de ces modeles a priori lors de la convergence finale. Sur des
exemples synthéques réalistes, j’ai montré que 'inversion FWI est moins sensible au modele
initial (qui peut donc étre moins précis) grace a cette utilisation de l'information a priori. Il
est donc possible d’obtenir un modele tres précis comme modele de base pour 'imagerie 4D.

Une fois la reconstruction d’un tel modele atteinte, plusieurs stratégies peuvent étre utilisées
pour évaluer les changements de parametres physiques. On peut réaliser deux reconstructions
indépendantes et faire la différence des deux modeles reconstruits: on parle de différence paral-
lele. On peut aussi effectuer une différence séquentielle ou I'inversion de ’ensemble de données
de la second acqusition, dite moniteur, se fait a partir du modele de base et non plus a partir
du modele utilisé initialement. Enfin, 'approche double-différence conduit a 'inversion des dif-
férences entre les deux jeux de données que ’on rajoute aux données synthétiques du modele de
base reconstruit. J’étudie quelle stratégie est a adopter pour obtenir des changements vitesse
plus précis et plus robustes. En plus, je propose une imagerie 4D ciblée en construisant un
modele d’incertitude a priori grace a une information (si elle existe) sur la locatisation poten-
tielle des variations attendues. Il est démontré que l'inversion 4D ciblée empéche 'apparition
d’artéfacts en dehors des zones cibles: on évite la contamination des zones extérieures qui



pourrait compromettre la reconstruction des changements 4D réels.

Une étude de sensibilité, concernant I’échantillonnage en fréquence pour cette imagerie 4D,
montre qu’il est nécessaire de faire agir simultanément un grand nombre de fréquences au
cours d’'un cycle d’inversion. Ce faisant, 'inversion fournit un modele de base plus précis que
I’approche temporelle, ainsi qu un modele des variations 4D plus robuste avec moins d’artéfacts.
Toutefois, la FWI effectuée dans le domaine temporel semble étre une approche plus intéressante
pour limagerie 4D. Enfin, I’approche d’inversion 4D régularisée avec un modele a priori est
appliquée sur des ensembles de données réelles d’acquisitions sismiques répétées fournis par
TOTAL. Cette reconstruction des variations locales s’inscrit dans un projet d’injection de
vapeur pour améliorer la récupération des hydro-carbures: Il est possible de reconstituer des
variations de vitesse fines causées par la vapeur injectée.



Abstract

Time-lapse monitoring is the process of acquiring and analysing multiple seismic surveys, re-
peated at the same place at different time periods. This seismic technique, called 4D because
of the integration time in the construction of images, allows detection and estimation of the
subsurface parameter variations occured through a time evolution. Particularly, in industries,
the monitoring can improve our understanding of a producing oil/gas reservoir and C'Os stor-
age site. Analyzing the time-lapse seismics can help to better manage production programs
of reservoirs. In addition, repeated surveys can monitor the evolution of injected fluid fronts
and can permit to optimize injection programs which are considered for enhanced oil recovery
(EOR) techniques.

Several methods have been developed for time-lapse imaging using seismic wave informa-
tion. In my thesis, I show that full waveform inversion (FWI) can be used for time-lapse
imaging, since this method delivers high-resolution quantitative seismic images. It is a promis-
ing technique to recover small variations of macro-scale physical properties of the subsurface.
In time-lapse applications, several sources of prior information are often available and should
be used to increase the image reliability and its resolution. I have introduced this information
through a definition of a prior model in a classical FWI approach by also considering a prior
uncertainty model. In addition, I have suggested a dynamic weighting to reduce the impor-
tance of these prior models in the final convergence. In realistic synthetic cases, I have shown
how the prior model can reduce the sensitivity of FWI to a less accurate initial model. It is
therefore possible to obtain a highly accurate baseline model for 4D imaging.

Once the baseline reconstruction is achieved, several strategies can be used to assess the
physical parameter changes. We can make two independent reconstructions of baseline and
monitor models and make subtraction of the two reconstructed models. This strategy is called
parallel difference. The sequential difference strategy inverts the monitor dataset starting from
the recovered baseline model, and not from the model used initially. Finally, the double-
difference strategy inverts the difference data between two datasets which are added to the
calculated baseline data computed in the recovered baseline model. I investigate which strat-
egy should be adopted to get more robust and more accurate time-lapse velocity changes. In
addition, I propose a target-oriented time-lapse imaging using regularized FWI including prior
model and model weighting, if the prior information exists on the location of expected varia-
tions. It is shown that the target-oriented inversion prevents the occurrence of artifacts outside
the target areas, which could contaminate and compromise the reconstruction of the effective
time-lapse changes.

A sensitivity study, concerning several frequency decimations for time-lapse imaging, shows
that the frequency-domain FWI requires a large number of frequencies inverting simultaneously.



By doing so, the inversion provides a more precise baseline model and more robust time-lapse
variation model with less artifacts. However, the FWI performed in the time domain appears
to be a more interesting approach for time-lapse imaging considering all frequency content.
Finally, the regularized time-lapse FWI with prior model is applied to the real field time-
lapse datasets provided by TOTAL. The reconstruction of local variations is part of a steam
injection project to improve the recovery of hydrocarbons: it is possible to reconstruct the
velocity variations caused by the injected steam.
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Introduction

Time-lapse seismic reservoir monitoring has received much attention over the past decade for
improving our understanding of complex phenomena in the upper crust from natural geological
variations as well as from anthropagenic influences. Time-lapse monitoring is the process of
acquiring and analysing multiple seismic surveys, repeated at the same place at different time
periods, in order to image potential fluid changes in a producing reservoir and/or C Oz storage
site (Landrg, 2001; Lumley, 2001; Calvert, 2005). Due to the extra fourth dimension, which is
time, the repeated 3D seismic survey is often called 4D seismics.

The final goal of seismic monitoring is the estimation of fluid parameter variations in a
reservoir during production time and/or CO; storage during stockage time. While fluid satu-
rations, pressures and temperatures in the reservoir change, seismic reflection properties change
according to their sensitivity to each parameter. In time-lapse applications, by assuming the
solid skeleton is time-invariant during production time (sometimes this may not be the case,
due to physical changes and/or chemical reactions), it is possible to separate the dynamic fluid
flow properties from the static geology footprint in seismic data and to produce images of
the time-variant fluid changes (Lumley, 1995b, 2001). Figure 1 shows two seismic attributes
acquired at two different times. By interpreting them, it is possible to detect the changes of
oil water contact (OWC) over time. Amplitude and phase of seismic data change because of
substitution of oil by water.

Compared to the 3D seismic, which is an exploration tool, 4D seismics is an important
reservoir engineering management tool. Time-lapse images can identify bypassed hydrocarbon
and show potential fluid migration paths. Therefore, it can be used for making a decision to
drill or not to drill new wells in the field. Another example of the use of time-lapse monitoring
concerns one of the EOR (Enhanced Oil Recovery) techniques, related to injection of fluid
(water, steam, gas, etc.) into the reservoir. Repeated surveys can monitor the evolution of
injected fluid fronts and can permit to optimize injection programs (Lumley, 2001). In addition,
time-lapse models can distinguish the fluid-flow properties of sealing or non-sealing faults in
complex reservoir.

Acquisition & processing

Repeatability in seismic acquisition is a crucial issue for time-lapse monitoring. Advances in
repeatability of acquisitions can result in a major enhancement in time-lapse signal-to-noise
ratio (Zabihi Naeini, 2012). Several studies have been shown that small changes in tides, water
velocity, near surface properties (due to temperature changes), ambient noise, source and re-
ceiver positioning, for example, can produce significant non-repeatability effects on time-lapse
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Principle of 4D acqusition Guilfpdcs fiold

Figure 1: A repeated survey allows to monitor fluid variation in the subsurface (from Statoil).

data (Moldoveanu et al., 1996; Beasley et al., 1997; Rennie et al., 1997; Porter-Hirsche and
Hirsche, 1998; Ronen et al., 1999; MacKay et al., 2003; Bertrand and MacBeth, 2003). Some
of these acquisition effects can be reduced by performing more repeatable acquisition geome-
tries, using minimized streamer cable feather, using ocean-bottom cable (OBC), and with the
installation of permanent sensors on the site (Lumley, 2001), as shown by two examples: Seis-
Movie technology suggested by CGG (http://www.cgg.com/default.aspx?cid=5899) and
OptoSeis system recently installed in deepwater offshore Brazil by PGS (http://www.pgs.
com/en/Geophysical-Services/4D-Seismic/Permanent-Monitoring/). Indeed, permanent
receivers are widely used in microseismic projects and could also be used for permanent reser-
voir monitoring. Some other effects such as ocean velocity variation and even changes in source
and receiver locations could be reduced during the time-lapse data processing steps, using stat-
ics correction and 4D binning (Zabihi Naeini et al., 2009; Zabihi Naeini, 2012; Zabihi Naeini
et al., 2012).

The main aim of 4D processing is the mitigation of the 4D noise caused by changes in
acquisition parameters or environmental conditions, and the improvement of the 4D signature
of the reservoir caused by changes in fluid, pressure and stress. For this reason, there is a need
to obtain excellent 3D or 2D seismic images for each dataset, and simultaneously optimize time-
lapse repeatability in areas without any changes. This processing workflow is known as cross
equalization in the industry (Lumley, 2001). The main purpose of 4D cross-equalization tools
is to process repeated vintage data together in order to equalize spectral bandwidth, amplitude
gain variations, and event positioning to optimize 4D seismic difference anomalies (Harris and
Henry, 1998; Rickett and Lumley, 1998). Figure 2 shows an example of the cross-equalization
process (before and after). We can see that, after applying the cross-equalization process, the
spectral bandwidth of both surveys become almost similar.

Several processing steps should be performed for time-lapse projects. 4D binning is an
essential step to improve the repeatability of time-lapse (4D) data. Binning is a strategy to
select the most compatible traces which are best matched between two surveys in terms of
source, receiver and midpoint position, offset and azimuth. In other words, the 3D image
quality is reduced in order to gain better subtraction between repeated vintages (Meunier and
Herculin, 2003). The binning criteria corresponding to the selection of the most compatible

14
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Figure 2: An example of the cross-equalization process. Amplitude spectra before (left) and
after (right) cross-equalization. The solid line corresponds to the baseline survey and the dashed
line to the monitor survey acquired after 12 years later (from Rickett and Lumley (1998)).

traces can be extended to include statistical measurements of 4D data quality based on cross-
correlation and normalized RMS (NRMS) or predictability (http://www.cgg.com). Recently,
Zabihi Naeini et al. (2009) have proposed a simultaneous multi-vintage (SMV) 4D binning
algorithm which provides the best possible repeatability across all vintages and in each bin,
instead of cascaded (pair-wise) processing (Figure 3).

/ Vintage 1 / / Vintage 2rf / / Vintage 1 // Vintage 2 // Vintage 3 /

Process 2

Simultaneous
multivintage processing

Figure 3: Comparison of cascaded (left) and simultaneous (right) multi-vintage processing
approaches for a time-lapse study with three vintages (from Zabihi Naeini et al. (2010)). In
cascaded processing, the vintage 1 and 2 are compared as well as the vintage 2 and 3, but
comparison of vintage 1 and 3 is not considered. While in simultaneous approaches, all the
possible comparisons are considered at the same time.

Rock physics and time-lapse data

Fluid parameter variations, pressure and temperature changes have a direct effect on subsurface
macroscale parameters such as the P-wave velocity V), the S-wave velocity Vj, the density,
etc.. In the 1980’s, it has been shown that thermal effects and/or presence of free gas (steam
injection) on heavy-oil saturated field lead to large decreases in seismic rock velocity (Nur
et al., 1984; Pullin et al., 1987; Greaves and Fulp, 1987; Wang and Nur, 1990). The significant
decrease of rock seismic impedance due to the presence of free gas allows to track the motion
of gas-fluid contact and detect chambers of injected gases (Johnstad et al., 1995; Harris et al.,
1996; QueiBer and Singh, 2013).

15
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Numerous models aim to link the P- and S-wave velocities (V},, Vi) to the porosity (¢) in
a downscaling procedure. Mainly, when porosity increases, P- or S-wave velocity decreases, as
well as pressure and shear moduli. Empirical relations try to make a link between quantities
Vp and ¢, but they are dependent on the rock type because they are based on experimental
measurements. For example, Han et al. (1986) have established linear relations between V},, Vi,
porosity and the clay content for clastic sediments during their full diagenetic evolution (from
unconsolidated sands to sandstones). Other empirical relations exist, as those from Wyllie et al.
(1956), Raymer et al. (1980) or Raiga-Clemenceau et al. (1988). However, in these relations,
the P-wave velocity is only linked to the porosity while, in real media, the drained medium
(skeleton) rigidity plays an important role. This skeleton rigidity depends also on the mineral
grains rigidity and the grain arrangement (geometry, compaction, etc.). Moreover, we need to
consider the rigidity of fluids inside pores. On the other hand, numerous empirical relations
between V,, and Vi have been established for various rocks (as an example, summarized by
Castagna et al. (1993) for limestones, sandstones, shales and dolomites).

Therefore, if it is possible to recover the time-lapse variations related to macroscale param-
eters using time-lapse seismic inversions, we can hope to get fluid and poroelastic parameters
variations by downscaling approaches (Gassmann, 1951; Berryman et al., 2002; Avseth et al.,
2005; Rubino and Velis, 2011; Dupuy, 2011; De Barros et al., 2012).

Analysis of time-lapse data: how to get maps of changes

After processing datasets and obtaining optimal 4D seismic signal anomalies (with less 4D
noise), we can analyse the time-lapse signals to get qualitative and quantitative interpretations.
The first qualitative interpretation is to calibrate the time-lapse changes in the seismic data
with changes observed in other reservoir data such as pressure and temperature data in well
logs, production and injection history data, etc. This step can show that time-lapse seismic
changes are real and are not due to artifacts related to acquisition and processing. At this step,
we can have a qualitative idea about fluid saturation changes and/or pressure and temperature
variations inside reservoirs (Lumley, 1995a; Jenkins et al., 1997; Anderson et al., 1997; He et al.,
1998).

To make a better reservoir management recommendation, it is preferred to make a quan-
titative time-lapse analysis. This can be done by inverting time-lapse seismic data to produce
dynamic-property variation maps and this is an active research topic (Lumley, 2001). An at-
tribute clustering technique has been used by Sonneland et al. (1997) to obtain oil and gas
saturation maps from Gullfaks field. Later, time-lapse amplitude versus offset (AVO) inversion
of reflectivity has been presented to estimate pressure and fluid saturation changes (Tura and
Lumley, 1999; Landrg, 2001).

Another technique, widely used for quantitative time-lapse analyses, is a warping method
to improve an alignment of seismic volume or image with the other one (align baseline and
monitor surveys) (Hall et al., 2002, 2005; Hall, 2006; Williamson et al., 2007). Standard warping
algorithms estimate time-shifts by selecting windows of data from one image and searching over
time displacements to maximize the correlation (trace by trace). This method depends on the
length of correlation window and may induce artifacts in the difference volume. Therefore, the
correlation-based warping technique has shown insufficient resolution, lower stability and less
accuracy (Williamson et al., 2007). The main limitation of this approach is the poor-sensitivity
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to density variations (reflectivity), since it estimates the time-shifts which are sensitive to the
velocity variations. However, Williamson et al. (2007) have proposed a new warping method
to explain both time-shifts and amplitude changes and to provide stable estimation of velocity-
change attributes. This new approach is limited to flat reflectors, for near-offsets and the
velocity should vary smoothly laterally. Recently, (Hale, 2013) proposed a dynamic warping
method which is able to align both time-shifts and amplitude between two traces. It appears
that this dynamic warping could also be used for time-lapse applications in the future.

During the past decade, full waveform inversion (FWI) has become a promising technique
for seismic inversion, especially in exploration projects (Virieux and Operto, 2009). This ap-
proach can deal with the complex datasets and the complex physical model parameters and
it delivers high resolution and quantitative interpretation of macroscale physical parameters
(Brossier, 2009; Brossier et al., 2009). This framework can provide P-wave, S-wave velocities,
density, attenuation factor and even the anisotropy parameters through multiparameter inver-
sion (Virieux and Operto, 2009; Brossier et al., 2009; Malinowski et al., 2011; Plessix, 2012;
Prieux et al., 2013a,b; Gholami et al., 2013a). Moreover, difference-based FWI takes into ac-
count both phase and amplitude information of seismic data. FWI has been promoted as high
resolution seismic imaging with a theoretical resolution of half the minimal wavelength. More-
over FWI aims for an improved automated workflow with less inputs from interpreters. The
initial model design still remains an issue and if its building relies on travel-time tomography,
some pickings, more or less automatic, will be required: an open question for the moment.

Considering these advantages, FWI could be an interesting technique to be used for inverting
the time-lapse datasets, even if it is not yet widely applied (Gosselet and Singh, 2008; Abubakar
et al., 2009; Plessix et al., 2010; QueiBer and Singh, 2013; Zheng et al., 2013).

FWI in brief

Today, one of the interesting imaging techniques is known as full waveform inversion (FWT).
The purpose is the interpretation of the entire seismograms using complete wave propagation
features. The seismic data-fitting procedure was presented as a local optimization method by
Lailly (1983b) and Tarantola (1984a). It is shown to be a least-squares minimization of the
misfit between observed and calculated data. Figure 4 shows an example of elastic FWI on a
synthetic wide-aperture marine dataset (after Shipp and Singh (2002)). It shows the observed
and final calculated data and final residuals. The relationship between the seismic data and the
model parameters is nonlinear in the forward modeling. Therefore, the inversion appears to be
nonlinear and hence this method is reduced to an iterative linearized approach. This seismic
inversion method is called the full waveform inversion, because the full information content of
the seismogram is considered in the optimization. The waveform inversion has been developed
in time-domain inversion in 1980s (Tarantola, 1984a, 1987; Gauthier et al., 1986; Mora, 1989),
and in 1990s in frequency domain (Pratt and Worthington, 1990; Pratt, 1990a). Later, the
frequency-domain FWI became a widely applied seismic inversion method (see e.g. Pratt and
Shipp (1999); Pratt and Symes (2002); Ravaut et al. (2004); Gelis et al. (2004); Operto and
Virieux (2006); Sirgue et al. (2007); Malinowski and Operto (2008); Ben Hadj Ali (2009) and
Plessix (2009)), however several nice applications have been also shown for time-domain FWI
(Shipp and Singh, 2002; Sears et al., 2008, 2010).

In full waveform inversion, the initial model (often rather smooth but kinematically accu-
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Figure 4: The wavefield inversion experiment on a synthetic wide-aperture marine streamer
data with 12 km offset, after Shipp and Singh (2002). (a) The observed data, (b) the final data
computed by elastic FWI, and (c) the residual between observed data and the FWI computed
data.

rate) is updated with the perturbation obtained by an optimization algorithm. The updating
model continues toward minimization of the misfit function until reaching the convergence. In
general, the local optimization method has difficulties to converge toward the global minimum
of the misfit function, if the initial point is far away from the global minimum. Due to the
ill-posedness of the inverse problem, there is a possibility to get trapped in existing local min-
ima. The main challenges for FWI concern the accuracy of the initial model and also the lack
of low frequency content in the observed data as we relax conditions on the initial model with
lower and lower frequency content. Therefore, in order to retrieve low spatial wavenumbers, it
is essential that the observed data contain the transmitted and diving waves (wide-aperture)
(Pratt et al., 1996; Sirgue and Pratt, 2004). These arrivals are useful for the reconstruction
of the large wavelengths of the subsurface. Less accurate initial models lead to cycle-skipping
problems. The initial model should predict arrival times with errors less than half of the period
to avoid the cycle-skipping ambiguity (Virieux and Operto, 2009).

The starting model of FWI can be obtained by ray-tracing based methods (Cerveny, 2001;
Virieux and Lambaré, 2007), reflection/refraction traveltime tomography (Taillandier et al.,
2009; Roux et al., 2011; Prieux et al., 2013c) and by migration velocity analysis (MVA) tech-
niques (Chauris et al., 2002a,b; Sava and Biondi, 2004; Symes, 2008), which all can usually
provide a smooth initial model. The MVA procedure relies on iterative applications of prestack
depth-migration and velocity analysis. The velocity updating can be performed through min-
imization of a differential semblance functional in the image domain (Symes and Carazzone,
1991; Chauris and Noble, 2001; Shen and Symes, 2008). The drawback of these MVA ap-
proaches is the computational cost of the iterative application of prestack depth migration
and velocity analysis. Recently, Wang et al. (2013) have proposed an integrated workflow of
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combination wave-equation tomography (WET) and full waveform inversion (FWI) through
a hybrid misfit function. This workflow allows inverting for high-resolution subsurface veloc-
ity structure from a poor constrained initial model. Building accurate initial models for full
waveform inversion still remains an important research topic (Chauris et al., 2008).

Objectives

In this thesis dissertation, I want to answer these following questions. Can the FWI method
be used for the reconstruction of small time-lapse variations or not? Can this method deliver a
robust time-lapse result for macroscale parameter changes? How to obtain accurate and robust
time-lapse models using FWI approach? I mainly focus on inversion of time-lapse datasets in
depth domain to get the map of P-wave velocity variations using 2D acoustic full waveform
inversion (FWI). As a first step, time-lapse analysis is considered as a single parameter inversion.
Multi-parameter FWI is still an issue for general exploration projects to accurately estimate
several macroscale parameters. Therefore, in this thesis, the time-lapse inversion is restricted
to acoustic approximation and single parameter inversion in order not to have influence of
multi-parameter inversion problems on the estimation of small time-lapse variations. In this
case, our conclusion will not be affected by the multi-parameter issue.

The goal of this thesis is to focus on the analysis of time-lapse data to get macroscale
parameters in more complex 2D models. I will show how the time-lapse velocity can be obtained
in a robust way with less time-lapse noise artifacts. However, the suggested approaches in this
thesis can be extended to elastic and multi-parameter inversion in the future, which is an
important issue to get more accurate and more robust fluid and microscale parameter changes
by downscaling. Indeed, in addition to V,, @, the knowledge of Vi and @Qs changes may
contribute to image fluid changes (Dupuy, 2011). Before transition to multi-parameter time-
lapse inversion, it is crucial to develop the current FWI algorithms to be adapted for more
precise multi-parameter estimation, an open active research line.

This research study includes four main objectives: (a) taking into account the available
non-seismic prior data into the inversion scheme by adding prior model misfit term into data-
driven FWI framework and showing that the prior model information is essential for time-lapse
FWI , (b) better understanding of which time-lapse strategy can deliver more robust and more
accurate time-lapse velocity variations. I also propose a target-oriented time-lapse inversion
in order to make inversion focus only on the expected area of changes. Sensitivity analysis on
synthetic datasets are performed as well, (c) studying a sensitivity analysis of reconstruction
time-lapse variation models using different frequency decimations for the baseline (time zero)
and monitor (greater times) inversions. Which sampling frequency can be suitable to recover
baseline accurately, and consequently to reconstruct small time-lapse perturbations? I show
that it may be better to use time-domain FWI for time-lapse applications, (d) applying the
suggested time-lapse strategies to realistic synthetic and real field datasets (steam injection
case).

In Chapter 1, I discuss how to include the prior model information into standard FWI,
which is necessary for time-lapse applications. It is illustrated that the prior model term may
significantly reduce the inversion sensitivity to less accurate initial model conditions. It is
highlighted how the limited range of spatial wavenumber sampling due to the acquisition may
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be compensated with the prior model information, in order to get a more accurate baseline
model.

Chapter 2 explores different time-lapse FWI strategies and their sensitivities. After base-
line reconstruction, several strategies can be used to recover the physical parameter changes,
such as parallel difference (two separate inversions of baseline and monitor datasets), sequential
difference (inversion of the monitor dataset starting from the recovered baseline model), and
double-difference (inversion of the difference data starting from the recovered baseline model)
strategies. I compare the robustness of these strategies on two synthetic datasets, on famous
and complex Marmousi2 model (Martin et al., 2006) and a modified steam injection model
originally introduced by Dai et al. (1995). In addition, a target-oriented time-lapse inversion is
proposed based on the prior model and the prior weighting, in order to focus inversion on the
expected area of time-lapse changes.

In Chapter 3, several studies are investigated in order to find which domain, time or
frequency, would be more suitable for a time-lapse application. I propose to compare the
results of an inversion approach in frequency domain inverting all the frequencies simultaneously
(similar to the time-domain inversion) and several decimations on the selected frequencies on
the Marmousi synthetic data. It is shown that to get more accurate time-lapse model with less
4D artifacts, it is necessary to perform frequency-domain FWI with dense frequency samples.

Chapter 4 contains the application of time-lapse FWI on a real field steam injection
dataset (Canada). The presented workflow for synthetic cases at early chapters are also taken
into account for this real field application.
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REGULARIZED FULL WAVEFORM INVERSION

In this chapter, we first discuss the forward modeling and standard full waveform inversion.
We then present an article, published in Geophysics journal, which discusses how to include
the prior model information into the standard procedure of FWI. For time-lapse inversion,
it is necessary to have high accurate and high precise baseline model in order to reconstruct
small time-lapse variations (Asnaashari et al., 2011). The issue with this result is that standard
FWI, which generally only uses information from surface seismic data, cannot deliver the proper
accuracy in baseline model estimation. Figure 1.1 shows the sensitivity of reconstructed time-
lapse models by differential waveform inversion with respect to reference models. Figure 1.1]
shows the recovered time-lapse variation which is similar to the true one. In these simple
synthetic examples, we can clearly see that an improvement of the recovered baseline model

leads to an improvement of the time-lapse model. For more details, please refer to Appendix
Al

In order to increase the precision of the recovered baseline model, it may be interesting to
add more information into the inversion scheme. These supplementary information addition
to seismic data, called prior information, could be integrated inside additional terms of the
objective function. This is the main goal of the article presented hereafter (section 1.2). It
must be noted that, in time-lapse applications, there are usually several sources of available
prior information, which may be crucial in term of final precision. This leads to end up with
more accurate baseline and more robust time-lapse variation models.

1.1 Full waveform inversion

Generally, the full waveform inversion (FWI) is represented as data-driven approach based on a
least-squares local optimization problem. A representation of inverse problem is performed on
probabilistic maximum likelihood or generalized inverse formulation (Menke, 1984; Tarantola,
1984a). Lailly (1983a) and Tarantola (1984a) represented the seismic inversion problem by
recasting the migration imaging principle (Claerbout, 1971, 1976), as a local optimization
problem. The reader is referred to Virieux and Operto (2009) for an overview on the FWI
problem in exploration geophysics. The generalized inverse problem is based on minimizing
the difference between the observed data d,;s, and the data calculated in an estimated model
d.(m). Before going to inverse problem, we need to have an accurate forward modeling engine
to simulate the calculated data.

1.1.1 Forward modeling

The modeling of the synthetic data is performed using full wave equation, which provides a
data vector with complete waveforms sampling the subsurface at receiver positions. Several
techniques of discretization of wave equation have been studied, such as finite-difference (FD)
or finite-element (FE) methods. Among them, one of the possible methods is the finite element
discontinuous Galerkin (DG) method (Késer and Dumbser, 2006; Dumbser and Késer, 2006;
Brossier et al., 2008). This DG method allows the use of triangular/tetrahedral meshes, which
is suitable for the handling of strong physical contrasts in the medium, including liquid/solid
contact. However this method demands higher computational costs compared to the finite-
difference method and is more difficult to be implemented. Therefore in this study, we use the
finite-difference method to solve the 2D acoustic wave equation in the time domain,
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Figure 1.1: Reference and time-lapse V), models: left panel shows the evolution of reference
models from (a) reconstructed baseline image to (e) the true baseline model, and right panel

illustrates each time-lapse image corresponding to the reference model at the left part.
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1
p(z, 2)

1 0*u(z, z,t)

oo )V (w,2) o

v

where quantities p and V), represent the density and velocity of the medium. u and s denote the
pressure wavefield and an acoustic source, respectively. The finite-difference scheme suggested
by Levander (1988) adapted for the acoustic case is used. The velocity-pressure formulation of
the 2D acoustic wave equation, which is reduced from 2D P-SV formulation, is given by

Vu(z, z,t)) — = —s(z, 2,t), (1.1)

8ux(;’t, %t _ H(%Z)(f)vx(g;z,t) T (@2 t))
Ouy(x, z,t) Ovy(x, z,t)
Q828 g, 5y Rl 1)
ot 0z
Ovg(z, 2, t) ou(z, z,t)
— L = bz, z)——=
ot ox
ovz(z,z,t) ou(z, z,t)
ot - b($72> Oz ’ (12)

where vy (x,z,t) and v,(x, z,t) are the horizontal and vertical particle velocities. The pres-
sure components ug(z,z,t) and wu,(z,z,t) are used to separate the horizontal and vertical
derivatives and also to take into account for the perfectly matched layers (PML) absorbing
condition (Berenger, 1994; Operto et al., 2002). The real pressure wavefield can be computed
by u(x,z,t) = ug(z, z,t) + uy(x, z,t). The quantities b(x, z) and k(z, z) represent the inverse
of density (buoyancy) and bulk modulus (pVPQ).

This system can be easily discretized using Virieux-Levander staggered-grid stencils (Virieux,
1986; Levander, 1988). Geometry of the staggered-grid is shown in Figure 1.2. The FD classic
staggered-grid stencils provide calculated pressure wavefields with an accuracy of the fourth-
order in space and second-order in time O(h?, At?). Spatial derivatives are discretized along
the Cartesian directions. The FD grids are uniform in time and space domains.

V.
B :Vvzb

V iy K

Figure 1.2: Geometry of the staggered grid for Virieux-Levander stencils adapted to the acoustic
case (after Operto et al. (2007)).
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1.1 Full waveform inversion

1.1.1.1 Spatial discretization rule: numerical dispersion

The usual discretization rule is 10 and 5 grid points per minimum wavelength for the classic
O(h?) and O(h*) staggered-grid stencils, respectively (Virieux, 1986; Levander, 1988). For
our case, since we use the fourth-order stencils, the spatial discretization h should satisfy the
condition 1.3,

)\min
h <
5
V. .
h < —Pmin 1.3
5fma:): ( )
where Vj, . and fpae denote minimum P-wave velocity of medium and maximum frequency

content of source wavelet.

1.1.1.2 Time discretization rule: stability conditions

To keep numerical calculation stable, the time increment At must be less than or equal to
the Courant limit (Richtmyer and Morton, 1967) known as the CFL condition. The stability
condition in 2D case for O(h*, At?) is given by,

At < 0.606—"—. (1.4)

Pmax

To have an accurate modeling of seismic waves, both conditions 1.3 and 1.4 must be satisfied.

1.1.2 Inverse problem

In general, the inverse problem involves optimization of a misfit functional, which measures
the distance between observed and computed data. The misfit functional is defined based on
the considered ¢5 or 1 norms in the data space. The theory of the generalized inverse problem
(as a least-squares optimization), and different methods for model parameter estimation were
established by Tarantola (1987). One of the main principle of the least-squares criterion of
the misfit function underlies on the hypothesis that all uncertainties in the inverse problem
are modelled with Gaussian distributions (Tarantola, 1987). In FWI, the residual or misfit
vector Ad, is defined as the difference between observed and computed data vectors at the
receiver positions for each source. The residual vector is the criterion showing the closeness of
the computed data vector to the observed data vector:

Ad = dops — dcal(m)- (1'5)

In FWI, the inverse problem represents a nonlinear relation between data and model spaces.
Hence, the solution of the inversion is computed with linearized iterative methods to minimize
the misfit function. The seismic wavefield data in the time domain are represented by real-
valued seismograms, and in the frequency domain by complex-valued data for each frequency
component. In this chapter, we focus on inversion in time domain, hence the formulation is
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REGULARIZED FULL WAVEFORM INVERSION

shown in this domain. In Chapter 3, a complete study for the frequency-domain inversion for
a time-lapse application will be discussed.

The solution of the forward problem is the wavefield of each seismic source in the model
domain. Mathematically, the data is obtained by applying a sampling operator Pgqs, (corre-
sponding to the receivers) on the solution u in the model domain (deq; = Pgatat). The objective
of full waveform inversion is to seek the minimum of the misfit function starting from the ini-
tial model mgy The £5 norm misfit function of data is defined by the least-squares equation as
(Tarantola, 1987):

T
C(m) = ;A (dobs _dcal(m))t(dobs_dcal(m)) dr
1T
- 2/0 AdtAd dr, (1.6)

where ! is the transpose operator (reminding that the data in frequency domain is complex and
the complex conjugate operator must be applied as well) and T is the trace length (recording
time). Some weighting (more desirable to be related to the variance of data) may be applied
on the residual vector to equalize the role of each residual vector components in the misfit
function. This data weighting matrix (W;) can be seen as an inverse of the data covariance
matrix (Tarantola, 2005). When the weighting matrix is equal to identity matrix, it means
same weight is applied to all data misfit components. For a seismic wide-aperture/wide-azimuth
dataset, the weighting matrix can be applied based on the offset distance and/or aperture angle.
The weighting depends on the distribution of the misfit between the observed and computed
data vectors. The weighting coefficient on each components of misfit vector can penalise the
data vector components. By considering the prior information on the data using weighting
matrix, the misfit function (equation 1.6) would appear as a weighted misfit function and leads
to a weighted least-squares problem:

T
C(m) = ;/0 Ad'WyAd dr. (1.7)

In FWI, because of the huge number of estimated parameters and of the importance of
computational cost for solving the direct problem, FWI method generally uses linearized and
iterative local optimization scheme.

Let us consider the framework of small perturbation or Born approximation in the scattering
theory (see e.g. Born and Wolf (1980); Hudson and Heritage (1981); Beydoun and Tarantola
(1988); Beydoun and Mendes (1989); Coates and Chapman (1990); Born and Wolf (1993);
Forgues and Lambaré (1997)). At each iteration k, we can express the updated model based
on the starting model m*~! and the perturbation vector Am*: m* = m*~1 + AmF. We search
for the local minimum of the misfit function C(m*) departing from the model m*~! of previous
iteration:

C(mk) = C(m*~t + Am"). (1.8)

By assuming that the model perturbation vector is small enough with respect to model vector,
the second-order Taylor expansion of misfit function gives:

8m2- ¢

n k—1
C(m*t+AmF) = c(m* 1 + Z MAM
=1
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Z § L) N A + O(m?), (1.9)

8m0m
’L].j]. v J

where n is the size of model parameter vector. Taking the derivative of equation 1.9 with
respect to the model parameter m; leads to:

ac(m*)  aC(mF1) N "L 9%C(mF!

)
aml aml A

amiaml

mF. (1.10)
=1

The optimum solution is obtained, when the quadratic (O(m3) = 0) misfit function is
tracked in minimum (9C(m*)/dm; = 0):

82C(mk_1)Amk B _8C(mk_1)

omZ o (1.11)

The first-order term dC(m*~!)/dm in equation 1.11 is the gradient vector of the misfit function
and the second order term 02C(m*~1)/0m? is the Hessian matrix. Equation 1.11 can be
expressed in linear form as

HF1AmF = —gk-1, (1.12)

the so-called normal equation. We may solve this equation through a Newton approach de-
livering the minimum of misfit function in one iteration in case of a inverse problem with a
linear forward problem. For the FWI, since the inverse problem is highly non-linear, it must be
solved iteratively with a linearized problem at each iteration. The complete forward problem is
performed at each update of the model. The forward problem is not approached by any means
for a linear formulation. The gradient of misfit function G, is the vector whose components are
the partial derivatives of misfit function C with respect to the model parameters:

oc ocC oc

)

G=( ). (1.13)

omy Oms’  Om,

In other words, the negative of the gradient of misfit function (AC) represents the direction
of descending toward the minimum. The Hessian matrix is the square matrix of second-order
partial derivatives of misfit function:

r 9%C 9%C 9%C_ T
8m% Om10ms Om10mn
82c 82c 8
OmoOmy amg Omodma,
H= . (1.14)
82c c 8
| Omndm1  Ompdmo om2

When the misfit function is continuous, the Hessian matrix is a symmetric square matrix (i.e.
9’c  _ 9%
om;0m; ~— Om;om;
function. The model perturbation vector is the solution of the linear system 1.12, which is

solved by iterative optimization methods.

). The Hessian matrix represents the curvature trend of the quadratic misfit

27



REGULARIZED FULL WAVEFORM INVERSION

The gradient and Hessian expressions of the misfit function (equation 1.7) should be detailed
here. Taking the first-order derivative of the misfit function with respect to model parameter
leads to an expression for the gradient as

aC(m)
 Om
8dcal (m)

T
= —/ (T)th(dobs - dcal(m)) dr
0 m

G(m) =

T
= —/ JWyAd dr. (1.15)
0

The operator J is the Jacobian or Fréchet derivative matrix. The Jacobian matrix is the first-
order derivative of calculated data vector with respect to model vector. Note that the operator
J represents the discrete first-order Born operator if the linearized direct problem is considered
Ad = JAm (Tarantola, 1987; Pratt et al., 1996; Brossier, 2009). By taking the second-order
derivative of misfit function or the first-order derivative of the gradient with respect to the
model vector, the Hessian operator is expressed as

_62C(m)

H =
om?

T

oJ

= / [JWad + (=)' Wa(Ad--- Ad)] dr. (1.16)
0 om

Replacing the gradient (equation 1.15) and the Hessian (equation 1.16) into the normal equation

1.12, the linear system would be expressed as

T T
(/ JWyJ + (%)th(Ad- Y dT)kflAm(k) — (/ JthAddT)kfl,
0 0

(1.17)

One should note that, for a linear direct problems where d=G.m, the second order deriva-
tive of the data with respect to model parameters is zero. Hence, the second term of equation
1.16 on the left-hand side would disappear. The first term of the Hessian is referred to as
approximated Hessian H, = fOT JYW4J dr. Methods which solve model perturbation using
the approximated Hessian H,, is referred to as Gauss-Newton methods. An estimation of the
approximated Hessian, called pseudo-Hessian, is proposed by Shin et al. (2001). Full Newton
method used the complete Hessian (equation 1.16) while the Gauss-Newton method considers
the approximated Hessian. These methods have theoretically the quadratic convergences, but
they require to perform supplementary forward problems. Therefore, these methods are not
generally considered for large size problems, because of their computational costs.

Quasi-Newton optimization considers a cheap estimation of inverse of Hessian operator.
This method provides a less expensive way to take into account the benefits of information
contains in the Hessian, without paying the price of expensive full Newton or Gauss-Newton
methods.

In our implementations, the Hessian is not computed. Instead, we minimize our problem
with a bounded quasi-Newton method using the L-BFGS-B (limited-memory Broyden-Fletcher-
Goldfarb-Shanno) routine (Nocedal, 1980; Byrd et al., 1995; Nocedal and Wright, 1999). This
method provides an approximation of the product of the inverse of the Hessian (H*~1)~! by
finite differences of a limited number (1) of gradients (G*¥~, ..., G¥~1) and model difference vec-
tors coming from previous iterations. The double-loop recursive algorithm designed by Nocedal
(1980) does not explicitly build and store (H*~1)~!, but directly computes the perturbation
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vector AmF = —(HF1)~1G*~1 with additions, differences and inner products of vectors. A
diagonal approximation of the inverse Hessian computed from the diagonal terms of the approx-
imated Hessian (Pratt et al., 1998; Operto et al., 2006) or pseudo-Hessian (Shin et al., 2001),
can be provided to the L-BFGS algorithm for a better and faster estimation of (H*~1)~1gk-1
(Brossier, 2011).

This bounded limited-memory quasi-Newton method, by considering an approximation of
the non-diagonal Hessian terms, is an efficient alternative to preconditioned steepest-descent
based only on gradients and/or approximate diagonal Hessian approaches. This cheap and
efficient estimation of the influence of the inverse Hessian in the optimization improves focusing,
partially corrects the descent direction from effects due to limited aperture illumination and
frequency bandwidth and respects dimensionalities of the different parameter values (Brossier
et al., 2009).

1.1.2.1 Gradient computation

The adjoint-state method is a general method to compute the gradient of a functional that
depends on a set of state variables, which are solutions of forward equations (Plessix, 2006).
For computing directly the Fréchet derivatives by finite-difference method, we need to perform
the forward modeling for each model parameter, which is so costly. The adjoint-state method
can deliver an efficient computation of the gradient without implicitly performing the Fréchet
derivatives. The theory of adjoint-state method in inverse problems was introduced by Chavent
(1974) in order to efficiently compute the gradient of the misfit function without computing the
Fréchet derivatives. This method was widely used within numerical community. In geophysics,
the gradient of the misfit function was also computed by adjoint-state method (Lailly, 1983a;
Chavent and Jacewitz, 1995; Tromp et al., 2005; Plessix, 2006; Chavent, 2009). Developing the
adjoint-state method in time domain is slightly more complicated than the frequency domain
because of the initial boundary conditions (Plessix, 2006). However, at the end, interpretations
of the gradient in both domains are similar.

The pressure wavefield u(x,t) satisfies equation 1.1 with the initial boundary conditions
u(x,t = 0) = 0 and dyu(x,t = 0) = 0. Equation 1.1 is used for the imaging formulation and
optimisation framework.

Before deriving the adjoint problem, we should define a real scalar product of two real
functions f and g, over the 2 spatial domain

< flg >D:/T/thdx f(x,t)g(x,1), (1.18)

for a time window of observation going upto time 7' (recording time). Let us repeat that the
pressure wavefield in time domain has real values.

A misfit function C in data space can be defined,
C(m)—lz/Tdt(d ~ Ryu(x,1))? (1.19)
=9 — Jo r ru(X, ) .

where the operator R, projects the pressure wavefield u onto the receiver positions and d,
denotes the obsereved data at receiver positions. Summation over r denotes a summation over
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all the receivers. In our acoustic inversion, the P-wave velocity is reconstructed, therefore the
model parameter is considered as P-wave velocity (m = V,(x)).

To compute the gradient of misfit function, a new functional called the Lagrangian £ has
to be introduced. The Lagrangian function corresponds to the misfit function, subject to the
constraint that the state equation is satisfied. We associate the adjoint state x" and p! with
considering the initial boundary conditions u(t = 0) = 0 and Jyu(t = 0) = 0 (Plessix, 2006),
and A with the wave equation. The Lagrangian function is defined by

1 T
L(m,u, A\, 10 pt) = 22/0 dt (d, — Ryu(x,t))?

N /OT/thdx - ( ( 1 232lé(t>;=t) _ V.(LVU(X,IS)) - s(X,t)>

p(x)m p(x)
0 = x pt(x)Opu(x,t = 0). .
+ /de,u(x)u(x,t—())%—/gd w(x)Ou(x,t = 0) (1.20)

The goal is to minimize the Lagrangian function (equation 1.20). The minimum must satisfy
conditions 1.21:

oL
o = 0

oL

o =0

oL

— = 0. 1.21
. 0 (1.21)

The derivative of £ with respect to the vector A should be equal to zero at the minimum and
this will provide the wave equation while equating the derivative with respect to the vector u to
zero will provide the partial differential equations verified by the vector A. For computing scalar
product, we should consider the initial boundary condition (u(t = 0) = 0 and dyu(t = 0) = 0).
We can find the derivative with respect to the vector u after two integrations by parts for the
second right-hand side term of the Lagrangian equation and by evaluating them at the solution
of wave equation

T
oL = —Z/D dt (d, — Ryu(x,t))

P —

—|—/dx)\xT Xl) 5O (x,T) — /dx)\XO)

1
SG)m 5 Oru(x,0)
1
/dx@t (x,T) () u(x,T) + /dx@t XO)() 5 Oru(x, 0)
- (1.22)

We ignore the adjoint-state related to ;¥ and p', because they do not play a role in the gradient
of misfit function. Four last terms of equation 1.22 can give us the boundary conditions for A
adjoint wavefield. Since u(t = 0) and dyu(t = 0) are equal to zero and u(t = T'), Owu(t = T
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are non-zero, therefore A(t = T') and O \(t = T') must be equal to zero. So, two first terms of
equation 1.22 can be written as

T
oL — — /0 /Q dtdx zé(x—xT)(dT—RTu(x,t))

T 1 9%A(x,t) 1 B
+ /0 /thdx <p(x)m2 5 V.(p(X)V)\(x,t))> =0, (1.23)

which gives us the local partial differential equation

1 0?A(x,t)
p(x)m?  Ot?

p(lx)w(x’t)) =3 (d — Rou(x, 1)). (1.24)

T

v

The system 1.24 has final boundary conditions A(t = T) = 0 and O \(t =T) = 0 . We apply
the change of variable in the time axis ¢ = T' — t which gives us

1 Paxt) 1 ) — ) Rowlx. T — 1
soomE o~ Vg VART) = ;(dr(T t') = Ryu(x, T = '),
At'=0) = 0,
At =0) = 0. (1.25)

A satisfies the wave equation with a new source term. This system is solved by our forward
modeling (system 1.2) to obtain the adjoint wavefield. The source term of the adjoint wavefield
is the residual between the observed and the synthetic data, in reverse time. Equation 1.25
back propagates the residual into the earth starting from the final time.

The last derivative of Lagrangian with respect to the model parameter m will provide the
gradient of the misfit function. We have the expression

T -2 0*u(x,t)
O L = 0, C + /0 /thdx A(x,t) <p(x)m3> 9z 0, (1.26)
which gives us the gradient G of the misfit function as
T -2 0?u(x,t)
m pu— m p— —_ 9 ! . 1.2
G = OnC /0 /thdx A1) (p(x)m3> o (1.27)

The term —2/(p(x)m3) can be written as M (m)/dm; as a matricial form, where matrix M (m)
corresponds to the matrix of physical model parameters.

Based on equation 1.27, the gradient can be computed by performing only two forward
problems. The gradient will be calculated by correlation between second-time derivative of the
incident wavefield u and back-propagated residual wavefield A, taking into account diffraction
kernel or pattern OM /Om;. The matrix M /Om; is the partial derivative of model matrix
with respect to model parameter. The matrix M /Om; is extremely sparse. Physically it is
the signature of a diffraction coming from a perturbation point localized on a spatial position
in model m;. The radiation patterns of model parameters generally show the sensitivity of
FWI to reconstruct the parameters (especially for better parametrization) (Wu and Aki, 1985;
Tarantola, 1986; Ribodetti and Virieux, 1996; Forgues and Lambaré, 1997; Gholami et al.,
2013Db).
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In time domain, the residual wavefield is back-propagated by reversing the time. In the
frequency domain, the back propagation is indicated by the conjugate operator. The principle
of back propagation is similar to reverse time migration (RTM) method (McMechan, 1989).
The equation 1.27 shows that only two forward modeling is necessary for gradient computation:
one is the computation of the incident wavefield and another one is for back propagating the
residuals.

In our application, we consider the acoustic wave equation and inversion is done in time
domain (Lailly, 1983a; Tarantola, 1984a; Mora, 1988). Therefore, the gradient in time domain
with multiple sources (ns number) can be sum up over the number of sources.

In the following, we introduce another misfit function by including the prior model infor-
mation into classical FWI scheme.

1.2 Regularized seismic full waveform inversion with prior model
information

Regularized seismic full waveform inversion with prior model information
Amir Asnaashari, Romain Brossier, Stéphane Garambois, Francois Audebert, Pierre
Thore, and Jean Virieux
2013, Geophysics, 78(2), R25-R36, doi: 10.1190/ge02012-0104.1.

1.2.1 Abstract

Full Waveform Inversion (FWI) delivers high-resolution quantitative images and is a promising
technique to obtain macro-scale physical properties model of the subsurface. In most geophys-
ical applications, prior information, as those collected in wells, is available and should be used
to increase the image reliability. For this, we propose to introduce three terms in the definition
of the FWI misfit function: the data misfit itself, the first-order Tikhonov regularization term
acting as a smoothing operator and a prior model norm term. This last term is the way to intro-
duce smoothly prior information into the FWI workflow. On a selected target of the Marmousi
synthetic example, we show the significant improvement obtained when using the prior model
term for both noise-free and noisy synthetic data. We illustrate that the prior model term may
significantly reduce the inversion sensitivity to incorrect initial conditions. It is highlighted
how the limited range of spatial wavenumber sampling by the acquisition may be compensated
with the prior model information, for both multiple-free and multiple-contaminated data. We
also demonstrate that prior and initial models play different roles in the inversion scheme.
The starting model is used for wave propagation and therefore drives the data-misfit gradient,
while the prior model is never explicitly used for solving the wave equation and only drives the
optimization step as an additional constraint to minimize the total objective function. Thus
the prior model in not required to follow kinematic properties as precisely as the initial model,
except in poor illumination zones. In addition, we investigate the influence of a simple dynamic
decreasing weighting of the prior model term. Once the cycle-skipping problem has been solved,
the impact of the prior model term is gradually reduced within the misfit function in order to
be driven by seismic-data only.
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1.2.2 Introduction

Robust reservoir characterization is a key issue for oil and gas exploration and production.
The seismic processing workflow can be roughly summarized in three main steps: velocity
model building, migration in time or in depth and elastic properties characterization through
amplitude variation-with-offset (AVO) or amplitude variation-with-angle (AVA) analysis. The
velocity model building remains a key step that can be tackled with reflection/refraction to-
mography in time and/or depth domain. A recent alternative for velocity model building is
the full waveform inversion (FWI) that allows to reconstruct high-resolution velocity models
of the subsurface through the extraction of the full information content of the seismic data
(Tarantola, 1984b; Virieux and Operto, 2009).

FWTI is a multiscale data-fitting method well adapted to wide-angle/wide-azimuth acquisi-
tion geometries, as it uses simultaneously diving and reflected waves. FWI is classically solved
with local optimization schemes and therefore strongly dependent on the starting model defi-
nition. This starting model should predict arrival times with errors less than half of the period
to cancel the cycle-skipping ambiguity (Virieux and Operto, 2009). The multiscale strategy
performed by moving from low to high frequencies during the inversion allows to reduce the
non-linearities and cycle-skipping issues of the inversion and helps convergence towards the
global minimum. Recent applications of FWI to real data have shown promising results for
exploration projects: see 3D examples in Plessix and Perkins (2010) or Sirgue et al. (2010).
Monoparameter reconstruction of the acoustic velocity for exploration is quite impressive even
in the anisotropic case (Prieux et al., 2011). Elastic parameters could also be recovered for ex-
ploration targets (Brossier et al., 2009; Prieux et al., 2012), but elastic inversion applies rather
to seismological scales where phases are nicely separated (Fichtner et al., 2010; Tape et al.,
2010).

Preconditioning or regularization techniques may alleviate the non-uniqueness of the ill-
posed inverse problem. Tikhonov and Arsenin (1977) have proposed a regularization strategy,
within the optimization step, to find the smoothest model that explains the data. Precondi-
tioning techniques acting as a smooth operator on the model update (Operto et al., 2006) may
add strong prior features of the expected structure through directive Laplacian preconditioning,
such as in (Guitton et al., 2010). Regularization schemes that preserve edges and contrasts
have also been developed for specific FWI applications through an ¢; model penalty (Guitton,
2011) or through a multiplicative regularization (Abubakar et al., 2009) that mimics the Total
Variation scheme (Rudin et al., 1992). Regularization can also be expressed in the curvelet
or wavelet domains (Loris et al., 2010; Herrmann et al., 2009). In such domains, the ¢; norm
minimization is generally preferred for the model term penalty as it ensures sparsity in the
model space.

All the previous regularization techniques allow to stabilize the inversion scheme by assum-
ing a particular representation or structure of the velocity model (smoothness, sparsity and so
on). However, prior model information is generally not used in classical FWI implementation
even if Hu et al. (2009) recently suggested to use a prior model in the multiplicative regulariza-
tion term. Several sources of prior model information are usually available at the exploration
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stages, such as sonic logs, exploration well data or geological information of the field. One
may want to use such prior information in the FWI scheme as is done in other velocity build-
ing techniques. Taking into account the prior information could also be highly important for
monitoring purposes, where many different and precise prior data types have been collected for
the target zone. Prior information can be introduced through the generalized Tikhonov reg-
ularization using the Bayesian formulation (Greenhalgh et al., 2006; Mead and Renaut, 2009)
where the prior model is related to the expected model for the Bayesian interpretation. Strict
Tikhonov regularization can be recast into this formalism as well. However, combining strict
Tikhonov regularization and generalized Tikhonov regularizations may lead to difficulties in
defining the respective weights of the different information: prior information and expected
smoothness of the model.

Several studies have been done on using two model penalty terms in geophysical electro-
magnetic applications, such as for the inversion of magnetic stripe data (Farquharson and
Oldenburg, 1998) and for the inversion of controlled source audio-frequency magnetotellurics
data to recover a 1D conductivity structure (Routh and Oldenburg, 1999). In this study, we
investigate the performances of a FWI scheme based on two model penalty terms in the mis-
fit definition in addition to the data term: the Tikhonov term to ensure smoothness, and a
prior model term to drive the inversion in a given direction. In the first part, we present the
theoretical framework of our study. Then, through a synthetic application on the Marmousi
model, we show the critical effect of the prior model penalty term on the FWI results. We shall
highlight how the limited range of wavenumber sampling coming from the limited frequency
band and the acquisition geometry may be compensated with the prior model information, for
both surface multiple-free data and also data containing surface multiples. We shall underline
the fundamentally different role of the prior model and of the starting model within the FWI
procedure.

1.2.3 Theory

Full Waveform Inversion relies on an iterative local optimization problem that is generally in-
troduced as a linearized least-squares problem. The optimization attempts to minimize the
residuals between the observed and the modeled wavefields at the receivers. The linearized in-
verse problem remains ill-posed, and therefore multiple model solutions can provide a satisfac-
tory fit of the observed data. Prior information is generally introduced through regularization
in the inverse formalism. However, for specific applications where other sources of information
such as sonic logs, stratigraphic data or geological constraints are available, it is crucial to take
these into account in the inversion process and incorporate them into a prior model, to ensure
robust and consistent results.

To do so, we briefly introduce the full waveform inversion algorithm including the model
norm contribution.

The general definition of the misfit function for solving ill-posed inverse problems could be
recast as the Tikhonov function (Tikhonov and Arsenin, 1977):

C(m) = C4(m) + \Cp,(m). (1.28)

The data misfit Cq(m) is based on a norm of the residuals between observed and computed
data in the data space, and the model norm C,,(m) term is based on a norm of a model penalty
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function in the model space. In the standard Tikhonov approach, this penalty function is based
on the first spatial derivative of the current model that should have a minimal norm, thus giving
a smooth model. The hyper-parameter A is the regularization parameter, also called trade-off
parameter, that balances contributions between the data and the model terms.

For applications where prior information on the model can be established, we add a second
penalty term to the misfit function. This term estimates residuals between the current model at
a given iteration and the prior model considered at that same iteration. The objective function
can now be written as the following expression,

C(m) = Cd(m) + )\1€1m (m) + )\2C2m (m), (1.29)

where the Tikhonov term is denoted by C;,,(m) and the prior model misfit term by Ca,, (m).
Two regularization hyper-parameters A; and Ao are introduced, to allow weighting of the
penalty terms with respect to each other and to the data term.

Let us express these three terms in a more explicit way using £ norms. The data term may
be written as

Cafm) = 3 W (dops — d(m) |2 = 3 24 (s — d(m))” WIW, (A — dom)) }, (1:30)

ns

where dgps and d(m) are vectors for the observed and computed data respectively. For our
specific investigation we consider a time-domain approach, and each component of these vectors
are samples of time-domain seismograms recorded at receiver positions for one seismic source.
This misfit function results from a sum over the ns sources of the experiment. The matrix Wy
is a weighting operator on the data. This matrix can also be seen as the inverse of the square-
root of the covariance matrix of the data, which contains information on data uncertainties.
Considering a constant measurement quality and uncorrelated traces, we end up with a diagonal
matrix of Wy = o4l, where oy is the standard deviation of the data and I is the identity matrix
(Tarantola, 2005). The synthetic data d(m) non-linearly depend on the model parameters
denoted by m = {m;},_, n , where Ny, is the number of unknows. These model parameters
should be determined thrbugh the inverse procedure by reducing this data term.

The second term of the misfit function is the Tikhonov term and can be written as
1 1
Cr,,(m) = [[B,m]? + |[Bom|* = {m"B,"B,m + m'B."Bom} = _{m"Dm}, (131)

where B, and B, are the first-order spatial derivative operator matrices with respect to z and
z, respectively. In practice, they can be reduced to the second-order Laplacian operator D. We
use a classical five-point finite-difference stencil to implement the operator D.

The third term of the objective function is related to the prior model m,,, which can be
designed from different information and could be set prior to the seismic inversion, but which
could be also adapted iteratively during the inversion procedure. This so-called prior model
norm term is computed using the expression

C =W 2_1 TwWI'w 1.32

2,, (M) = [[Wp, (m — my,)|| =5 (m —my) m Wi (m —my) ¢, (1.32)

where the matrix W,, is a weighting operator on the model space. This matrix can also be
seen as the inverse of the square-root of the covariance matrix of the model, and contains prior
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uncertainty information of the prior model parameters. In our implementation, since we want
to separate the influence of the diagonal and off-diagonal terms of the covariance matrix, we
choose a diagonal W, matrix, diag(WL W,,) = 1/0?(m). The prior weighting model o2(m)
contains both the prior model uncertainty (variance) and the potential weighting function, and
will be discussed in the application section. The covariances (off-diagonal terms) are implicitly
taken into account through the Tikhonov term.

Does the W,,, operator play a critical role in driving the inversion procedure towards a given
minimum? This is a question we want to investigate. Note that the misfit function, mixing both
data and model quantities, is dimensionless due to the introduction of the matrices Wy and
W,., and through the hyper-parameter A; dimension. In order to have three dimensionless
terms in the sum, the hyper-parameter A\; has a dimension [dim(h?)/dim?(m)], due to the
dimensionality of the D operator, where the grid size h is for a 2D square regular cartesian grid.
For a model described by velocity, the dimension of \; is second squared (m?/(m/s)? = s2).

Minimizing the misfit function classically leads to the normal equation system which can
be written as

HpAm = —G,,, (1.33)

where the gradient and the Hessian of the misfit function are denoted G,,, and H,, respectively.
The gradient expression can be written with three components as

T
gm == Z <8(;i;n)> W?;Wd (dobs - d(m)) + A Dm + )\QWVj;lwm (m o mp)' (134)

The sensitivity matrix J = dd(m)/0m is composed by the Fréchet derivatives of the synthetic
data with respect to the model parameters. The data-term gradient is efficiently computed
with an adjoint formulation (Plessix, 2006) without an explicit computation of the matrix J.
The two terms related to the model penalties are generally straightforward to compute and are
simply added to the data-term gradient contribution, leading to negligible computer memory
and CPU-time increase.

The Hessian matrix is based on the second derivative of the misfit function and is not
computed in our implementation. Instead, we minimize our problem with a bounded quasi-
Newton method using the L-BFGS-B routine (Byrd et al., 1995). This routine allows to take
into account an approximate non-diagonal inverse Hessian from previous gradient and model
vectors, and performs a line-search satisfying Wolfe’s conditions. This bounded limited-memory
quasi-Newton method is an efficient alternative to preconditioned steepest-descent or conjugate-
gradient methods based only on gradients and/or approximate diagonal Hessian approaches.
This cheap and efficient estimation of the influence of the inverse Hessian in the optimization
improves focusing, partially corrects the descent direction from effects due to limited aperture
illumination and frequency bandwidth and respects dimensionalities of the different parameter
values (Brossier et al., 2009).

A major point for real data applications is the source-wavelet estimation. Our FWI is
implemented in the time-domain for both the forward and the inverse problem. The source-
wavelet estimation is however straightforwardly implemented in the frequency-domain by a
linear inverse problem resolution. The computed and observed time-domain data are Fourier
transformed to apply the Pratt (1999) (his equation 17) source estimation equation for each
frequency. The Fourier coefficients of the wavelet are then transformed back to the time-
domain and appropriately processed (anti-causal mute and/or band-pass filtering if required)
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before performing FWI. This estimation is performed once before the optimization. In the
following tests applied to synthetics, we use the exact source wavelet for fair comparisons, such
that the results are not biased by potential errors from this estimation.

1.2.4 Application to Marmousi model

a) Distance (km)
0.3 0.7 1.1 1.5 1.9 2.3

Depth (km)

| e ]
1500 2000 2500 3000 3500
Vp (m/s)

Figure 1.3: (a) The true V], velocity model which is a small part of the Marmousi model and
the acquisition geometry; (b) initial model for inversion which is a smooth model of the true
model; (¢) the prior model created by linear distance weighted interpolation in the x direction
between the exact values inside two exploration wells and then gently smoothed.

In this section, we study the effect of prior information in FWI. In particular, we show how
prior information allows to mitigate the lack of seismic illumination. A selected target zone of
the Marmousi II P-wave velocity distribution (Martin et al., 2006) and a homogeneous density
model are considered. The target exhibits two gas sand traps (Figure 1.3a). We consider
a shallow-water configuration with a water depth of only 25 m. Our acquisition geometry
contains 54 isotropic pressure-sources, located along a horizontal line at 15 m depth, every
50 m. The layout is the same for all shots, one fixed horizontal receiver line at 15 m depth and
two fixed vertical lines of receivers inside two exploration wells at x = 50 m and x = 2700 m
with a 10 m interval between sensors. The deepest receivers inside the wells are at z = 1265 m.
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The grid is regular, with the grid size equal to 5 m, and it is consistent for both modeling
and inversion. We do not consider any sources within the wells as this design is unusual and
quite expensive. However we consider sensors inside the wells, which could be installed for
exploration or monitoring purposes, and allowing to dramatically increase the illumination for
velocity reconstruction. Note that our final test will be performed without these well sensors,
to mimic a pure surface acquisition. A Ricker wavelet source with a central frequency of 10 Hz
is used for all shots. The time seismograms are generated using finite-difference modeling in
the time-domain with a fourth-order stencil in space and a second-order integration in time.
Perfectly-Matching-Layer (PML) absorbing boundary conditions (Berenger, 1994) are used for
non-reflecting boundaries. The first tests are performed using a PML on top, in order to
mimic multiple-free data. The last test will consider a free-surface condition, modeling surface-
multiples. The recorded pressure data are used as observed data, both at the surface and in
wells. Figure 1.4a shows an example of a seismogram generated by a shot located at the center
of the source line.

a) Trace Number b) Trace Number
250 300

Well-left > Surface Well-right >
50 100 450

Figure 1.4: Seismograms of pressure data for the source located almost at the center of the
Marmousi model = = 1.4 km: (a) recorded inside the true model, (b) calculated inside the
smooth initial model, (c) calculated inside the interpolated velocity model, and (d) computed
inside the final model obtained through our dynamic approach.

In our study, the data weighting matrix Wy is chosen as identity Wy = I [dim/(data)] !,
where dim(data) means the unit of pressure data. In order to have a dimensionless objective
function, W should have a dimension which is the inverse of the data dimension. Note that for
all further applications, the Tikhonov regularization parameter is kept fixed to a small value,
imposing only a weak smoothing constraint, since we mainly focus on analyzing of the effects
of the prior penalty term.

A smooth velocity model (Figure 1.3b), which mimics a time-tomography velocity model
based on both first arrivals and reflected events, and referred to henceforth as “smoothed velocity
model”, is used as the initial model for FWI. A time-domain FWI approach is used, involving
all the frequencies of the spectrum (maximum 30 Hz in this case). No additional hierarchical
approach such as the frequency-continuation approach of Bunks et al. (1995) is used in these
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examples. This means that the weighting of each frequency is directly link to its amplitude
in the spectrum. A first investigation (Figure 1.6a) is performed with noise-free data and a
standard regularized FWI method, without considering a prior model (equivalent to Ao = 0).
The result shows that the optimization is trapped in a local minimum. This issue can be
related to cycle-skipping ambiguities due to the starting model inaccuracy, especially in the
deepest part below 700 m and on the left part of the model until the second fault. Due to these
inaccuracies, the target zones composed of the two reservoir areas are not well recovered with
this configuration.

1.2.4.1 FWI with prior model and impact of prior weighting matrix (W,,)

In our framework where well information does exist, the FWI method should use this non-
seismic information as prior information for the inversion. We first need to build the prior
velocity model m,, and the model weighting matrix W,, that contains the prior model un-
certainty. In our study, we consider that the sonic-log measurements acquired in the two
exploration wells provide an accurate estimation of the local vertical velocity. A prior model
could have been created from interpolation of the well velocity, following picked horizons in the
migrated section. Instead, we build a crude prior velocity model based on a linear interpolation
between the two well locations without any migration and picking approach. This interpolated
model (Figure 1.3c¢) from only the well data, henceforth called “interpolated velocity model”,
even though being far from the true 2D structure of the Marmousi model, will be used as a prior
velocity model for regularized inversion. As shown in the following test, this crude prior model
allows to significantly help the inversion to converge, and when applied to real data, the more
accurate the prior is, for example if it is derived using standard quantitative interpretation
techniques, the better the FWI results will be.

The prior model has to be associated to the weighting matrix W,,, in order to weight the
penalty associated to the model residual (m — m,). As already mentioned, we use a diagonal
weighting matrix containing both the uncertainty and some weighting. From how the prior
model is built, we know that, quantitatively, the interpolated velocity values should be accurate
close to the well positions, but they can be erroneous far from the wells, since the structure
is highly heterogeneous. Therefore, we decided to build a weighting shape whose uncertainty
values follow a Gaussian function with weak values near the wells and increasing values in the
center of the area (Figure 1.5a). This is the prior weighting model A.

A key point in all additive regularized optimization schemes is the selection of the weighting
hyper-parameters. As already mentioned, the A\; value chosen is small enough to ensure a slight
smoothing of the results. In practice, to select the Ao hyper-parameter, we compute the misfit
function for the starting model for Ao = 1. Based on the ratio v between the prior-model misfit
A2Ca, (m) and the data-term misfit C4(m), we adjust the Ay value such that 1073 < v < 1072,
Therefore, by selecting this reasonable ratio of prior-model and data misfit terms, the FWI is
prevented to minimize the model norm heavily at early iterations. In fact, an even stronger
weight is applied to the data term in the global objective function. In this test, we choose to
have the ratio v = 1072

Figure 1.6¢ shows the reconstructed velocity model after FWI, starting from the “smoothed
velocity model”, and using the “interpolated velocity model” as a prior model. We can see
that the shallow left part of the reconstructed model has been strongly improved compared
to Figure 1.6a. However, the deeper part of the result remains strongly dominated by the
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Figure 1.5: Two types of prior weighting model used for regularized inversion: (a) model A,
the Gaussian function varying only in the x direction between two wells with maximum value
at the center of model, and (b) model B, the same variation in  complemented by a quadratic
evolution in the z direction (the Gaussian lateral variation could be seen now in the undulation
of the white interface).

footprint of the interpolated velocity model used as a prior model. This footprint can be
interpreted as an inappropriate relative weight between the prior penalty term and the data
misfit term, for waves that illuminate this deeper part. The consistency of the two terms
at shallow depth, leads to an improved reconstruction. In order to visually see the relative
amplitude of the different terms of the gradient, the absolute value of the data-term gradient
(Figure 1.7a), the prior-model term gradient (Figure 1.7b), and their ratio (prior-model/data)
(Figure 1.7c) are computed at the first iteration. With increasing depth, the amplitude of the
data-term gradient decreases, because the associated wave amplitudes, mainly in a reflection
regime, decrease due to geometrical spreading, intrinsic attenuation and energy partitioning
at interfaces. The ratio between the prior-model and the data gradients therefore shows that
the deep part of the gradient is driven by the prior-model at the expense of the data term,
because of the homogeneous weighting term with depth in the W,,, matrix. To overcome this
unfavorable balance between the data and the prior terms in the optimization, a weighting is
required and can be implemented in two different ways. We can either modify the W,,, matrix
to decrease the weight in depth or change the data-term weighting W, matrix such that the
late arrivals have more weight in the data misfit and the data-gradient terms. This second
weighting can be linked to the metric choice of the misfit function norm for the data term as
defined in Jin et al. (1992).
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Figure 1.6: The recovered V},, models by FWI and two QC vertical logs passing through the
two target areas at = 0.65 km and z = 2.3 km, (a) reconstructed model starting from
the smooth initial model and without a prior model, small \; and Ao = 0; (b) two vertical
logs corresponding to the model (a); (c) reconstructed model starting from the smooth initial
model and with the prior model, small A1, fixed Ag, the prior weighting model A and the ratio
between prior-model and data misfit terms v = 1 x 1072; (d) two vertical logs corresponding
to the model (c); (e) reconstructed model starting from the smooth initial model and with
the prior model, small \;, fixed Ao same as case (c), the prior weighting model B. Note the ~y
ratio is now decreased to 3 x 1073; (f) two vertical logs corresponding to the model (e); (g)
reconstructed model starting from the smooth initial model and with the prior model, small
A1, initial value of v = 3 x 1073, the prior weighting model B and using the dynamic prior
approach. The prior model is removed from the inversion at the end of the procedure; (h) two
vertical logs corresponding to the model (g). 41
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In our study, we choose to involve the depth weighting in the model space and we use a
rough but efficient approximation of the geometrical spreading to change the W, matrix in
depth: we propose to make the operator WX W,,, decrease by a simple 1/z% with respect to the
depth z, in order to compensate for the propagating decay of the wave amplitude. This kind of
depth weighting has been used in the Controlled Source Electromagnetic method (Plessix and
Mulder, 2008) and gravity inversion applications (Li and Oldenburg, 1998). Plessix and Mulder
(2008) have proposed the depth weighting matrix to compensate the exponential decay of the
amplitude of electromagnetic waves and also geometrical spreading. This depth weighting was
used as a preconditioning of the model parameter (Plessix and Mulder, 2008) and to counteract
the geometric decay of the kernels in inversion (Li and Oldenburg, 1998). In our application, we
use the same general principle, but our main goal is to make an appropriate balance between the
prior-model norm and data misfit in depth. We combine this weighting and the uncertainty
associated to distance away from the wells to build a new weighting matrix (Figure 1.5b),
referred to as prior weighting model B.

FWI is now applied using the “smoothed velocity model” as the initial model and the
“interpolated velocity model” as the prior model together with the prior weighting model B.
The same hyper-parameter As is used, but note that the v ratio value between prior-model
and data misfit is decreased to around 3 x 1073. This weighting model B allows to successfully
balance the gradient energy with the depth as shown in Figure 1.7d and 1.7e. The reconstructed
velocity is shown in Figure 1.6e and exhibits a significant improvement compared to Figure 1.6a.
This result first shows the importance of the prior weighting, which should contain appropriate
uncertainty information, but should also ensure an appropriate balance between the prior misfit
term and the data misfit term in the optimization. In this case, the prior term significantly
helps the inversion to converge to the global minimum of the optimization problem, mitigating
the cycle-skipping issues that the data misfit term cannot handle alone. In fact, adding the
prior model penalty allows to change successive descent directions and helps the inversion to
converge to the correct global minimum valley of the misfit function. This test shows that prior
information allows to constrain inversion and, therefore, mitigates the non-uniqueness issue of
ill-posed inverse problems.

1.2.4.2 Roles of initial versus prior models

In many geophysical inversions, it has been proven successful to choose the initial model
equal to the prior model (see Oldenburg (1994); Routh and Oldenburg (1999) for electri-
cal/electromagnetic inversion and Routh and Anno (2008); Miller et al. (2008) for time-lapse
inversion), when it is chosen sufficiently accurate. In this part, we address the relative role of
the prior and initial models in the inversion procedure, when only partial information is con-
tained in the available models. A first natural idea could be the use of the prior velocity model
(Figure 1.3c) as the initial model of FWI. Since this model helps the FWI when it is used as
prior model, it could be a good candidate for the initial model of the inversion. Fundamental
differences exist when using a particular velocity model as a prior model which has no direct
impacts on the modeling of synthetic data or when using it as an initial model with direct
consequences on the synthetic data. Figure 1.8 illustrates the inversion result derived using the
classical regularized FWI (same tuning as Figure 1.6a) and the “interpolated velocity model”
as initial model. We can clearly see that the inversion converges towards a local minimum, far
from being a satisfactory result. Moreover, in this case the optimization process stops after
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Figure 1.7: At first iteration of optimization, the absolute value of (a) the data-term gradient,
(b) the prior-model term gradient , (c) the ratio between prior-model and data gradients, in
case of using the prior weighting model A; (d) and (e) same as (b) and (c) respectively, but in
case of using the prior weighting model B.

only a few iterations. The shallow part on the right-hand side of the model seems satisfactory
but the left-hand side and the deeper parts seem to be badly handled by this initial model,
built from interpolation in this strongly laterally-varying structure. One interpretation of this
failure is related to the major difference in the meaning of the initial and of the prior model:
the initial model must be localized in the attraction valley of the global minimum of the misfit
function, often related in seismic as being kinematically accurate and not generating erroneous
arrivals in the synthetic data computed using the wave equation (see Figure 1.4a and 1.4c).
Indeed, it is much more difficult for the inversion workflow to suppress or shift a structure
than to create a new one. On the contrary, the prior model is never explicitly used as an
input for solving the wave equation and is only used to drive the optimization step in order to
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minimize the total objective function. It can therefore contain any structure, complementary
to the information contained in the initial model, that can drive inversion towards expected
zones of the model space. In our case, the prior model allows FWI to be driven and partially
fills in the lack of low wavenumbers that cannot be extracted from only the data. Both the
“smoothed velocity model” and the “interpolated velocity model” contain partial information
on the velocity model, that, when used alone, is not sufficient to converge towards the global
minimum. Only an appropriate combination of both pieces of information, through the initial
and prior models, allows to exploit the partial information included in both, and allows to
significantly improve the results. Note however that for regions of poor seismic illumination, as
the optimization is driven by the prior model, this model requires to be as accurate as possible
(kinematically correct) to ensure good results. In this case, the prior model puts its imprint
on the current model and then is partially used for solving the wave equation.
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Figure 1.8: The recovered V), model by standard FWI starting from an initial model equal to
the interpolated velocity model, small A; and Ao = 0.

1.2.4.3 Dynamic prior regularization parameter

In complex environments, the prior model derived from extra information on the target zone
may be far away from the exact model we never reach. Even if the prior model can significantly
improve results by driving the inversion in an appropriate direction, the final model can keep
a significant footprint of the prior model structure and may prevent a significant expression of
the data itself. As shown in Figure 1.6e, the result exhibits ghost interfaces coming from the
interpolated prior model. These footprints of the prior setting do not honor the data itself.
However, keeping a fixed hyper-parameter on the prior term of the misfit function prevents the
results from being improved since the prior model is intrinsically wrong in such a case.

Thus, one can investigate a dynamic weighting of the prior information, in order to de-
crease the weight of the prior term (A2) during iterations of the optimization. We suggest a
simple dynamic approach, considering a starting Ae value that is gradually decreasing until
it reaches zero. This method allows to drive FWI towards the global minimum valley of the
objective function at the beginning, due to the prior-model influence, and to finally leave only
the data term to drive the final iterations of the optimization, by gradually decreasing the
prior weight. The Tikhonov regularization term is kept constant as we only discuss here the
reciprocal influences of the data misfit term and of the prior term. Our heuristic approach is
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based on the decrease of the objective function with iterations. When the slope of the objec-
tive function curve becomes too small, and smaller than a specific threshold, the current Ao
value is divided by a factor of two to reinforce the weight of data misfit term. Our criterion
is based on the first derivative of the misfit function with respect to iterations, computed with
a simple finite-difference stencil. The derivative value at each iteration is normalized by the
first derivative value. During the optimization procedure, the corresponding derivative value
is compared to the fixed threshold at each iteration. Every time that the derivative is smaller
than the threshold, meaning that the misfit function curve with iterations is becoming too flat,
the hyper-parameter )y is changed. The key issue of this strategy is the value of the threshold
at which the hyper-parameter Ao term must be decreased. We find that a few trials can narrow
down this value quite rapidly from variation of the misfit function. This threshold value should
be of the order of 107% ~ 1073. Note that in our implementation, the L-BFGS-B optimization
is restarted each time the hyper-parameter A is changed.

The dynamic method has a similar property to the multiplicative regularization and cooling
regularization approaches (van den Berg et al., 1999; van den Berg et al., 2003). In Total
Variation (TV) as the multiplicative constraint, the data objective function itself is defined
as the weight of TV. Therefore, the regularization term has a large weighting parameter in
the beginning of the optimization process, and gradually decreases as the objective function is
minimized and the data fitted.

Figure 1.6g shows the recovered model obtained by this dynamic method, using the “smoothed
velocity model” as the starting model, the “interpolated velocity model” as a prior model and
the optimal weighting matrix B. As with the fixed A9 strategy, we can see that the reconstructed
model is dramatically improved when compared to the one obtained by standard FWI. More-
over, the dynamic approach allows to mitigate the footprint of the prior model, since during
the optimization the prior penalty weight decreases with respect to the data misfit term. Thus,
the effect of the prior model is being reduced slowly and the misfit data term helps inversion
to converge to a quasi-perfect final model. As a quality control, vertical profiles taken through
the two gas sand traps (for the initial, true and recovered models) illustrate that the target
velocity is recovered accurately (Figure 1.6h), compared to the result from standard FWT using
the same initial model (Figure 1.6b). In addition, the computed seismogram inside the final
model shows that the full seismic arrivals have been exploited during the optimization (see
Figure 1.4d).

The objective function curves for the data term, the model norms and the Ay curve as a
function of iteration are shown in Figure 1.9. In this case, the data are without noise and a
very small stopping criterion is selected to fit the data as much as possible, leading to a large
number of iterations. This stopping criterion, based on the flatness of the misfit function for two
successive iterations, is the same for all the inversion tests, so that the results are comparable.
The data objective function always decreases and by reducing Ao, we try to prevent giving a
high weight to the prior penalty term. Therefore, by reducing the model objective function
value, an appropriate contribution of the prior model is kept during optimization. Note that
there is no change on the small A\; value and that the Tikhonov term always exists, leading to
a non-zero model objective.

The convergence of standard FWI without any prior model and FWI with dynamic prior
weighting shows dramatic differences of the evolution of the total objective function (Figure
1.10). The standard FWI gets trapped in a local minimum and stops the optimization after
87 iterations. By including the prior model to the optimization, the path of descent is changed
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Figure 1.9: Evolution of (a) the data objective function, (b) the model objective function, and
(c) Ag value with iterations in case of using the dynamic approach. Note that (a) and (b) curves
are shown in logarithmic scale.

and the optimization procedure is not trapped by local minimum attraction basins. The begin-
ning of the optimization appears quite equivalent for both approaches until iteration 40, even
showing better convergence speed for the standard FWI. Please note however that even if the
convergence rate is the same, the results may be different because the null-space is different
between an inversion with and without the prior model penalty. After this step, due to different
descent paths, standard FWI slows down convergence speed and rapidly stops. For FWI with
dynamic prior weight (blue curve), we can observe a large decrease in the objective function
between iterations 170 and 230. Looking at the updated model history at these iterations shows
a significant improvement, associated to the prior model penalty use, in the shallow left part
target, leading to a large decrease in the data misfit. In standard FWI, the data and Tikhonov
terms of the misfit gradient alone are not able to solve this problem in the shallow left part of
model.
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Figure 1.10: Comparison of the total objective function curves in case of using the standard
FWI and the dynamic prior weighting FWI (a) for all iterations, (b) shown at early iterations.

1.2.4.4 Noisy data

In presence of noise, the ill-posedness of the inverse problem is increased. Therefore, we need
to study the effect of noise on our proposed regularized FWI including the prior model penalty.
We keep the same acquisition configuration, while an artificial Gaussian noise in the range of
0—30 Hz, the bandwidth of the source, is added to the true noise-free data. The signal-to-noise
ratio is around 7 dB. Figure 1.11 illustrates an example of shot gathers used for FWI (we have
used the suaddnoise procedure of Seismic Unix (Cohen and Stockwell, 2008)).

Three inversion tests starting from the “smoothed velocity model” (Figure 1.3b) are per-
formed. The first one uses the standard FWI without the prior model (Figure 1.12a). The
second test uses the “interpolated velocity model” as prior model with a fixed Ao value (Figure
1.12¢), and the third one uses the dynamic prior weighting (Figure 1.12¢). All the parameters
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Figure 1.11: Noisy seismograms of pressure data for the source located almost at the center of
the Marmousi model x = 1.4 km; random Gaussian noise added to the synthetic seismograms
in bandwidth of 0 — 30 Hz and SNR =7 dB.

are chosen identical to those of the noise-free data set case, except the hyper-parameter Ao,
which is now increased in order to account for the noise energy in data. The Ao value is chosen
such that the ratio between the prior-model penalty and the data misfit remains the same in
the global misfit function, and equal to the noise-free case (7 = 3 x 1073). In presence of noise,
the data misfit function has a larger value than the noise-free case, therefore a higher Ay value
is required.

The results with noisy data remain consistent with the noise-free tests: the prior penalty
term still drives the inversion towards a more realistic and accurate final model, even though
more noisy. The dynamic approach also remains an appropriate strategy as can be shown from
the model reconstruction and from the two displayed vertical profiles (Figure 1.12f). This test
for data with the presence of noise confirms the robustness of the approach for non-perfect
data.

1.2.4.5 Surface acquisition and multiple-contaminated data

In this section, we apply our scheme to a less favorable frame: a free surface condition is used,
meaning that surface multiples are now present in the data. Moreover, we suppress the sensors
located in the wells, leading to a pure surface acquisition. Note that the sensors in the wells
previously allowed to dramatically increase the illumination in this selected target of Marmousi,
where the ratio maximum offset/depth is about two, instead of three to four as in classical FWI
applications to exploit diving waves. In such a configuration with a small offset compared to
the depth, the FWI behaves generally like a non-linear migration technique, as the low part of
the wavenumber domain can not be retrieved (Plessix and Mulder, 2004) and we may question
how the prior information may fill in this part of wavenumber domain.

The observed data used in this test are shown in Figure 1.13. The surface-related multiples
can clearly be seen compared to the previous data set.

Two inversion tests starting from the “smoothed velocity model” are performed. The first
one uses the standard FWI without the prior model (Figure 1.14a). The second test uses the
“interpolated velocity model” as the prior model, the optimal prior weighting model B, and the
dynamic approach (Figure 1.14c). Here, we assume that the sonic logs are still available and
that we can use them for building the prior model (like in previous tests).
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Figure 1.12: The recovered V), models by FWI of the noisy data and two QC vertical logs
passing through the two target areas at x = 0.65 km and z = 2.3 km, (a) reconstructed model
starting from the smooth initial model and without a prior model, small A; and Ay = 0; (b) two
vertical logs corresponding to the model (a); (c¢) reconstructed model starting from the smooth
initial model and with the prior model, small A1, fixed adapted Az to have the ratio v = 3x 1073
at first iteration, and the prior weighting model B; (d) two vertical logs corresponding to the
model (¢); (e) reconstructed model starting from the smooth initial model and with the prior
model, small \{, same initial Ao before it is decreased to zero (or same initial ratio v = 3x1073),
the prior weighting model B and using the dynamic approach. The prior model is removed
from the inversion at the end of the procedure; (f) two vertical logs corresponding to the model

().

All the parameters are chosen identical to those of the previous tests. The starting Ao
value is adapted, due to a difference in the data energy and trace number, to keep the same
v =3 x 1073 ratio between the prior-model and data misfit terms at the first iteration.

The result of standard FWI (Figure 1.14a) contains many anomalies and ringing artifacts
in the shallow part. These effects could be associated to surface-related multiples coming from
the free surface. Even if the main structures are recovered in the shallow part, the velocity
model is strongly contaminated by artifacts at all depths leading to erroneous velocity values
at the two reservoir depths (see the QC logs in Figure 1.14b). Moreover, due to the limited
aperture coverage of the acquisition, the low part of the wavenumber spectrum is not recovered,
and the structure seems depth stretched due to the initial model inaccuracy. Adding the prior
model and the dynamic weighting allows to significantly improve the results (Figure 1.14c),
canceling the shallow ringing effects associated to the surface-related multiples. In the shallow
part of the target where illumination remains strong, the result is almost perfect. Deeper,
because of the lack of illumination, some artifacts appear, but the prior model allows, at least
partially, to fill in the low part of the wavenumber spectrum that can not be retrieved from
short-spread reflection only. This leads to well-positioned structures, until at least 1 km depth
(Figure 1.14d).

49



REGULARIZED FULL WAVEFORM INVERSION

Trace Number
50 100 150 200 250

Surface receivers

Figure 1.13: Seismograms of pressure data for the source located almost at the center of the
Marmousi model x = 1.4 km, recorded inside the true model with free surface condition and
using the receivers only at the surface.

1.2.5 Discussion

So far, FWI has been considered essentially as a data-driven procedure with negligible contri-
bution of prior model information and has therefore been investigated for seismic exploration
purposes. As the knowledge of the target zone is increased, we may need to introduce more
model-driven features in the optimization procedure, especially when we have poor illumination
of the target zones.

The description of the misfit function with three terms should increase potential perspectives
of the FWI as we may relax the illumination constraints of this approach at the expense of a
better knowledge of expected features of the model we want to reconstruct.

The design of the hyper-parameters and, more specifically, the dynamic evolution during
the inversion procedure, could be improved and robustness should be analyzed. One can say
that this tuning is based on the misfit evolution for different damping laws. From the synthetic
example we have studied, we have found that behaviors of the FWI for different acquisition
configurations, namely the one with receivers at the surface and within two wells, and the
one with receivers only at the surface with the surface-related multiples, are quite similar and,
therefore, the tuning of hyper-parameters should not be highly sensitive to the application.

In addition, deep targets could benefit as well from the prior information once the overbur-
den structure has been defined. In seismic exploration, sub-basalt and subsalt imaging is quite
challenging and any extra piece of information could help to improve the illumination of the
target. The introduction of prior information would allow to help recover poorly illuminated
zones, thus broadening the application of the full waveform inversion.
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Figure 1.14: The recovered V), models by FWI and two QC vertical logs passing through the
two target areas at x = 0.65 km and z = 2.3 km, in case of free surface condition and using only
the receivers at the surface, (a) reconstructed model starting from the smooth initial model and
without a prior model, small A\; and A2 = 0; (b) two vertical logs corresponding to the model
(a); (c) reconstructed model starting from the smooth initial model and with interpolated
velocity model (Figure 1.3¢c) as a prior model, small Aj, initial Ao value chosen to have the ratio
v =3 x 1072 at first iteration, the prior weighting model B and using the dynamic approach;
(d) two vertical logs corresponding to the model (c).

1.2.6 Conclusions

We have proposed a regularized FWI scheme that includes prior information as an optimiza-
tion penalty term. Aside from the data misfit term, our misfit definition is composed of two
penalty terms: the Tikhonov term to ensure smoothness and the prior model term to help
the convergence towards expected models. Generally, this latter prior penalty term is not
used in classical FWI implementation, but we show that adding this information reduces the
non-uniqueness issue of the inverse problem that is a well-known difficulty of the full wave-
form inversion. This prior information can be deduced from non-seismic data, well-logging and
geological constraints that are generally available for specific exploration applications and for
monitoring during production. We show with that this prior information improves the well-
posedness of the problem as compared to the standard FWI approaches, and allows to partially
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mitigate potential kinematic inaccuracy of the starting model as well as illumination issues.
The prior weighting operators and the prior model require an appropriate design: one has to
properly balance the prior model term and the data term during the inversion. We have shown
that well-balancing both pieces of information is crucial during the optimization process. The
prior model definition, may include structures that can help drive the inversion towards the
global minimum valley without being kinematically as accurate as the initial model for wave
propagation. Moreover, these structures may prevent convergence in the final steps of the
inversion and one can wish to decrease the importance of this prior information with respect
to the data information. We have proposed a dynamic weighting of the prior term during the
inversion in order to smoothly reduce the impact of the prior information, leaving the floor at
the end only to the data itself (regardless of the smooth Tikhonov term).

During this investigation, we have shown the striking differences between the roles of the
initial model and the prior model in this constrained FWI framework where generally only
partial information is available: the initial model must respect the wave equation and the
related kinematic features to be positioned in the global minimum valley of the misfit function;
while the prior model does not have such obligations restrictively like the initial model. The
construction of the initial model is quite delicate while the construction of the prior model
could allow more freedom.

Future investigations will be focused on using prior model for time-lapse applications, in
order to accurately obtain the physical parameter variations in a target zone. The design of the
prior model, for more complex environments and real data applications, should also consider
geostatistical approaches and/or standard quantitative interpretation techniques to honor the
geological structures.

1.2.7 Acknowledgements

We would like to thank TOTAL Exploration & Production and SEISCOPE consortium for
supporting this study. This work was performed by access to the high-performance computing
facilities of CIMENT (Université de Grenoble) and to the HPC resources of GENCI-CINES
under Grant 2011-046091. We acknowledge both of these facilities and the support of their
staff. We would like to gratefully thank the Associate Editor, Aria Abubakar, three anonymous
reviewers and Partha Routh, for their very constructive comments on the manuscript.

1.3 Estimation of regularization parameters

The main issue concerns the development is a reliable technique for choosing the regulariza-
tion parameters. Several methods, such as discrepancy principle, L-curve, Generalized Cross
Validation (GCV) and NCP Analysis have been proposed but no one has advised a general
purpose algorithm which will always provide a proper estimation of these regularization pa-
rameters (Hansen, 1998; Castellanos et al., 2002; Hansen, 2010). In our paper, we suggested
to approximately choose these parameters based on the ratio between model and data misfit
functions at the beginning of optimization. In our regularization scheme, since the dynamic
approach will be applied, probably very precise estimation of this regularization parameter at
the beginning may probably not be necessary.
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1.4 Building prior model using geostatistical techniques

Here, we briefly introduce two different well-known parameter-choice techniques that could
also be used in seismic data inversion:

Discrepancy principle: in this method the regularization parameter is chosen such that the
data residual norm equals discrepancy in the data which is measured by the noise norm,
|dear(my) — dops||2 = ||n]]2. This method is simple but the main disadvantage is that we
often do not know the noise norm exactly, and therefore we must estimate the norm or
the standard deviation of data noise. This might be difficult to obtain in practice and
unfortunately the quality of the computed regularization parameter is very sensitive to
the accuracy of the estimation of ||n||2 (Hansen, 2010).

L-curve: this technique is based on the balancing of two error components, a perturbation
error coming from the inversion of the noise component in the data and a regular-
ization error due to the introduction of the regularization filter (Hansen, 1992). The
regularization parameter is defined from the corner of the L-curve plot. This curve
is a plot of the regularized solution norm versus the residual norm, both in log scale

(logldcar(m)) — dobsl|2, log|lmy][2).

It is important to note that all these parameter estimation methods could be expensive for
FWTI applications where we have an iterative optimization method and expensive computational
tasks. The reader is referred to Hansen (1998) and Hansen (2010) for a detailed explanation
of these techniques.

1.4 Building prior model using geostatistical techniques

For building the prior model from the available prior information, we can use more accurate
techniques than just doing a simple interpolation between wells. One of the potential meth-
ods could be a geostatistical approach (Isaaks and Srivastava, 1989; Dubrule, 2003). In this
technique, the spatial variation due to distance from wells can be accounted; therefore, this
geostatistical interpolation could provide more reliable prior model. Indeed, in addtion to well
data, the available geology data could also be integrated for building the prior model.

Kriging technique addresses the problem of interpolating a variable like velocity on the
basis of a number of scattered data in the space (Matheron, 1970). Let us consider that we
know the velocity computed at a well location from the sonic log. Then, we want to estimate
the velocity value far away from the well location by using the value at the well. We can do
that based on one variogram model. The variogram model contains the information related to
variable variation with the distance. Obviously, we have an estimation error which could be
provided with statistical models. Kriging is the generalization of this idea to the estimation
of the variable value at one specific location x using not just one well but several wells away
(Dubrule, 2003). In fact, this technique provides an estimation of the variable in the space based
on a weighted average of the measured values in several scattered data points. These weights
are directly linked to the spatial distance between the estimated point and the measured points.
Kriging will consist in finding these weights such that minimizing the estimated variance.

This kriging technique could be used for constructing the prior model using distributed
well data in 2D or 3D spaces. In addition, the geostatistic interpolation could be honored from
the available geological horizons. It means the interpolation can be perfomed by following the
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velocity interfaces. Indeed, for time-lapse applications, we have usually several sources of prior
information on the studied field.

1.5 Other possibilities of dynamic methods

The dynamic weighting of prior model penalty term we propose, could also be implemented
by other methods. The similar idea used in multiplicative regularization (van den Berg et al.,
2003), where the data objective function is defined as the weight of total variation, could be
used for the regularization parameter Ao of prior model penalty term. The ratio between
prior model objective term and data part of objective function is important and this kind of
information can be used to control the dynamic approach.
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Figure 1.15: Lambda half-lambda algorithm based on choosing damping parameter in Leven-
berg—Marquardt algorithm. This algorithm could be an alternative for the dynamic weighting
approach.

Another possibility, called here “lambda half-lambda” method, is derived from the idea
of Levenberg—Marquardt algorithm (LMA) (Levenberg, 1944; Marquardt, 1963; Moré, 1978).
The LMA is originally an optimization method modifying the Hessian (B;,, = B + €I). The
idea of choosing the damping parameter (€) which was suggested by Marquardt (1963) can be

o4



1.5 Other possibilities of dynamic methods

interesting for us as a dynamic approach for changing the regularization parameter \o. Our
proposed “lambda half-lambda” algorithm is shown in Figure 1.15.

In this suggested algorithm, at each iteration, two optimizations must be done. Once with
Ao value as a weight of prior model penalty term and one time with half of this current As.
After both optimizations, the data terms of the objective function in two cases are compared.
If use of the half-lambda results in a more reduction in objective function then this is taken
as the new value of Ay and the new optimum model is taken as that obtained with this half-
lambda and the process continues; otherwise Ay is left unchanged and the new optimum is
taken as the value obtained with Ao as regularization parameter. This algorithm can deliver a
robust result (Figure 1.16) similar as derivative based method used for the dynamic approach
(compare Figure 1.16¢ with Figure 1.6g). However, performing two optimizations at each step
would be the main drawback of this algorithm.
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Figure 1.16: The recovered V), models by FWI and two QC vertical logs passing through the
two target areas at x = 0.65 km and x = 2.3 km, (a) the reconstructed model by classical
FWI without prior model, (b) two vertical logs correspond to model (a); (c) the reconstructed
model by regularized FWI with dynamic prior weighting performed by “lambda half-lambda”
method, (d) two vertical logs correspond to model (c).
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1.6 Conclusions

We have proposed a regularized FWI scheme that includes prior information as an optimiza-
tion penalty term. Aside from the data misfit term, our misfit definition is composed of two
penalty terms: the Tikhonov term to ensure smoothness and the prior model term to help the
convergence towards expected models. Using a synthetic benchmark, we show how the prior
information improves the well-posedness of the inverse problem as compared to the standard
FWI approaches, and allows to fill in partially the lack of low-wavenumber during inversion.
The prior model definition may include structures that can help drive the inversion towards
the global minimum valley. This prior model is not involved in the synthetic data computation
and, therefore, is not required to be kinematically as accurate as the initial model for wave
propagation.

However, structures of the prior model may prevent convergence in the final steps of the
inversion and one can wish to decrease the importance of this prior information with respect
to the data information. We have proposed the idea of dynamic weighting of the prior term
during the inversion in order to smoothly reduce the impact of the prior information. This idea
could be promising and the way of performing that in a proper way can be an open research
study.

In time-lapse applications, this kind of prior information should be included for the inver-
sion. First, in order to get more accurate and more precise baseline model, and second to use
these prior data for inverting the small time-lapse variations. In the next chapter, we apply
this regularized FWI algorithm on synthetic time-lapse examples and show how the time-lapse
variations could be obtained in a robust way.
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After the accurate baseline reconstruction through FWI using limited aperture and with the
introduction of prior information, we may consider different strategies for the time-lapse inver-
sion. In this chapter, we discuss different time-lapse strategies and we compare the robustness
of these strategies on Marmousi synthetic datasets. We make different discussions about null-
space issues and differences between baseline and monitor inversions. In addition, we propose
a target-oriented time-lapse inversion based on the prior model and the prior weighting.

In a second part, we apply our regularized FWI method to another synthetic time-lapse
datasets with steam injection, namely Dai model (Dai et al., 1995). In this second synthetic
case, we investigate the sensitivity of the recoverd baseline model with respect to different
initial and prior models. Finally, the sensitivity of time-lapse models obtained by differential
FWI strategy with respect to the baseline models is studied and discussed.

2.1 Time-lapse seismic imaging using regularized FWI with
prior model: which strategy?

Time-lapse seismic imaging using regularized full waveform inversion with
prior model: which strategy?
Amir Asnaashari, Romain Brossier, Stéphane Garambois, Francois Audebert, Pierre
Thore, and Jean Virieux
2013, Geophysical Prospecting, accepted.

2.1.1 Abstract

Full waveform inversion (FWI) is an appealing technique for time-lapse imaging, especially
when prior model information is included into the inversion workflow. Once the baseline recon-
struction is achieved, several strategies can be used to assess the physical parameter changes,
such as parallel difference (two separate inversions of baseline and monitor datasets), sequential
difference (inversion of the monitor dataset starting from the recovered baseline model), and
double-difference (inversion of the difference data starting from the recovered baseline model)
strategies. Using the synthetic Marmousi datasets, we investigate which strategy should be
adopted to get more robust and more accurate time-lapse velocity changes in noise-free and
noisy environments. In addition, we propose a target-oriented time-lapse imaging using regu-
larized FWI including prior model and model weighting, if the prior information exists on the
location of expected variations. This scheme applies strong prior model constraints outside of
the expected areas of time-lapse changes, and relatively less prior constraints in the time-lapse
target zones. In application of this process to the Marmousi model dataset, the local resolu-
tion analysis performed with spike tests shows that the target-oriented inversion prevents the
occurrence of artifacts outside the target areas, which could contaminate and compromise the
reconstruction of the effective time-lapse changes, especially when using the sequential differ-
ence strategy. In a strongly noisy case, the target-oriented prior model weighting ensures the
same behavior for both time-lapse strategies, the double-difference and the sequential difference
strategies, and leads to a more robust reconstruction of the weak time-lapse changes. Therefore,
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we show that, in some configurations where the double-difference strategy is not applicable (for
example, non-perfectly matched acquisition geometries), the target-oriented sequential differ-
ence strategy can provide the same robust result as the double-difference strategy.

Keywords

Monitoring, Full Waveform, Inversion, Time-lapse, double-difference, target-oriented

2.1.2 Introduction

Over several years, monitoring and time-lapse analysis has become an important tool for opti-
mizing the oil and gas production and for evaluating COs sequestration efficiency. Time-lapse
data provide high-resolution images which enable us to track dynamic changes in physical prop-
erties, especially fluid parameter variations in target areas. Several successful time-lapse studies
have been undertaken for near-surface geophysical problems with non-seismic data, GPR and
electrical data (Ramirez et al., 1993; Day-Lewis et al., 2002, 2003; Singha and Gorelick, 2005;
Oldenborger et al., 2007; Miller et al., 2008), for seismic monitoring (Lumley, 2001; Rickett
and Lumley, 2001; Calvert, 2005; Hall, 2006; Lumley et al., 2008; Ayeni and Biondi, 2010), and
for joint inversion of electromagnetic and seismic data of reservoir monitoring (Liang et al.,
2012). Most of these studies are based on tomography problems where inversion techniques are
needed.

Over the past few decades, full waveform inversion (FWT) has become a promising technique
for velocity model building that reconstructs high-resolution velocity models of the subsurface
through the extraction of the full information content of seismic data (Tarantola, 1984b; Pratt,
1999; Virieux and Operto, 2009). Since the FWI approach delivers high-resolution quantitative
images of macro-scale physical parameters, it should appear as a quite attractive tool for
monitoring purposes, even if it is not yet widely applied (Gosselet and Singh, 2008; Abubakar
et al., 2009; Plessix et al., 2010; Thore et al., 2010; Romdhane et al., 2012; QueiBer and
Singh, 2013). Gradient-based inversions used in FWI cannot provide yet uncertainties on
the inverted values, in spite of few attempts (Fichtner and Trampert, 2011), compared to
stochastic approaches. The computational cost of the a posteriori covariance matrix limits
dramatically such kind of analysis for FWI applications. Nevertheless FWI approach could
be one of promising techniques for time-lapse imaging, taking into account both the phase
and amplitude of data and and it may be considered as less user dependence. Moreover,
the final product of FWI relies on quantitative image of physical properties that should help
interpretation of 4D changes.

Time-lapse variations are defined as a high-frequency details in the model at the reservoir
scale, while FWI is known as a technique which is limited to rather low frequencies for ex-
ploration projects due to the computational cost. However, even with these low frequencies
it can provide high resolution images. Today, by increasing the computer facilities and more
developments in FWI algorithms, there is less problem to move onto inversion of intermediate
frequencies. Nice applications have been shown at intermediate and high frequencies in both
2D and 3D problems (Shipp and Singh, 2002; Bansal et al., 2013; Lu et al., 2013). Moreover,
for time-lapse applications, it is not necessary to invert an entire field model which would be
very large (this is the case in general exploration project); the inverted model could be reduced
to the interested zones. Therefore, by decreasing the size of model (unknown parameters), it
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helps to move to a higher frequency inversion. Please note however that the problem of high
frequency inversion is not only a computational cost issue: the amplitude and cycle-skipping
issues become more and more important when moving to high frequencies.

Regularization or preconditioning may reduce the non-uniqueness of the ill-posed inverse
problem. Several studies have been done on regularization schemes of FWI implementations
(Abubakar et al., 2009; Herrmann et al., 2009; Loris et al., 2010; Guitton, 2011; Ma et al.,
2012). All these regularization techniques do not directly use prior model information as a
separate term in the data-oriented misfit function: they prefer to concentrate on the defini-
tion/restriction of the model space. One may want to use prior model information in the FWI
scheme as is done in other velocity building techniques (Le Stunff and Grenier, 1998; Tarantola,
2005). Recently, some authors suggested to introduce prior models in the multiplicative (Hu
et al., 2009) and additive (Wang et al., 2012; Asnaashari et al., 2013a) regularization terms of
the FWI workflow. Taking into account prior information could be very valuable for monitor-
ing purposes, where many types of precise prior information have been collected for the target
zone, in a way similar to the model-based regularization used on time-lapse electrical resistiv-
ity tomography (Oldenborger et al., 2007; Miller et al., 2008). Adding prior information can
also significantly improve the accuracy of the reconstruction of the baseline model (Asnaashari
et al., 2013a).

The time-lapse reconstruction procedure can be divided into two steps: (1) the baseline
and (2) the monitor model reconstructions. In order to obtain a robust high-resolution time-
lapse model, it is necessary to reconstruct both baseline and monitor models in a robust and
accurate way. For the second step of this approach, several workflows can be designed for
the monitor reconstruction. One of them, called the parallel difference strategy, independently
inverts the two datasets (baseline and monitor) starting from the same initial model. The time-
lapse changes will be assessed by subtracting the final derived monitor model from that of the
baseline (Plessix et al., 2010). The second approach, called the sequential difference strategy,
uses the final baseline model as the starting model for inverting the monitor dataset (Asnaashari
et al., 2012). An alternative strategy, called double-difference or differential strategy, consists
in inverting only the difference dataset to recover a differential image. It is related to a double-
difference tomography method widely used in geodesy and in seismology in order to improve
earthquake source locations or to image receiver areas (Waldhauser and Ellsworth, 2000; Zhang
and Thurber, 2003; Monteiller et al., 2005; Got et al., 2008), and used more recently for
locating microseismic events (Zhou et al., 2010). The double-difference method in the form
discussed here has been proposed for time-lapse waveform inversion of acoustic cross-well data
in frequency domain (Watanabe et al., 2004) and inversion of elastic data in time domain (Denli
and Huang, 2009).

The sequential difference strategy does not depend too heavily on the repeatability of the
acquisition geometry between baseline and monitor surveys, which is a great advantage. On
the contrary, the double-difference method demands a perfect match of the receiver and source
positions between the two surveys. On the other hand, the sequential difference strategy cannot
naturally focus on the target areas and on the time-lapse changes during inversion (as shown
in this paper). Could we tune the sequential difference inversion for a better focusing on
target zones using prior model information? In addition, could we reduce the effects of image
noise outside of the expected target zones if prior data are available? These are some of main
questions that we want to address in this study.

In the first part, we shall present the theoretical framework of our study. Then, using
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synthetic data modeled for the Marmousi model, we shall investigate the different behaviors and
robustness of time-lapse strategies in noise-free and noisy cases. The fundamental differences
between the sequential difference and the double-difference strategies, in conventional (without
prior model) and target-oriented modes, will be illustrated by a local resolution analysis. We
underline the sensitivity analysis of obtained time-lapse images with respect to the inaccuracy
of the recovered baseline model in a noisy environment. We shall illustrate how the target-
oriented inversion can significantly improve the results of all time-lapse inversions and how the
sequential difference strategy in target-oriented mode can provide the same robust result as
the double-difference strategy if prior data are available in crucial areas.

2.1.3 Time-lapse strategies with regularized full waveform inversion includ-
ing prior model

Full waveform inversion is an iterative approach to recover model parameters based on the
local optimization of residuals between observed and computed wavefields at receiver positions
for different seismic source locations. Any prior information which can be incorporated into
the estimation of the misfit function reduces the ill-posedness issue of inverse problems and
ensures more robust results. For that, we apply the time-domain regularized FWI algorithm
with prior model penalty introduced in Asnaashari et al. (2013a), where two penalty terms
based on model parameters are introduced into the misfit function. The misfit function C(m)
can be expressed using the £ norm as

cm) = 23 { (e — d(m)" WI W, (Ao — d(m)) } + 01 {m" D}

+ %/\2{ (m — mp)T W%Wm (m —m,) }
= Cd(m) + )qum (m) + )\QCQm (m), (2.1)

where the observed and calculated data at receiver positions are denoted by vectors d,;s and
d(m), respectively. The matrix Wy is a weighting operator on the data misfit. This first
term of the misfit function is obtained by adding the contribution over ns sources. The second
term of the objective function corresponds to the standard Tikhonov regularization (Tikhonov
and Arsenin, 1977) where the modulus of the gradient (roughness) of the model is minimized,
in order to search for smooth models. Practically, this term is formulated as the application
of Laplacian operator D. A five-point finite-difference stencil is used for the discretization
of this operator. The third term of the objective function is related to the prior model m,
designed from available prior information, such as sonic logs and geological information. This
term estimates residuals between the current model at a given iteration and the prior model
considered at that same iteration. The matrix W, is a weighting operator in the model space.
This matrix contains the prior uncertainty information and the potential weighting of this
information. This weighting operator plays a crucial role when reconstructing the model for
target-oriented imaging. In our misfit function, the prior-model variance information is included
in the diagonal W,,, matrix and the covariances are implicitly considered in the Tikhonov term.
The two regularization hyper-parameters A; and Ao allow each penalty term to be weighted
with respect to each other and to the data term. Designing the prior model and estimating the
weighting matrix is an important step before the optimization. Moreover, hyper-parameters
should also be estimated. These issues come with the new definition of the misfit function.
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The gradient of misfit function now has three terms, one data term and two model terms,
expressed as

Gm == _ ITWIW, (dops — d(m)) + M Dm + oy W] W, (m — m,), (2.2)

ns

where the Jacobian matrix J = dd(m)/0m is composed by the Fréchet derivatives of the
synthetic data with respect to the model parameters. The data term of the gradient is effi-
ciently computed with an adjoint formulation (Plessix, 2006) without an explicit computation
of J. Then, two model penalty terms are readily added to the data term without extra com-
puter efforts as they can be easily differentiated. The quasi-Newton procedure involving the
L-BFGS-B scheme (Byrd et al., 1995) is used for the optimization and updates the model
parameter vector m. An approximate non-diagonal inverse Hessian (second derivative of the
misfit function) from previous gradients and model vectors is considered in this scheme. This
bounded limited-memory quasi-Newton method is an efficient alternative to preconditioned
steepest-descent methods, because of improved focusing and partially correcting the descent
direction affected by limited aperture of illumination (Brossier et al., 2009). The bounded
values can be approximately estimated from the prior information. A detailed review and ap-
plications of this regularized FWI scheme including prior penalty can be found in Asnaashari
et al. (2013a).

In the following, we briefly introduce three different strategies for time-lapse imaging with
this new regularized FWI approach, considering initial and prior models.

2.1.3.1 Parallel difference strategy

The parallel difference strategy considers two independent inversions, where the baseline and
monitor datasets are processed separately using the same starting and prior models. After in-
version, the time-lapse variation is simply the subtraction between the recovered (rec.) monitor
model and the reconstructed (rec.) baseline model (Plessix et al., 2010), as explained by the
diagram in Figure 2.1. The main advantage of this strategy is its applicability to acquisition
geometries that do not necessarily match between the two surveys. As the two inversions are
performed independently, the main drawback is the potential interpretation of non-repeated
inversion artifacts as a false time-lapse response.

2.1.3.2 Sequential difference strategy

Because one expects the time-lapse response to be localized and of small amplitude in most
of the monitoring applications, the baseline model is a natural good candidate for the starting
model of the inversion of the monitor dataset. Starting from the baseline model should reduce
the number of necessary iterations for the inversion of the monitor dataset. Therefore, once
the baseline reconstruction is completed, this baseline model is subsequently used as the initial
model during the inversion of the monitor dataset. At the end, the time-lapse model is obtained
by a subtraction between the two recovered models. The schematic of sequential difference
strategy is shown in Figure 2.2. This approach is similar to the previous strategy, but with a
different initial model. As the baseline model is close to the monitor model due to small and
localized time-lapse variations, the recovered baseline could also be a good candidate for the
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Figure 2.1: Diagram of parallel difference full waveform inversion.

prior model. The role of the prior model is to regularize the inversion and to find the monitor
model not far away from the initial one (baseline model). If more prior data on the changes
are available from boreholes and non-seismic data, they would be integrated to design a new
prior model. However, the prior model alone is not sufficient, and it is important to consider
an appropriate model weighting matrix Wy,. The prior information related to the location of
time-lapse changes should be included in the Wy, matrix. We discuss this issue in more detail
in the target-oriented FWI section.

2.1.3.3 Double-difference strategy

In the double-difference strategy, instead of minimizing the difference between the full observed
and calculated data, we attempt to minimize the difference of the difference data between two
sets of data (Watanabe et al., 2004; Denli and Huang, 2009), yielding the expression

Ad = (dObSm - dObSb) - (dcalcm - dcalcb) = dObstimeflapse - dcalctimeflapse7 (23)

where the monitor and baseline observed data are denoted respectively by dgps,, and dgps,,
while the computed data for these two experiments are denoted by dcgc,, and deq.,. Based
on equation 2.3, the double-difference inversion focuses on the difference data, i.e. changes in
data due to the time-lapse variation. In order to use the standard regularized FWI algorithm
at our disposal, we can rewrite equation 2.3 in another way,

Ad = (dobsm - dobsb + dcalcb) - dcalcm = dcomposite - dcalcm- (2~4)
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Figure 2.2: Diagram of sequential difference full waveform inversion.

Therefore, for the double-difference analysis, we first need the elaboration of a composite dataset
defined as

dcomposite = dobsm - dobsb + dcalcrec_ba (2'5)

which is composed of (a) the time-lapse difference observed data (dops,, — dobs,) Which should
only contain the time-lapse changes between the two datasets and (b) the computed data
dcaic,.,, estimated using a forward modeling in the recovered baseline model (rec-b). This
composite dataset deomposite can be used as a new observed dataset dps in equation 2.1, which
allows minimizing the double-difference residual 2.3 with a standard regularized FWI algorithm.
The reconstructed baseline model is the natural choice for the initial model for this inversion.
Finally, the time-lapse model changes dmy;me—iapse = Meomposite — Myec—p Can be obtained. A
schematic of the proposed algorithm is shown in Figure 2.3.

Please note that the difference observed data are computed by a raw subtraction, without
any time warping. The difference data may contain artificial 4D effects along time axis, due
to slightly time-shift related to 4D changes. This issue does not make a problem, since FWI
performs inversion in depth domain and not in time domain. These artificial 4D effects are
associated to the time-lapse anomaly at specific depth, therefore can be focalized at that depth.
Hence, because of inversion in depth domain, there is no need to align baseline and monitor
traces in time.

The main advantage of the double-difference strategy is that the unexplained events (non-
fitted during inversion) of the baseline data at the baseline reconstruction step have less impact
on the time-lapse perturbation reconstruction, as compared to the sequential difference strategy.
The composite dataset is free from any unexplained baseline events. In contrast, the sequential
difference uses the full real monitor data that may contain unexplained baseline/monitor events.
As long as these unexplained events stay common for both baseline and monitor data, they
will not produce time-lapse artifacts. This feature, as well as the importance of an accurate
recovered baseline model, will be discussed in detail in the synthetic example section.
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Figure 2.3: Diagram of double-difference (differential) full waveform inversion.

For double-difference, it is essential to have perfectly matched surveys (e.g. permanent sen-
sors or ocean-bottom cable (OBC) configurations) to perform subtraction between datasets. In
case of non-matching surveys, we need to tackle extra pre-processing steps and make data inter-
polation to match receiver and source positions between two surveys. In parallel difference and
sequential difference strategies, because of performing two separate inversions, exact-matching
issue is less required.

2.1.4 Target-oriented inversion

The sequential difference strategy cannot naturally focus only on target areas and on the time-
lapse data changes during inversion. Is there any way to make the sequential difference inversion
focus on the target zones? In addition, could we reduce effects of image noise outside of the
expected target zones?

As the baseline model is close to the monitor model, since the time-lapse variations are
small and localized, the recovered baseline model could also be a good candidate for the prior
model in both the sequential difference and the double-difference strategies. If the variations
are localized only at the reservoir and assuming no overburden changes, we can constrain
the inversion outside of the area of expected changes through the prior-model misfit term
of the objective function (the location of these expected changes may come from external
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information or be known after previous attempts of different inversions). In other words, we
may give strong weights to the prior model (here, the recovered baseline model) for the parts
of the model where no time-lapse variations are expected to occur, and relatively less prior
weights in the target areas. By doing so, the inversion tends to update the monitor model
only inside the target areas where the weaker prior constraints leave more relative weight in
the cost function to the data-misfit term with respect to the model term. Of course, hyper-
parameters will balance the global contributions between data and model terms. Thus, this
target-oriented inversion can be easily incorporated into the double-difference and sequential
difference strategies, using the target-oriented model weighting matrix W,,. This is another
advantage of these strategies compared to the less interesting parallel difference strategy. The
target-oriented procedure could be used as a final focusing strategy. The non-seismic prior
data such as well data and geological models, and a migrated section of difference dataset,
together, can help to approximately identify the areas of expected changes. The diagonal
model weighting matrix is computed based on diag(W! W,,) = 1/0?(m), where ¢%(m) is
related to the prior uncertainty. In the expected target area, the prior uncertainty associated
to the prior model (recovered baseline model) is relatively higher than outside of the target
area where no changes are expected. This target-oriented inversion mode can be integrated
with two of the time-lapse strategies, the sequential difference and the double-difference ones.
This target-oriented option can be performed, if the prior information exists on the location of
expected time-lapse variations.

2.1.5 Application to the Marmousi model

In this section, we study the robustness and behavior of the different time-lapse imaging strate-
gies presented before, in the case of both noise-free and noisy synthetic datasets modeled on a
version of the Marmousi2 model (Martin et al., 2006). A selected target zone of the Marmousi2
P-wave velocity model and a homogeneous density model are considered as the true baseline
models (Figure 2.4a). The true monitor velocity model is created from the baseline model
through a relative (40 m/s) variation of velocity inside two gas reservoirs (Figure 2.4b). The
velocity changes are around 2% of the baseline velocity variation inside the reservoirs, which is
realistic. We assume that the two reservoirs are fully saturated by gas at the beginning, and
after production the gas is partially replaced by water. This means, in a second phase of the
exploitation, that the reservoirs are partially saturated by gas and water. Due to this issue,
there is an increasing change in V), velocity. A surface acquisition geometry with a free-surface
condition is used to generate the synthetic data, with seventy-seven isotropic explosive sources,
located along a horizontal line at a depth of 16 m, equally spaced by a distance of 50 m. A
horizontal receiver line at a depth of 15 m with a sensor interval of 10 m completes the ac-
quisition. All receivers record all shots. A Ricker wavelet source with a central frequency of
10 Hz is used, for baseline and monitor surveys. The time seismograms are generated using
2D acoustic finite-difference modeling in the time domain with a fourth-order stencil in space
and a second-order integration in time. Perfectly-matching-layer (PML) absorbing boundary
conditions (Berenger, 1994) are used for non-reflecting boundaries except at the top where a
free-surface condition is implemented. The observed data for the inversion are the recorded
pressure data.
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Figure 2.4: (a) The true V), baseline model selected from Marmousi model and the acquisition
geometry; (b) the true time-lapse model.

2.1.5.1 Noise-free data

Figure 2.5a shows an example of baseline seismograms generated by a shot located at the center
of the source line. Clearly, surface multiples are present in the data and increase the complexity
of the data for inversion. Figure 2.5b shows the noise-free difference data (time-lapse data)
obtained by subtraction between the monitor and the baseline data. Note that the amplitude
of the difference seismograms is amplified by a factor of 10 so as to be at the same scale as
the baseline seismograms, for visualization purposes. The time-lapse signal is weak due to very
small velocity variation of the two small target reservoirs. This low energy time-lapse signal
may induce difficulties for the recovering of time-lapse changes. The baseline reconstruction
should be done as the first step.

2.1.5.2 Baseline reconstruction

The main challenge for monitoring remains the necessity to derive a robust high-resolution
baseline model which will be key for the reconstruction of time-lapse parameter variations
(Asnaashari et al., 2011). Therefore, an accurate and robust reconstruction of the baseline
model is crucial. Recently, Asnaashari et al. (2013a) have proposed a dynamic prior weighting
FWI designed to impose a strong contribution of the prior model term in the objective function
at the beginning of optimization and then gradually reduce its influence and increase the impact
of the data term. Combining the prior information and a dynamic prior weighting allows to
drive the inversion to the valley of the quasi-global minimum, to mitigate the cycle-skipping
issues, and to progressively give more importance to the data-misfit term at the late iterations
of optimization.

The same dynamic approach is followed for the inversion of the baseline data using the
regularized 2D acoustic full waveform inversion. Our FWI is implemented in the time domain
for both the forward and the inverse problem, involving all the frequencies of the spectrum
(between 1 Hz to maximum 25 Hz in this case). No additional hierarchical approach such
as the frequency-continuation approach of Bunks et al. (1995) is used. This means that the
weighting of each frequency is directly linked to its amplitude in the spectrum. The full offset
range is included for the inversion. The forward modeling is performed by 2D acoustic finite-
difference method with a fourth-order stencil in space and a second-order integration in time.
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Figure 2.5: (a) The noise-free observed baseline seismograms for the source located at the center
of Marmousi model; (b) the noise-free difference data between monitor and baseline datasets;
(c) the noisy baseline seismograms obtained with an artificial Gaussian band-limited noise in
the bandwidth of source wavelet, which has been added to the noise-free data with S/N=6 dB;
(d) the noisy difference data, the time-lapse seismic events are blinded by high level of random
noise. Please note that the amplitude of (b) and (d) seismograms are amplified by factor 10 to
be plotted at the same scale of (a) and (c), for visualization purpose.

For this model, performing of forward modeling for all the shots takes around 15 seconds of cpu
elapsed-time, using a shot-based parallelization FWI algorithm (on 77 mpi-processors for this
test). Therefore, performing FWI on the baseline data takes roughly 2-3 hours of cpu elapsed-
time (note that for the sequential difference or double-difference strategies due to starting from
the recovered baseline model and less iteration numbers, this computational time will reduce
to less than 20 minutes). Please note that our code is a prototype code and is not optimized
for production.

A strongly smoothed initial model (Figure 2.6a) obtained by smoothing the true base-
line model, which mimics a time-tomography velocity model based on both first arrivals and
reflected events, is used as the initial model. In our study, we consider that the sonic-log mea-
surements acquired in the two exploration wells, located at two sides of the model, provide an
accurate estimation of the local vertical velocity. We build a crude prior velocity model (Figure
2.6b) based on a linear interpolation between the two well locations. However, more accurate
techniques such as geostatistical approach or structural interpolation based on migration could
be used. From the local velocity measurements, the interpolated prior model is accurate near
the well locations and degradates with distance from well, as the structure is highly hetero-
geneous. Therefore, we decided to build a weighting shape whose uncertainty values follow a
Gaussian function in x direction with weak values near the wells and increasing values in the
center of the area. Then, this uncertainty model has been combined with a depth weighting
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Figure 2.6: (a) The strongly smoothed initial model used for the baseline and the parallel
difference inversions. (b) The prior model used for the baseline and the parallel difference
inversions. This prior model is built by a linear interpolation between the two exploration
wells at two sides of model and is slightly smoothed. (c) The prior model weighting o used for
the baseline and the parallel difference inversions. This model weighting contains the Gaussian
function varying only in the z direction between two wells with maximum value at the center
of model, then this variation is complemented by a quadratic evolution in the z direction.

(22), in order to have an appropriate balance between the data-misfit and prior-model terms
by going into depth (it can also be seen as compensating for the propagating decay of the wave
amplitude). This o?(m) model (Figure 2.6¢) is used to include the prior model into the misfit
function with a spatial varying weight (recall diag(WL W,,) = 1/0?(m)).

For selection of regularization parameters, the A\; value is chosen as a small value to ensure
a slight smoothing of the results. To select the Ao hyper-parameter, the misfit function is
computed for the starting model for Ao = 1. Based on the ratio v between the prior-model misfit
A2Ca,, (m) and the data-term misfit C4(m), we adjust the Ay value such that 1073 <y < 1072,
Therefore, by selecting this reasonable ratio of prior-model and data-misfit terms, the FWI is
prevented to minimize the model norm heavily at early iterations. In this test, we choose to
have the ratio v = 1073. As mentioned before, the dynamic weighting approach is performed
to gradually reduce the Ay value during the optimization. The reader is referred to Asnaashari
et al. (2013a) for more details. The stopping criterion for L-BFGS-B is based on the flatness
of the misfit function for two successive iterations, ensuring a convergence. The criterion is
the same for all the following inversion tests performed in this study, so that the results are
comparable on the data side.

The obtained baseline model is shown in Figure 2.7a. As a quality control (QC), the
normalized V}, error computed at each grid point is plotted (Figure 2.7b). The theoretical error
associated to the recovered model is computed by the expression V7" = (V;”“@ = Vye)/ V;f”‘e
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Figure 2.7: (a) The recovered baseline model by regularized FWI using the interpolated prior
velocity model with inversion of noise-free data; (b) the normalized V), error at each grid point,
VT = (Ve — Vee) JVIT4e, used as a quality control for the recovered model (a); (c) similar
as (a) in case of strongly noisy data with S/N = 4.5 dB; (d) the normalized V), error for the
recovered model (c).

as we know the true model.

At larger depth and close to the boundaries of the model, the error is slightly higher
due to the lack of illumination. However, inside the reservoirs and in the overburden, the
reconstruction of the velocity model converges to a quasi-perfect model thanks to the influence
of the prior model. We insist that such a precise and accurate result cannot be obtained without
considering the prior model and the dynamic approach. Adding the prior model into inversion
scheme leads to an accurate baseline model which is crucial for time-lapse inversion.

2.1.5.3 Time-lapse imaging

In this part, we perform a robustness study of the three proposed time-lapse imaging strategies
(parallel difference, sequential difference, double-difference), particularly in the presence of
ambient noise. In the first investigation, we focus on the noise-free case using the conventional
modes (i.e. without target-oriented option). For the parallel difference strategy, we invert
the monitor dataset with the same configuration and inversion parameters as for the baseline
reconstruction, starting from the same smooth initial model, using the same interpolated prior
velocity model, and the same parameters of the dynamic approach. Figures 2.8a and 2.8b show
the time-lapse model obtained by the parallel difference strategy, with two vertical QC logs
passing through the two gas reservoirs. The result shows that inverting both data independently
from the same initial model does not make it possible to focus only on time-lapse changes.
The two reservoir variations are approximately recovered, but many high amplitude anomalies
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associated to inversion artifacts are present in the final time-lapse model. This problem is
mainly linked to the ill-posedness and the non-uniqueness issues of the inverse problem. Since
the complexity of data is not the same for the two datasets, the two independent inversions
do not converge to similar models and do not have the same path of optimization. Thus,
different artifacts are created for the two inversions. In terms of computational costs, the
parallel difference strategy is not interesting, because both inversions start from the smooth
initial model.

Once the recovered baseline model is obtained, we can perform the sequential difference and
the double-difference strategies starting from this baseline model. Since the expected monitor
model must be close to the baseline model, due to the small and localized time-lapse variations,
the recovered baseline could also be a good candidate for the prior model in both strategies.
This is the case in this study. In the conventional mode (without target-oriented option), a
homogeneous weighting is applied to the model, with a low influence of the prior model penalty
term in the objective misfit function. The sequential difference is able to detect the time-lapse
variation, but it cannot focus solely on the target areas (Figures 2.8c and 2.8d). The result is
less contaminated by inversion artifacts as compared to the parallel difference strategy. Figure
2.8e shows the time-lapse result produced in the noise-free case with the conventional double-
difference strategy. It appears that both target zones are very well recovered and that most
of the difference data energy is focalized inside the correct perturbation zones, although some
low-value anomalies exist below 1 km depth at the center of the model. This may be due to
small inaccuracies in the reconstructed baseline model, that are not completely recovered in
this part mostly due to the lack of illumination. However, such time-lapse incorrect anomalies
may be considered as acceptable. For the small reservoir, since its thickness is smaller than the
spatial wavenumber, there is a small shift in the position of the top reservoir (please note that
the maximum frequency included in the time-domain inversion is around 25 Hz).

For the target-oriented inversion (in the following), we need to design the model weighting
matrix W, based on the location of expected changes. Based on non-seismic prior information,
well-known the depth of reservoirs, and the migrated section of difference dataset, it is possible
to roughly detect the area of time-lapse changes. After detecting the approximate location of
variations, the prior uncertainty model o?(m) (Figure 2.9) is built by a summation between a
small constant uncertainty value everywhere in the model and two Gaussian functions varying
in z and z direction which are centered roughly at the center of variations. These two Gaussian
functions, which contain high relative values with respect to the small values of other places,
present the areas where we expect to be updated during the target-oriented inversion. This is a
roughly design of the target-oriented prior uncertainty model, however more precise techniques
could be used in real case applications. We use this target-oriented weighting model for all
following target-oriented inversions.

As the parallel difference may not be very interesting anymore, in the following we will
concentrate on the two other strategies.

2.1.5.4 Local resolution analysis

In this section, we want to analyze the different behaviors of the two time-lapse strategies,
in conventional and target-oriented modes. For that, we perform a local resolution analysis.
The Hessian function is related to the point-spread functions (PSFs) or the spike tests; this
relation is important information brought by the Hessian in a local resolution analysis. Spike
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Figure 2.8: The recovered time-lapse V), models by regularized FWI of noise-free data and two
QC vertical logs passing through the two target areas at x = 1.1 km and x = 2.8 km: (a)
using the parallel difference strategy; (b) two vertical logs corresponding to the model (a); (c)
using the sequential difference strategy; (d) two vertical logs corresponding to the model (c);
(e) using the double-difference approach; (f) two vertical logs corresponding to the model (e).

tests are commonly used as a diagnostic tool for resolution analysis in linearized tomographic
problems (Menke, 1984; Fang et al., 2010; Fichtner and Trampert, 2011). They constitute a
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Figure 2.9: The target-oriented ¢ model is built based on the location of time-lapse changes
coming from the migrated section, the available prior well data and geological model.

numerical way for estimating the effects of the off-diagonal terms of the Hessian function on
the recovering model parameters, for one row and one column of the Hessian matrix related to
the point model perturbation.

We shall consider a true monitor model which contains only two point time-lapse pertur-
bations that are point-localized inside the two reservoirs. In a first investigation, without any
target-oriented prior weighting, the time-lapse images (two spike functions) are recovered by
the inversion from three different configurations: 1) The time-lapse inversion (eighter sequen-
tial difference or double-difference) starting from the true baseline model used as the starting
monitor model, shown in Figure 2.10a; 2) the sequential difference strategy starting from the
recovered baseline model (Figure 2.7a) used as the starting monitor model, shown in Figure
2.10b; and 3) the double-difference strategy starting from the recovered baseline model (Figure
2.7a) used as the starting monitor model, shown in Figure 2.10c. The results are shown here
after 10 iterations. The spikes recovered by the double-difference strategy (from the recovered
baseline model) appear to be very similar to the ones obtained with the true baseline model,
showing the robustness of the strategy with respect to the starting model. In addition, the total
energy of the time-lapse perturbations is better located and better focused at their positions
with the double-difference method, as compared to the sequential difference strategy.

When using the true baseline model as the initial model for time-lapse inversion (Figure
2.10a), the two strategies bring quite identical results, because the calculated baseline data
dcqie, are equivalent to the observed baseline data dgs,, so the composite dataset and the
observed monitor data are identical (for noise-free data). Let us clarify the differences between
the composite and the monitor dataset, when the recovered base model is used. The monitor
dataset can be written as the time-lapse perturbation data plus the baseline data (simply by
mathematical adding and subtracting the baseline data to and from the monitor data),

dobsm = dobsm - dobsb + dobsb- (26)

The expression is similar to the one for the composite data (2.5), but the calculated re-
covered baseline data has been replaced with the observed baseline data. The misfit data
computed at the first iteration (when dege,, = deae,,,_,) of optimization for the two strategies
are expressed as

Addouble—diffe’/‘ence = dobsm - dobsba (27)
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Adsequential = (dobsm - dobsb) + (dobsb - dcalcmc_b)~ (28)

Equation 2.7, which follows from equation 2.4, and equation 2.8, derived from equation 2.6 and
the data misfit equation (dops,, — deale,, ), reveal the main differences between the sequential
difference and the double-difference strategies. The sequential difference strategy, in addition
to the time-lapse data (first part of the expression, common with the expression for the double-
difference approach), tries to recover the misfit related to the baseline events that have not been
fully reconstructed before (second part of the expression). This is the drawback of the sequen-
tial difference strategy, that leaves a potential risk of creating spurious time-lapse variations.
However, the double-difference strategy focuses on inverting difference data and requires as a
starting model a baseline model which accurately enough describes the background baseline
kinematics and structures, otherwise the time-lapse energy cannot be localized and focalized
properly at the correct positions.

We should mention that the problem of sequential difference is not related to a convergence
of inversion in a wrong direction. This issue rather appears as a mixing of two different
effects: the updating of baseline structure and the recovering of time-lapse changes. If it
would be possible to qualify the time-lapse variations with another smart way rather than a
simple subtraction between the two obtained models (baseline and monitor), we could better
distinguish 4D changes from other effect. In the following, as we rely on model-difference
to build the 4D wvariations, the baseline improvement during the monitor inversion will be
considered as 4D artifact.

In a second investigation, the same tests are performed, with the baseline model as a prior
model (i.e. the true baseline model used as the prior model in the test of Figure 2.10d and
the recovered baseline model used as the prior model in the tests of Figures 2.10e and 2.10f)
and applying the target-oriented prior model weighting (Figure 2.9). The results are shown in
Figure 2.10 (bottom panel). The target-oriented inversion prevents the apparition of artifacts
outside of the expected target areas, especially for the sequential difference strategy, more prone
to artifacts. For both time-lapse strategies, target-orienting the inversion can significantly
improve the results compared to the conventional inversion (top and bottom panels of Figure
2.10). By applying a stronger model weighting outside the target zones, the second term of
the sequential-difference data misfit (2.8) (i.e. dgps, — deale,.._,) Plays a minor role in driving
the inversion procedure. The model constraints outside the target do not allow these non-fully
fitted baseline data to update the monitor model. For target-oriented inversion, the dynamic
prior weighting cannot be applied and the prior regularization parameter Ao has to be kept
constant until the end of optimization.

2.1.5.5 Noisy data S/N=6 dB

In this section, we study the robustness of the two aforementioned time-lapse strategies in
presence of random noise. In particular, we present a sensitivity analysis of the time-lapse
models obtained by the sequential difference strategy and the double-difference strategy with
respect to the inaccuracy of the recovered baseline model. How accurate should the baseline
model be? This is the question that is addressed in this section.

An artificial Gaussian noise in the range of 1 —25 Hz (the bandwidth of the source wavelet)
has been added to the true noise-free data (we have used the ‘suaddnoise’ procedure of Seismic
Unix (Cohen and Stockwell, 2008)). The signal-to-noise ratio is around 6 dB. Figures 2.5¢c
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Figure 2.10: Local resolution analysis with spike tests, top panel without target-oriented inver-
sion: (a) using time-lapse inversion (sequential difference or double-difference) starting from
the true baseline model (Figure 2.4a); (b) using the sequential difference strategy starting from
the recovered baseline model (Figure 2.7a); (c) using the double-difference strategy starting
from the recovered baseline model (Figure 2.7a); (d), (e), and (f) similar as (a), (b), and (¢) in
case of using the target-oriented model weighting (Figure 2.9).

and 2.5d show the noisy baseline and the difference seismograms, respectively. The difference
seismograms are amplified by a factor of 10 to be plotted at the same scale as the baseline
seismograms. Clearly, the low-energy time-lapse signal is below the level of random noise.
First of all, the noisy baseline data are inverted by the dynamic regularized FWI including the
prior model built by well logs (Figure 2.6b). The recovered baseline model and its corresponding
error map are illustrated in Figures 2.11a and 2.11b. As expected, the result with noisy data is
less accurate compared to the result for the noise-free case, since the inverse problem becomes
more ill-posed. However, using the prior model helps to fill in the lack of low wavenumbers
and ensures that the inversion converges to a more robust model. To perform the sensitivity
analysis, in addition to this final recovered model, another baseline model with less accuracy
is used. One of the intermediate updated models, obtained during optimization but before
reaching the convergence, is chosen (Figure 2.11c).

2.1.5.6 Sensitivity to the inaccuracy of baseline model

We perform four different inversions using the conventional sequential difference and the con-
ventional double-difference strategies starting from the intermediate recovered baseline model
(Figure 2.11¢) and from the final obtained baseline model (Figure 2.11a). The results are
shown in Figure 2.12. The double-difference strategy delivers almost the same results in both
cases and the time-lapse perturbations are reconstructed quite well. Nevertheless, the result
obtained with a more accurate baseline model is more precise, especially for the smaller reser-
voir. The results of the sequential difference are completely different when different baseline
models are used as the initial monitor model. When the accurate baseline model is chosen, this
method converges to similar result as the double-difference one. However, there are some small
anomalies below 1 km depth and the smaller reservoir is less recovered. When the inaccurate
baseline model is used as the initial model, the time-lapse model obtained by the sequential
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Figure 2.11: The recovered baseline model by regularized FWI using the interpolated prior
velocity model with inversion of noisy data S/N = 6 dB: (a) the final obtained model; (b) the
normalized Vj, error at each grid point, V7" = (th’”"e = Vye)/ th”‘e, used as a quality control
for the recovered model (a); (c) the intermediate updated model during optimization with less
accuracy compared to (a); (d) the normalized V), error for the recovered model (c).

difference strategy is affected by several artifacts, inside and outside the target zones. These
artifacts are caused by the non-fully explained events of the baseline data (dgps, — dealc,.._, )
and FWI keeps updating the model in the time-lapse inversion due to these residuals. The
sequential difference strategy attempts to recover the parts of the model which have not been
reconstructed during the baseline reconstruction step. Therefore, this strategy can only be at-
tractive when one has confidence in the baseline model reconstruction, which would be difficult
case on real application. On the other hand, the double-difference strategy is less sensitive to
the inaccuracy of the recovered base model.

2.1.5.7 Strongly noisy data S/N=4.5 dB

What will be the efficiency of our different strategies for strongly noisy data? Does the added
noise change the behavior of the two time-lapse strategies in the conventional mode and the
target-oriented mode? Same as before, an artificial Gaussian noise in the range of 1 — 25 Hz
has been added to the true noise-free data with signal-to-noise ratio around 4.5 dB. The noisy
baseline data are inverted by the dynamic regularized FWI including the prior model. The
recovered baseline model and its corresponding error map are illustrated in Figures 2.7c and
2.7d. It appears that the baseline model is not recovered accurately, even at shallow depths,
due to the high level of noise.

76



2.1 Time-lapse seismic imaging using regularized FWI with prior model: which strategy?

Distance (km) Distance (km)
a) 0.3 0.8 13 1.8 2.3 2.8 . 38 0 0.3 0.8 1.3 1.8 2.3 2.8 33 3.8

. v' .' ""A .v
o 2E
)’\.. ) e - o
V%A '}: \"'\"\.‘(A . .r:“-‘ 4

“ab N p <
RN

0.8 1.3 1.8 2.3

[ eeee—— ] e
-20 0 20 40 60 -20 0 20 40 60
Vp time-lapse (m/s) Vp time-lapse (m/s)

Figure 2.12: Sensitivity of time-lapse models with respect to the inaccuracy of baseline model,
in case of noisy data S/N = 6 dB, time-lapse models obtained by: (a) the sequential difference
strategy starting from the final recovered baseline model (Figure 2.11a) as the starting model,
(b) the double-difference strategy starting from the final recovered baseline model; (c) the
sequential difference strategy starting from the intermediate recovered baseline model (Figure
2.11c) as the starting model; (d) the double-difference strategy starting from the intermediate
recovered baseline model.

2.1.5.8 Conventional time-lapse inversions

In a first investigation, the conventional sequential difference and double-difference strategies
are tested in this strongly noisy environment (i.e. without target-oriented model weighting).
Figure 2.13 shows the results of these inversions. In the conventional mode, the result of the
double-difference strategy is more robust than the one from the sequential strategy: however,
in both cases, most of the recovered model is dominated by the uncorrelated noise. The result
of the sequential difference strategy is contaminated by the artifacts so that it is difficult to
interpret even the location of the real time-lapse variations. To improve this result, we propose
to apply the sequential difference strategy in target-oriented mode with an appropriate model
weighting matrix.

2.1.5.9 Target-oriented time-lapse inversions

In a second investigation, the two time-lapse strategies are applied in target-oriented inversion
mode. The results are shown in Figure 2.13. The target-oriented inversions can prevent the
apparition of perturbations outside the expected target zones: most of the image noise artifacts
and artifacts due to continuing baseline updates (in sequential difference case) are removed,
thanks to the target-oriented weighting matrix W,,,. Therefore, the sequential difference strat-
egy in target-oriented mode behaves similar to the double-difference strategy and can deliver
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Figure 2.13: The recovered time-lapse V,, models by regularized FWI of the strongly noisy data
(S/N = 4.5 dB) and two QC vertical logs passing through the two target areas at x = 1.1 km
and x = 2.8 km using: (a) the conventional sequential difference strategy; (b) two vertical logs
corresponding to the model (a); (c) the conventional double-difference strategy; (d) two vertical
logs corresponding to the model (c); (e) the target-oriented sequential difference strategy;
(f) two vertical logs corresponding to the model (e); (g) the target-oriented double-difference
strategy; (h) two vertical logs corresponding to the model (g).
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the same robust results as the double-difference method, if some information exists on the
location of the expected perturbed zones.

In this case, the recovered monitor model is almost frozen and is not allowed to be updated
outside of the target zones, due to the prior model and model weighting matrix. Therefore,
the unexplained baseline events cannot contaminate the reconstruction of the time-lapse per-
turbations. In this case, the velocity variations in the larger reservoir are better recovered and
better positioned with the sequential difference strategy in target-oriented mode, compared to
the conventional mode (see Figures 2.13b and 2.13f). Please note that another numerical tests
have shown that less accurate knowledge of the target positions in the prior weighting (wider
expected target area) still leads to robust results, compared to the conventional approach.
Clearly, the smaller reservoir change is missed in all inversion sequences because of the high
level of noise, the small size of the perturbation area, and the inaccuracy of the baseline model.

In some situations where the double-difference method is not applicable, for example non-
perfectly matched acquisition geometries, we must consider the sequential difference strategy
for time-lpase inversion. By performing this strategy in target-oriented mode, it is possible
to obtain a time-lapse result as robust as that would be delivered by the double-difference
strategy. In this case, we can focus only on the time-lapse areas and reduce the drawbacks of
the conventional sequential strategy.

2.1.6 Discussion

Nowadays, techniques such as full waveform inversion and amplitude versus offset (AVO) in-
crease our capabilities for better characterizing reservoir changes spatially and quantitatively.
We have shown in this paper that the double-difference and the sequential difference strate-
gies could be promising techniques for time-lapse imaging, however, with some advantages and
drawbacks.

When the quality of data is acceptable in terms of signal-to-noise ratio, the double-difference
strategy can be more interesting than the sequential one, since it can focus on the target
areas. In the case of very strongly noisy data, the double-difference strategy is more sensitive
to the non-repeatable noise at the subtraction step. The subtraction between two datasets
increases the standard deviation of noise, and the amplitude of noise overwhelms the lo