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Résumé

En exploration sismique, il est primordial d’extraire des données enregistrées les paramètres
physiques étudiés du sous-sol, typiquement les vitesses de propagation des ondes sismiques, afin
de localiser correctement les réservoirs potentiels. Dans ce cadre, l’imagerie sismique est l’une des
plus importantes étapes dans cette quête. Le processus d’imagerie a reposé pendant longtemps
sur une décomposition par échelles: la première étape consiste à construire un modèle de vitesse
des bas nombres d’ondes qui explique correctement la cinématique (la phase) du signal enregistré
et la seconde à prendre en compte  l’amplitude par un processus de sommation (migration) afin de
détecter les contrastes de reflectivité (hauts nombres d’ondes).

Dans les années 80, une méthode d’imagerie quantitative, nommée inversion des formes
d’ondes ou inversion du champ d’onde complet, a été proposée pour rassembler les deux étapes du
processus d’imagerie au sein d’une approche intégrée. L’objectif de l’inversion des formes d’ondes
est de construire simultanément tout le spectre des nombres d’ondes en exploitant l’ensemble
des arrivées enregistrées par des dispositifs d’acquisition fournissant un large éclairage angulaire
du milieu. La méthode est formulée sous la forme d’un problème d’otpmisation pour lequel les
différences entre les données enregistrées aux récepteurs et les données modélisées sont minimisées
au sens des moindres carrés.

Depuis quelques années et vu son potentiel, la méthode d’inversion des formes d’ondes a été un
sujet de recherche trés étudié. Des problématiques liées au modèle initial et à la fréquence initiale
utilisés dans l’inversion, à l’influence du bruit et au choix du critère de minimisation (autre norme
ou autre fonctionnelle), à la reconstruction de plusieurs classes de paramètres, à l’introduction
de phénomènes physiques plus réalistes comme l’atténuation, l’anisotropie et l’élasticité, et au
passage du 2-D au 3-D et donc du coût numérique ont été abordés.

Dans ce contexte scientifique, l’objectif de cette thèse est de développer et d’évaluer une
méthode d’inversion des formes d’ondes en domaine fréquentiel pour la reconstruction de modèles
du sous-sol 3-D dans le cadre de l’approximation visco-acoustique où le milieu est paramétré par
la vitesse de propagation des ondes de compression, la densité et l’atténuation.

L’efficacité et la faisabilité de l’inversion des formes d’ondes en trois dimensions est étroitement
liée à l’efficacité du moteur de modélisation des ondes sismiques, et particulièrement dans une
configuration de résolution multi-sources. En domaine fréquentiel, la modélisation des ondes à une
fréquence donnée se ramène à la résolution d’un système d’équations linéaire creux dont le terme
de droite est la source. L’équation d’onde harmonique a été discrétisée au sens des différences
finies en utilisant des schémas numériques compactes permettrant ainsi de minimiser l’ordre et la
bande passante numérique de la matrice.

La résolution directe par décomposition LU de la matrice et l’utilisation d’un outil massivement
parallèle se sont initialement avérés trés efficaces pour résoudre des problèmes impliquant des
modèles de petites dimensions (moins de 10 millions de noeuds de grille). Cette approche a
néanmoins rapidement atteint ces limites intrinsèques liées aux complexités en temps de calcul et
en mémoire de stockage des facteurs LU et à un faible pouvoir de scalabilité.

Une alternative intéressante a été développée pour réduire le coût mémoire de la modélisation
et pour tirer davantage profit des grandes plateformes à mémoire distribuée: un solveur hybride
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combinant un solveur direct et itératif est utilisé pour résoudre le système réduit du complément de
Schur construit à partir d’une décomposition en sous-domaines du modèle du sous-sol. L’approche
hybride m’a permis de traiter des modèles de plus grandes dimensions que l’approche directe au
détriment de l’efficacité de la résolution multi-sources.

Les deux outils de modélisation, fondés sur un solveur direct et hybride, ont été interfacés
au sein d’un même code d’inversion des formes d’ondes en domaine fréquentiel pour permettre
l’utilisation de l’outil de modélisation le plus adapté au problème considéré (plateforme de calcul,
nombre de sources, taille physique du milieu, fréquence inversée). D’autres approches fondées sur
une résolution itérative du système ou explicite en temps ont été proposées par d’autres auteurs
et présentent des coûts mémoire significativement inférieurs aux deux approches développées dans
cette thèse. L’implémentation de ces approches dans le code d’inversion pourra s’envisager dans
le futur.

Le code d’inversion des formes d’ondes en domaine fréquentiel a été développé en Fortran90
et se fonde sur le langage MPI pour le parallélisme. L’algorithme, fondé sur une méthode de
gradients, est structuré sous forme d’inversions itératives successives de groupes de fréquences, le
contenu haute fréquence de chaque groupe augmentant au cours de l’inversion. Le gradient de
la fonction coût est calculé avec la méthode de l’état adjoint et nécessite la résolution de deux
problèmes directs par source.

Au cours de l’inversion d’un groupe de fréquences, le pas de la grille de calcul peut être
adaptée à la plus haute fréquence du groupe pour minimiser le coût numérique de l’inversion. La
source a été implémentée de manière à pouvoir la positionner à une position arbitraire dans une
grille cartésienne. Différents exemples synthétiques de complexité croissante ont permis de valider
l’implémentation du code. L’exemple le plus réaliste a consisté à imager le modèle SEG/EAGE
overthrust aprés l’inversion de trois fréquences (3, 5 et 7 Hz). Pour effectuer cette application,
48 noeuds bi-processeur dual-core disposant chacun de 8 Goctets de mémoire partagée ont été
utilisés.

La dernière partie de ma thèse a eu pour objectif de réduire le coût de l’inversion, associé aux
résolutions multi-sources du problème direct. L’approche développée est basée sur l’encodage des
sources individuelles et sur leur assemblage par sommation pour réduire le nombre de sources
impliquées dans la résolution du problème direct. Cette stratégie est plus particulièrement utile
lorsque la complexité du problème direct est fortement dépendante du nombre de sources comme
c’est le cas pour les solveurs hybrides, itératifs ou explicites en temps.

Différentes stratégies (sommation partielle ou totale des tirs, encodage aléatoire ou déterministe,
influence du nombre de fréquences simultanément inversées) ont été évaluées. L’approche permet
une réduction du coût de calcul mais révèle également une sensibilité au bruit dans les données,
nécessitant d’augmenter le nombre de fréquences dans chaque groupe inversé et le nombre
d’itérations de l’inversion.

La principale perspective de ces travaux est l’application à des données rélles pour cerner le
potentiel et les limites de l’inversion, l’implémentation d’outils de modélisation complémentaire
dans l’algorithme d’inversion et la reconstruction de plusieurs classes de paramètre tels que la
densité et l’atténuation pour une meilleure prise en compte des amplitudes.
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Abstract

In seismic exploration, it is crucial to extract from the recorded data the physical parameters
of the subsurface, typically the seismic waves propagation velocity, in order to correctly locate
the potential reservoirs. In this context, seismic imaging is one of most important steps in this
quest. The imaging process has been for a long time based on a two-scales strategy: the first
step consists in building a smooth (low wavenumbers) velocity model, which correctly explains
the kinematics (phase) of the recorded signal, and the second step in taking into account the
dynamics (amplitude) through a summation process (migration) to detect reflectivity contrasts
(high wavenumbers).

In the eighties, a quantitative imaging method, called waveform inversion or full wavefield
inversion, has been proposed to bring together the two stages of the imaging process in an
integrated approach. The objective of waveform inversion is to build the whole spectrum of
wavenumbers by exploiting all the recorded arrivals acquired by wide aperture (wide azimuth)
acquisition geometries. The method is formulated as a least squares optimization problem which
aims to minimize the differences between the recorded and the modeled data at the receivers.

During the last few years, the waveform inversion method has been a main research topic
in the academic and industrial communities. Many issues related to the starting velocity model
and the initial frequency involved in the inversion, the impact of noise and the choice of the
minimization criterion, the reconstruction of multiple classes of parameters, the introduction of
more realistic physical phenomena as attenuation, anisotropy and elasticity, and the transition
from 2-D to 3-D, and therefore the issue of the computational cost, have been investigated and
discussed.

In this context, the objective of this thesis is to investigate and to develop a waveform
inversion approach in the frequency domain and within the visco-acoustic approximation for the
reconstruction of a 3-D subsurface model where the model is parametrized by the P-waves velocity,
density and attenuation.

The effectiveness and feasibility of waveform inversion in 3-D is closely related to the efficiency
of the seismic waves modeling engine since thousands of sources are involved in 3-D. In the
frequency domain, the modeling of seismic waves propagation at a given frequency reduces to
solving a system of linear equations whose right hand side term is the source. The harmonic
seismic wave equation has been discretized with finite differences using compact stencils which
ensure minimizing the order and the bandwidth of the impedance matrix.

The direct resolution by an LU decomposition of the impdedance matrix and the use of a
massively parallel solver was initially proved to be very efficient in solving problems involving
small models (less than 10 million grid nodes). This approach has quickly reached its inherent
limitations related to the computation time and LU factors memory storage complexities and its
poor scalability.

An interesting alternative has been developed in order to reduce the memory cost of the direct
solver and to take a greater advantage of the large distributed memory platforms: a hybrid solver
combining the direct and iterative approaches is used to solve the Schur complement system
obtained after a domain decomposition of the whole problem. The hybrid approach has allowed
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to handle bigger models than the direct approach to the detriment of the effectiveness of the
multi-sources resolution.

The two modeling tools based on direct and hybrid solvers have been interfaced within the same
frequency domain waveform inversion software in order to allow using the best suited modeling
tool to address a given problem (the available computing platform, the number of sources, the size
of the problem, the inverted frequency). Other iterative and explicit time-marching approaches
have been proposed by other authors and memory requirements are significantly lower than with
the two approaches developed in this thesis. The implementation of these approaches in the
inversion software can be envisaged in the future.

The frequency domain waveform inversion software has been written in Fortran90 and is based
on the MPI standard for parallelism. The inversion algorithm, based on a gradient method, is
structured as an iterative inversion of successive groups of frequencies, increasing the frequency
band of each group during the inversion. The gradient of the misfit function is calculated using
the adjoint state method which requires the resolution of two direct problems for each source.

During the inversion of a group of frequencies, the grid can be adapted to the highest inverted
frequency in order to minimize the computational cost of the inversion. The source has been
implemented so as to position it at an arbitrary grid node in the FD cartesian grid. Several
synthetic examples of increasing complexity were performed in order to validate the software.
The most realistic aims to image the model SEG / EAGE Overthrust after the inversion of three
frequencies (3, 5 and 7 Hz). In order to perform this application, 48 dual-processor dual-core
nodes, each with 8 Gbytes of shared memory have been used.

The last part of my thesis has aimed to reduce the cost of the inversion associated with
the involved multi-sources resolution. The approach is based on encoding and assembling the
individual sources in order to reduce the number of the sources involved in the inversion. This
strategy is particularly useful when the complexity of the direct problem is strongly dependent on
the number of sources as is the case of the hybrid, iterative and explicit time-marching solvers.

Different strategies (partial or total assembling, random or deterministic encoding, impact of
the number of simultaneously inverted frequencies) have been discussed. The approach allows to
reduce the computational cost, but also reveals to be sensitive with regards to noise and need to
increase the number of inverted frequencies in each group and the number of the iterations during
the inversion process.

The main perspective of this work is the application of the developed approach to real data
study case in order to identify the potentialities and limitations of the waveform inversion method,
the implementation of complementary modeling tools in the inversion algorithm and the inversion
of multiple classes of parameters such as density and attenuation to better handle the amplitudes.
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Chapter 1

General introduction to seismic
imaging

1.1 Seismic imaging: from seismology to seismic ex-

ploration

At the end of the twentieth century, major discoveries in seismology have been carried
out from the analysis of traveltimes of seismic waves (Earth structure, Inner/Outer Core,
Mohorovic̆ić and Gutenberg discontinuities, etc.). Transmission tomography has provided
high-resolution upper mantle imaging.

Seismic exploration uses seismic waves to determine the geological structures of the
subsurface and locate hydrocarbon reservoirs. A seismic acquisition experiment is performed
by triggering an artificial controlled source (explosives, vibroseis, air gun, etc.) near the
surface which initiates the seismic wave propagation in the subsurface. These waves are
recorded by networks of receivers (geophones or hydrophones). During the propagation, the
seismic wave undergoes at heterogeneities several complex physical phenomena: reflection,
refraction and diffraction. This confers to seismic data nonlinear properties. The processing
of recorded data allows to determine some physical properties of the Earth. Seismic
imaging is the process through which seismograms recorded on the Earth’s surface are
mapped into representations of its interior properties (Scales, 1995). Historically, the most
common parameter in seismic exploration imaging is wave propagation velocity and the
wave propagation often restricts to the acoustic approximation.

The geometry of the seismic acquisition defines the nature of the information contained
in the data. Indeed, wide aperture/azimuth and global offset acquisitions are necessary to
record the diving waves in order to appropriately image complex targets such as salt dome
dipping flanks. However, dense wide azimuth acquisition have often presented financial and
deployment challenges. In O&G exploration industry, dense multifold seismic reflection
acquisition is the standard acquisition geometry. Thus, it implies that the data processing
is mainly based on reflected waves.
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Chapter 1. General introduction to seismic imaging

1.2 Conventional imaging procedure

Due to the small range of offsets of seismic reflection acquisition geometries and the
frequency content of the source, the seismic imaging process have suffered from a lack of
sensitivity to intermediate wavelengths (Jannane et al., 1989). Thus, the seismic imaging
procedure has been splitted into two steps.

A first step consists in using only the kinematics information (traveltime) of the data
in order to recover the large wavelengths (low wavenumbers) of the model. There are
diverse methods to recover these latter. The most frequently used technique is based on
the derivation of the velocity model by stacking velocity analysis in which the velocities are
defined from the normal moveout (NMO) of the reflection hyperbola (Yilmaz, 2001). The
method is limited to 1-D stratified velocity models. Traveltime tomography techniques do
not suffer from such limitation and can handle laterally varying velocity models. It consists
in solving an inverse problem, generally linear, that seeks to minimize the mismatch between
predicted and recorded traveltimes (Bishop et al., 1985). Observed traveltimes are typically
picked manually and coherent events such as reflected or refracted waves are identified
(Phillips and Fehler, 1991). The computation of predicted traveltimes relies generally on
ray tracing techniques (Červený et al., 1977; Zelt and Smith, 1992) or finite differences
solver of the Eikonal equation (Vidale, 1988, 1990; Podvin and Lecomte, 1991). First arrival
traveltime tomography (FATT) accounts only for first arrival traveltimes (diving/refracted
events). This implies that wide aperture data are required for a good illumination of
deep targets. In addition to mentioned drawbacks of these techniques, manual picking
can be a tough and cumbersome job. Promising methods that avoid hand picking such as
stereotomography (Billette, 1998; Lambaré, 2008) and migration velocity analysis (Yilmaz
and Chambers, 1984; Symes and Carazzone, 1991) have been proposed. Stereotomography
(Billette et al., 2003) approach is based on an automatic pick of locally coherent events.
Migration velocity analysis (MVA) (Symes and Carazzone, 1991; Liu and Bleistein, 1995;
Docherty et al., 1997) relies on the optimization of a defined coherency condition in the
migrated Common Image Gathers (CIG) domain. This approach is very appreciated and
used since it optimizes the migration through an iterative MVA-migration procedure.

A second step takes account of the amplitude through different migration algorithms
to recover the short wavelengths (high wavenumbers) of the model. By short wavelengths
we mainly mean reflectors. Two main families of migration methods can be distinguished:
integral and wavefield-continuation methods (Biondi, 2006). For each category, several
approaches were proposed and differ with regards to the choice of time or depth formulation,
applied to stacked (poststack) or unstacked data (prestack (Judson et al., 1980; Schultz
and Sherwood, 1980), more computationally expensive), to the approximation of the wave
equation which is used, ...

Integral methods rely on summation surfaces (diffraction hyperboloids) principle. Kirch-
hoff migration is probably the most popular algorithm of this category (Berkhout and
Wapenaar, 1989; Docherty, 1991; Audebert et al., 1997; Biondi, 2001). For many years,
poststack time migration were preferred due to its efficiency and robustness provided that
the velocity model is not complex. Nowadays, prestack depth migration is commonly used
in industry since exploration targets are more complex (for example, dipping flanks of salt
domes). Pioneering algorithms have used ray tracing. Then, more robust one-way and full
wave equation have been used to overcome ray tracing limitations.

Wavefield-continuation methods (Claerbout, 1985) are known to be more efficient and
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1.3. Waveform inversion

computationally expensive than Kirchhoff migration (Lambaré et al., 2002; Biondi, 2006).
Nonetheless, they are more sensitive to acquisition regularity. These methods are based
on the Exploding Reflectors Principle (Claerbout, 1976). The first algorithms, called
downward-continuation migration algorithms, have been implemented in the frequency
domain and based on the one-way wave equation: phase-shift (f −k) migration (Stolt, 1978;
Gazdag, 1978), source-receiver migration (Biondi, 2006), shot-gather migration (Reshef
and Kosloff, 1986), etc. Nowadays, reverse time migration (RTM) (Claerbout, 1985;
Chen and McMechan, 1992; Zhu and Lines, 1996) is the method of choice for industrial
applications. RTM is based on full seismic wave modeling and the imaging condition
reduces to a summation of the cross-correlations between the shot wavefields and their
respective receivers backpropagated wavefields.

The two-step imaging strategy has been successfully applied to many areas of seismic
exploration. Nonetheless, it has shown limited performances for complex exploration targets
such as subsalt and subbasalt targets and foothills areas imaging.

1.3 Waveform inversion

Due to complexity of nowadays seismic exploration targets such as in deep offshore, the
acquisition geometry is moving from narrow to wide azimuth acquisitions. The two-steps
standard imaging procedure based exclusively on the pre-critical reflected events is then
questioned. Waveform inversion, called also full waveform inversion (FWI), is an alternative
to overcome the limitations of the two-steps standard imaging procedure. Contrary to
the two-steps procedure, FWI is a quantitative seismic imaging method that takes into
account for the entire waveform information (phase (traveltime,kinematics) and amplitude
(dynamics)). If appropriate frequency bandwidth sources and acquisition system are used, it
is potentially able to recover of all arrivals range of wavenumbers including the intermediate
wavenumbers (Mora, 1989) and to provide high-resolution imaging results.

In the eighties, the problem was formulated, as in tomography, as a least squares
optimization problem (Tarantola, 1984a; Lailly, 1984). The resolution of this inverse
problem as a local optimization problem seeks to minimize the misfit between the recorded
and predicted data (seismograms while traveltimes in tomography). Tarantola (1984a) and
Lailly (1984) have formulated the problem in the time domain. Next, other formulations
in the frequency domain (Pratt and Worthington, 1990; Pratt, 1990) and in the Laplace
domain (Shin and Cha, 2008) have been proposed.

During the pioneering attempts, FWI had difficulty to impose as an efficient imaging
tool. Indeed, FWI shows to be very computer demanding, even in 2-D, and to suffer
from intrinsic ill-posedness and nonlinearity. In fact, the first applications were restricted
to short offset reflection acquisition geometries which are not adapted to image low and
intermediate wavenumbers (Gauthier et al., 1986; Jannane et al., 1989). In addition, since
low frequencies have better properties with regards to problem nonlinearity than high
frequencies, an appropriate initial couple (low frequency, starting model) is compulsory
for the FWI applicability. Applications of FWI on wide aperture or large offset data have
highlighted this statement and demonstrated FWI efficiency and efficacy to lead to high
resolved velocity models (Mora, 1987, 1988; Pratt and Worthington, 1990; Pratt et al.,
1996a).

It was also highlighted in the pioneering works of Pratt and collaborators (Pratt and
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Chapter 1. General introduction to seismic imaging

Worthington, 1990; Pratt, 1990), and next by Bunks et al. (1995), that it is necessary to first
tackle low frequencies (which mitigate nonlinearity as explained in the previous paragraph)
and include progressively higher frequencies, therefore define a multi-scale/multi-resolution
imaging strategy. In addition, in order to reduce the computational cost of frequency
domain FWI, Sirgue and Pratt (2004) has proposed to decimate wavenumbers redundancy
by limiting the inversion to a few discrete frequencies, which has conferred to the frequency
domain FWI formulation a privileged position.

During the last two decades, several 2-D FWI applications on synthetic data (Pratt and
Goulty, 1991; Pratt et al., 1996b; Brenders and Pratt, 2006; Brossier et al., 2008; Sears
et al., 2008) and real data case studies (Dessa et al., 2004; Ravaut et al., 2004; Operto
et al., 2006b; Gao et al., 2006) have been presented.

1.4 From 2-D to 3-D

During the last years, efforts have been concentrated on including more physics in the
modeling and imaging such as anisotropy, attenuation, elasticity, multi parameter inversion
and on evolving from 2-D to 3-D. The transition from 2-D to 3-D requires a very efficient
modeling of the predicted data and a clever strategy to deal with huge data set.

Many 3-D frequency domain FWI tools using different seismic wave modeling approaches
have been developed.

Sirgue et al. (2007b) use a time domain modeling and compute monochromatic responses
through a discrete Fourier transform. Sirgue et al. (2007a) have studied the impact of the
acquisition geometry on FWI application on synthetic SEG/EAGE overthrust model and
have highlighted the importance of wide azimuth data to obtain high-resolution images.
Sirgue et al. (2009) have applied frequency domain FWI on Valhall (Munns, 1985; Kommedal
et al., 2004) real data set and have shown the imaging resolution improvement with regards
to reflection tomography velocity model which was used as an initial model for FWI.

Warner et al. (2007) and Erlangga and Herrmann (2008); Plessix (2007) have recom-
mended to use an iterative solver to solve the Helmholtz system. Plessix and Perkins (2009);
Plessix (2009) have presented an application of anisotropic FWI on deep-water OBS data
recorded in the Golf of Mexico.

Operto et al. (2007) have assessed the classes of problems that ca be tackled with a
massively parallel direct solver, commonly used for 2-D problems to take advantage of its
multi-RHS resolution efficiency and Ben-Hadj-Ali et al. (2008) have shown the efficiency
of FWI based on direct solver on the medium size problems with an application on the
synthetic SEG/EAGE overthrust velocity model.

Vigh and Starr (2008) have proposed a time domain prestack plane-wave full waveform
inversion software which performs the seismic wave modeling in the time domain.

However, due to the computational limitations of the full seismic wave modeling in
3-D, the applications restrict to low frequencies (≈ 7 Hz). Therefore, these computational
limitations question the position of FWI in the imaging procedure flowchart. FWI has been
proposed to replace the two-step “velocity model building/migration” imaging procedure. In
3-D, FWI is still investigated as an alternative approach to improve the velocity macro-model
which would be used for migration.

In addition, many approaches have been proposed to reduce the huge amount of data
involved in the inversion procedure.
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Joint simultaneous-shot and phase encoding has been investigated by Krebs et al. (2009).
Simultaneous-shot technique consists in gathering many sources in one assemblage and
processing the assemblages as shots. This introduces cross-talks between the different
sources in the same assemblage. In order to reduce these cross-talks, phase shifts between
sources are applied. This technique is called phase encoding. The plane-wave approach is a
particular parameterization of phase encoding.

Herrmann et al. (2009) have promoted the compressive censing (CS) method and high-
lighted the connection with the joint simultaneous-shot and phase encoding strategy. The
CS method suggests that compressible signal can be recovered from sub-Nyquist sampling
by solving a program promoting sparsity and exploiting a specific transform-domain sparsity,
such as the curvelets transform. Herrmann et al. (2009) have demonstrated the equivalence
between applying the CS operator on the full data set and sampling compressively the
shot wavefields, similarly to the simultaneous-shot strategy. The sparsifying transform have
to be appropriately defined in order to retrieve the single source wavefields. The source
wavefields are reconstructed by solving a nonlinear optimization problem.

1.5 Objectives of the thesis

When I started to work on my thesis, our principle goal has been to investigate the feasibility
of 3-D visco-acoustic frequency domain FWI and develop an efficient software. At that
moment, only few research teams have been working on this topic. Today, most of seismic
exploration companies have their own softwares. FWI has without contest become a topical
problem.

1.6 Outline

This manuscript is divided into three parts.

Part I is devoted to the modeling or forward problem. In the chapter 2, I am interested
in expanding the 3-D finite differences stencil used to discretize the continuous Helmholtz
wave equation (Operto et al., 2007). Staggered grids, parsimonious strategy, mixed stencils,
anti-lumped mass and perfectly matched layers (PML) absorbing boundary conditions are
reviewed. The stencil has been validated on homogeneous and highly heterogeneous velocity
models. The chapter 3 is dedicated to the presentation of the adopted modeling solvers:
the direct solver (MUMPS) and the hybrid direct-iterative solver. Theoretical aspects as
well as complexity and scalability analysis are expounded. A comparative analysis of the
adopted solvers and the iterative and time domain solvers concludes the chapter.

Part II is devoted to the inverse problem. In the chapter 4, a brief overview on
the line search methods used to solve a local optimization problem is presented. In the
chapter 5, I am interested in full waveform inversion and especially the frequency domain
formulation. The least squares formalism is reviewed. Advantages and drawbacks of the
frequency domain formulation are enumerated and discussed. The parallel implementation
of the FWI algorithm is presented in the chapter 6. In the chapter 7, the FWI software
has been validated on simple and complex velocity models.

Part III is dedicated to the simultaneous-shot & phase encoding techniques. In the
chapter 8, the related principles are introduced. Different strategies of partial or full
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simultaneous-shot with several choices of phase encoding are proposed and studied. The
different strategies have been validated on the SEG/EAGE overthrust velocity model for
2-D and 3-D configurations.
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Part I

3-D seismic wave modeling
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Chapter 2

3-D finite differences frequency
domain visco-acoustic wave modeling

Seismic imaging with Full Waveform Inversion (FWI) requires an accurate and efficient
wavefield modeling engine, especially in 3-D heterogeneous media. To solve numerically
the wave equation and get the wavefield solution, a class of methods called volumetric
methods is widespread. The most commonly used methods are finite elements, finite
differences, finite volumes and discontinuous Galerkin methods. In the seismic community,
finite differences method are popular because of its simplicity and robustness.

A 3-D parsimonious mixed-grid staggered-grid finite differences stencil for 3-D Helmholtz
equation was developed by Operto et al. (2007). Only four grid nodes per wavelength are
required to accurately model the wavefield in a complex medium.

In this chapter, I will briefly review the methodology adopted in Operto et al. (2007).
More details can be found in the paper itself. I will then validate the stencil precision on
homogeneous and complex media.

2.1 3-D wave propagation equation in visco-acoustic

media

In this section, I shall derive the well known partial derivatives equation (PDE), Helmholtz
equation. It can be obtained through an acoustic approximation of the elastic system
introduced in Aki and Richards (1980, chapter 2). An other approach to derive the
Helmholtz equation can be found in Erlangga (2005).
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Chapter 2. 3-D finite differences frequency domain visco-acoustic wave
modeling

2.1.1 First-order hyperbolic system in velocity-pressure

Combining the equation of motion and the Hooke’s law (Aki and Richards, 1980), the
elasto-dynamic system in an isotropic heterogeneous media can be expressed as

∂σxx(x, y, z, t)

∂t
= (λ(x, y, z) + 2µ(x, y, z))

∂vx(x, y, z, t)

∂x
+ λ(x, y, z){∂vy(x, y, z, t)

∂y

+
∂vz(x, y, z, t)

∂z
}

∂σyy(x, y, z, t)

∂t
= (λ(x, y, z) + 2µ(x, y, z))

∂vy(x, y, z, t)

∂y
+ λ(x, y, z){∂vx(x, y, z, t)

∂x

+
∂vz(x, y, z, t)

∂z
}

∂σzz(x, y, z, t)

∂t
= (λ(x, y, z) + 2µ(x, y, z))

∂vz(x, y, z, t)

∂z
+ λ(x, y, z){∂vx(x, y, z, t)

∂x

+
∂vy(x, y, z, t)

∂y
}

∂σxy(x, y, z, t)

∂t
= µ(x, y, z){∂vx(x, y, z, t)

∂y
+

∂vy(x, y, z, t)

∂x
}

∂σxz(x, y, z, t)

∂t
= µ(x, y, z){∂vx(x, y, z, t)

∂z
+

∂vz(x, y, z, t)

∂x
}

∂σyz(x, y, z, t)

∂t
= µ(x, y, z){∂vy(x, y, z, t)

∂z
+

∂vz(x, y, z, t)

∂y
}

∂vx(x, y, z, t)

∂t
=

1

ρ(x, y, z)
{∂σxx(x, y, z, t)

∂x
+

∂σxy(x, y, z, t)

∂y
+

∂σxz(x, y, z, t)

∂z
}

∂vy(x, y, z, t)

∂t
=

1

ρ(x, y, z)
{∂σxy(x, y, z, t)

∂x
+

∂σyy(x, y, z, t)

∂y
+

∂σyz(x, y, z, t)

∂z
}

∂vz(x, y, z, t)

∂t
=

1

ρ(x, y, z)
{∂σxz(x, y, z, t)

∂x
+

∂σyz(x, y, z, t)

∂y
+

∂σzz(x, y, z, t)

∂z
},

(2.1)

where wavefields vx(x, y, z, t), vy(x, y, z, t) and vz(x, y, z, t) are the particle velocity compo-
nents, σij(x, y, z, t), i, j = x, y, z are the stress components while ρ(x, y, z) is the density,
λ(x, y, z) and µ(x, y, z) are Lamé parameters.

To derive the acoustic wave equation approximation, we consider that the shear modulus
is zero (µ(x, y, z) = 0) and only normal components of stress are non-zeros.
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2.1. 3-D wave propagation equation in visco-acoustic media

System (2.1) reduces to

∂σxx(x, y, z, t)

∂t
= λ(x, y, z){∂vx(x, y, z, t)

∂x
+

∂vy(x, y, z, t)

∂y
+

∂vz(x, y, z, t)

∂z
}

∂σyy(x, y, z, t)

∂t
= λ(x, y, z){∂vy(x, y, z, t)

∂y
+

∂vx(x, y, z, t)

∂x
+

∂vz(x, y, z, t)

∂z
}

∂σzz(x, y, z, t)

∂t
= λ(x, y, z){∂vz(x, y, z, t)

∂z
+

∂vx(x, y, z, t)

∂x
+

∂vy(x, y, z, t)

∂y
}

∂vx(x, y, z, t)

∂t
=

1

ρ(x, y, z)

∂σxx(x, y, z, t)

∂x

∂vy(x, y, z, t)

∂t
=

1

ρ(x, y, z)

∂σyy(x, y, z, t)

∂y

∂vz(x, y, z, t)

∂t
=

1

ρ(x, y, z)

∂σzz(x, y, z, t)

∂z
.

(2.2)

The three first equations of system (2.2) imply that ∂σxx(x,y,z,t)
∂t

= ∂σyy(x,y,z,t)

∂t
= ∂σzz(x,y,z,t)

∂t
.

Let us now define the pressure field p(x, y, z, t) by

p(x, y, z, t) =
σxx(x, y, z, t) + σyy(x, y, z, t) + σzz(x, y, z, t)

3
.

(2.3)

We combine the three first equations and obtain the first-order hyperbolic system below,

∂p(x, y, z, t)

∂t
= κ(x, y, z)(

∂vx(x, y, z, t)

∂x
+

∂vy(x, y, z, t)

∂y
+

∂vz(x, y, z, t)

∂z
)

+ s(x, y, z, t)

∂vx(x, y, z, t)

∂t
= b(x, y, z)

∂p(x, y, z, t)

∂x
∂vy(x, y, z, t)

∂t
= b(x, y, z)

∂p(x, y, z, t)

∂x
∂vz(x, y, z, t)

∂t
= b(x, y, z) · ∂p(x, y, z, t)

∂z
,

(2.4)

where p(x, y, z, t) is the pressure, κ(x, y, z) the bulk modulus and b(x, y, z) = 1
ρ(x,y,z)

is the

buoyancy. The pressure source term s(x, y, z, t) has been introduced in the first equation
of the system.
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In the Fourier domain, the previous system of equations reads

−ιω

κ(x, y, z)
p(x, y, z, ω) =

∂vx(x, y, z, ω)

∂x
+

∂vy(x, y, z, ω)

∂y
+

∂vz(x, y, z, ω)

∂z

+ s(x, y, z, ω)

vx(x, y, z, ω) =
ιb(x, y, z)

ω

∂p(x, y, z, ω)

∂x

vy(x, y, z, ω) =
ιb(x, y, z)

ω

∂p(x, y, z, ω)

∂y

vz(x, y, z, ω) =
ιb(x, y, z)

ω

∂p(x, y, z, ω)

∂z
,

(2.5)

where ι =
√
−1. This system allows the computation of the pressure and the particle

velocity fields in the frequency domain.

2.1.2 Second-order elliptic system in pressure

The expressions of the particle velocity fields (the last three equations of system (2.5)) are
injected into the first equation of system (2.5) and lead to the second-order elliptic wave
equation (in pressure), also known as the Helmholtz equation,[

ω2

κ(x, y, z)
+

∂

∂x
b(x, y, z)

∂

∂x
+

∂

∂y
b(x, y, z)

∂

∂y
+

∂

∂z
b(x, y, z)

∂

∂z

]
.

p(x, y, z, ω) = s(x, y, z, ω).

(2.6)

The equation can be expressed in a compact form as,

A(x, y, z, ω).p(x, y, z, ω) = s(x, y, z, ω),

(2.7)

where A denotes the differential operator.

2.2 Absorbing boundary conditions (ABC)

The systems of equations (2.4) and (2.5) define the wave propagation in an infinite medium,
respectively in the time and frequency domains. However, the wavefield is numerically
modeled in a finite domain. Therefore, reflections from the computation domain edges need
to be attenuated or suppressed. Clayton and Engquist (1977) have proposed the 45◦ paraxial
approximation. Cerjan et al. (1985) have introduced the sponge-like absorbing conditions.
The computation domain is augmented with sponge layers. The wave propagation is
correctly modeled in the computation domain. However in the sponge layers the wavefield
is progressively attenuated through a damping function. Berenger (1994) improved the
Cerjan sponge-like absorbing conditions and proposed the perfectly matched layers (PML)
approach. The PML conditions only attenuate the normal component of the wavefield
while the whole wavefield is attenuated in the Cerjan’s approach.
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2.2. Absorbing boundary conditions (ABC)

To implement the PML conditions in the system of equations (2.4), the pressure wavefield
needs to be splitted. System of equations (2.4) becomes

∂px(x, y, z, t)

∂t
+ γx(x)px(x, y, z, t) = κ(x, y, z)

∂vx(x, y, z, t)

∂x
+ s(x, y, z, t)

∂py(x, y, z, t)

∂t
+ γy(y)py(x, y, z, t) = κ(x, y, z)

∂vy(x, y, z, t)

∂x
∂pz(x, y, z, t)

∂t
+ γz(z)pz(x, y, z, t) = κ(x, y, z)

∂vz(x, y, z, t)

∂z
∂vx(x, y, z, t)

∂t
+ γx(x)vx(x, y, z, t) = b(x, y, z)

∂p(x, y, z, t)

∂x
∂vy(x, y, z, t)

∂t
+ γy(y)vy(x, y, z, t) = b(x, y, z)

∂p(x, y, z, t)

∂x
∂vz(x, y, z, t)

∂t
+ γz(z)vz(x, y, z, t) = b(x, y, z)

∂p(x, y, z, t)

∂z
,

(2.8)

where the pressure p(x, y, z, t) is splitted into three unphysical components px(x, y, z, t),
py(x, y, z, t) and pz(x, y, z, t), therefore satisfies p = px + py + pz.

The 1-D functions γx, γy and γz define the damping functions in the PML layers
surrounding the computation medium. These functions differ from zero only inside the
PML layers. In the PML layers, I used γ(x) = cpml cos(π

2
x
L
) where L denotes the width of

the PML layer and x is a local coordinates in the PML layer, the origin of which is located
at the outer edges of the model. A choice of cpml that minimizes the reflection coefficient
in the boundaries, defined in Collino and Tsogka (2001) and optimal for a homogeneous
velocity model, is used even for heterogeneous models.

The system of equations is written into the Fourier domain and the functions ξx(x) =
1 + ιγx(x)/ω, ξy(y) = 1 + ιγy(y)/ω and ξz(z) = 1 + ιγz(z)/ω are introduced to simplify the
equations,

−ιωξx(x)

κ(x, y, z)
px(x, y, z, ω) =

∂vx(x, y, z, ω)

∂x
+ s(x, y, z, ω)

−ιωξy(y)

κ(x, y, z)
py(x, y, z, ω) =

∂vy(x, y, z, ω)

∂y

−ιωξz(z)

κ(x, y, z)
pz(x, y, z, ω) =

∂vz(x, y, z, ω)

∂z

−ιωvx(x, y, z, ω) =
b(x, y, z)

ξx(x)

∂p(x, y, z, ω)

∂x

−ιωvy(x, y, z, ω) =
b(x, y, z)

ξy(y)

∂p(x, y, z, ω)

∂y

−ιωvz(x, y, z, ω) =
b(x, y, z)

ξz(z)

∂p(x, y, z, ω)

∂z
.

(2.9)

The system (2.9) allows for a re-composition of the pressure field and therefore implies
the first-order hyperbolic wave equation system when considering PML conditions as shown
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below

−ιω

κ(x, y, z)
p(x, y, z, ω) =

1

ξx(x)

∂vx(x, y, z, ω)

∂x
+

1

ξy(y)

∂vy(x, y, z, ω)

∂y

+
1

ξz(z)

∂vz(x, y, z, ω)

∂z
+ s(x, y, z, ω)

vx(x, y, z, ω) =
ιb(x, y, z)

ωξx(x)

∂p(x, y, z, ω)

∂x

vy(x, y, z, ω) =
ιb(x, y, z)

ωξy(y)

∂p(x, y, z, ω)

∂y

vz(x, y, z, ω) =
ιb(x, y, z)

ωξz(z)

∂p(x, y, z, ω)

∂z
.

(2.10)

The second-order elliptic wave equation is obtained simply by injecting the equations of
motion in the Hooke’s law equation,[

ω2

κ(x, y, z)
+

1

ξx(x)

∂

∂x

b(x, y, z)

ξx(x)

∂

∂x
+

1

ξy(y)

∂

∂y

b(x, y, z)

ξy(y)

∂

∂y
+

1

ξz(z)

∂

∂z

b(x, y, z)

ξz(z)

∂

∂z

]
.

p(x, y, z, ω) = s(x, y, z, ω).

(2.11)

2.3 Viscosity (attenuation)

One of the main advantages of working in the frequency domain is the straightforward
implementation of attenuation. In fact, the implementation of attenuation is directly done
through complex velocities (Toksöz and Johnston, 1981) on the contrary of the time domain
where a cumbersome convolution operation is necessary. A common used relation is the
Kolsky-Futterman model (Kolsky, 1956; Futterman, 1962) defined as

c̄ = c

[(
1 +

1

πQ
|log(ω/ωr)|

)
+ ι

sgn(ω)

2Q

]−1

,

(2.12)

where c̄ represents the complex velocity, Q the quality/attenuation factor, ωr a given
reference angular frequency and ι such that ι2 = −1.

Practically, I use in the code an approximation of the Kolsky-Futterman model (Ribodetti
et al., 1998) given by

c̄ = c

(
1− ι

sgn(ω)

2Q

)
.

(2.13)

The approximation implies first that the set of angular frequencies is close to ωr, thus the
term 1

πQ
|log(ω/ωr)| is neglected, and that only first-order approximation with regards to

the quality factor Q of the remaining part of the equation is taken into account.
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2.4. Finite-differencing of 3-D wave equation

2.4 Finite-differencing of 3-D wave equation

In the prospect of using the direct solver approach to resolve the discrete system of equations,
the differentiation is restricted to compact second-order stencils in order to lead to a reduced
bandwidth impedance matrix. This property implies the minimization of the matrix fill-in
during the LU decomposition. Indeed, the fill-in defines the extra non-zero terms generated
due to the LU procedure. For band diagonal matrices, the fill-in occurs mostly in the
matrix band (George and Liu, 1981; Hustedt et al., 2004) (Figure 2.1).

A L

Figure 2.1: Matrix fill-in due to LU decomposition.

On the other hand, second-order stencils suffer from limited numerical precision and
suggests to develop an appropriate differentiation procedure. The finite-differencing of
equation (2.6) using the parsimonious mixed-grid approach is derived from the following
procedure:

1. Eight 3-D coordinates systems are defined such that their axes span as many directions
as possible in a cubic cell. These coordinates systems must be consistent with the
3-D second-order staggered geometry (Virieux (1984) for the 2-D case);

2. The first equation of system (2.5) is discretized on each of the coordinates system
using second-order centered staggered-grid stencils. The discrete equation involves
particle velocities on staggered grids;

3. The particle velocities at the grid nodes involved in the first equation of system (2.5)
are inferred from the last three equations of system (2.5) using the same staggered-grid
stencils that for the first equation;

9
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4. The expression of the particle velocities are injected in the first equation of system (2.5)
leading to a second-order parsimonious staggered-grid wave equation in pressure;

5. Once steps 2, 3 and 4 have been performed for each coordinates system, all the
discrete wave equations are combined linearly such that numerical anisotropy and
dispersion is minimized;

6. The accuracy of the stencil is greatly improved by a redistribution of the mass term
over the different grid nodes surrounding the collocation node involved in the finite
differences stencils following an anti-lumped mass approach.

The discretization procedure leads to a compact 27-nodes stencil with a numerical
bandwidth of O(n2) (Figure 2.2).

1

65

129

193

257

321

385

449

1 65 129 193 257 321 385 449

Column number of impedance matrix

Figure 2.2: 3-D finite differences finite matrix, with 27 non zero terms per row, for a
problem size nx × ny × nz = 8× 8× 8.

2.4.1 Finite-differencing staggered grids

Staggered grids approach was originally developed by Yee (1966) for electromagnetic
Maxwell’s equation and used by Virieux and Madariaga (1982) to overcome the instabilities
produced by the singularities at the edges of the fault thanks to its robustness with regards

10



2.4. Finite-differencing of 3-D wave equation

to solid-solid interface. Then, it was extensively used by Virieux (1984, 1986) to solve the
two dimensions (2-D) elasto-dynamic wave equation.

In addition, staggered grids prevent the well-known black-red pattern. This pattern
is due to the decoupling between the pressure and particle velocity grids if standard non-
staggered procedure of finite-differencing is adopted. In fact, if the pressure grid is excited
by an impulse source, one grid out of two remains unexcited on the particle velocity and
pressure grids while the correct solution is computed at the intermediate positions. These
unexcited subgrids are not solved in the discretization used in staggered grids (Hustedt
et al., 2004).

2.4.2 Finite-differencing parsimonious strategy

Once the system of equations (2.5) is discretized, equations of motion are injected in
the Hooke’s law equation and discrete particle velocity components are eliminated. This
strategy is called the parsimonious formulation and was introduced by Luo and Schuster
(1990). The main advantage of this strategy is the memory saving. In fact, only one
wavefield (pressure) is considered and therefore stored instead of four wavefields (pressure
and three particle velocities).

2.4.3 Finite-differencing mixed grids

Mixed FD grids strategy was initially introduced by Jo et al. (1996) for the 2-D acoustic
wave equation in a homogeneous medium. This technique aims to improve the numerical
accuracy of the stencil. Jo et al. (1996) have combined the standard stencil and the 45◦

rotated stencil (Saenger, 2000). Hustedt et al. (2004) implemented the same strategy for the
2-D acoustic wave equation in a heterogeneous medium using a staggered grids formulation
and the parsimonious approach. Stekl and Pratt (1998) developed it for the 2-D elastic
heterogeneous wave equation. In 3-D geometry, three types of coordinates systems can be
considered for the velocity-stress system:

1. One standard Cartesian coordinate system, denoted SS (Figure 2.3-a)).

2. Three coordinate systems, each one obtained by a 45◦ rotation of one of the axes of
the standard coordinates system, denoted SR (Figure 2.3-b)).

3. Four coordinate systems, each one obtained by considering only three axes from the
four big cube diagonals, denoted SD (Figure 2.3-c)).

The different stencils are mixed such that

w1SS + w2SR + w3SD = s,

(2.14)

where the weights w1, w2 and w3 should verify the relationship

w1 +
w2

3
+

w3

4
= 1.

(2.15)
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Figure 2.3: Different 3-D finite differences stencils involved in the mixed grids strategy.

2.4.4 Anti-lumped mass strategy

Following the standard procedure of finite element methods (Marfurt, 1984), the diagonal
mass term is distributed through weighted values such that

ω2

κ000

p000 =⇒ ω2
(
wm1

[p

κ

]
0
+ wm2

[p

κ

]
1
+ wm3

[p

κ

]
2
+ wm4

[p

κ

]
3

)
,

(2.16)

where
[

p
κ

]
0

is related to the collocation grid node of the different considered stencils,
[

p
κ

]
1

to extra grid nodes forming the standard coordinates system stencil (6 grid nodes),
[

p
κ

]
2

to
extra grid nodes forming the three rotated coordinates systems stencils (12 grid nodes) and[

p
κ

]
3

to extra grid nodes forming the four big diagonal coordinates systems stencils (8 grid
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nodes). This induces the relationship

wm1 +
wm2

6
+

wm3

12
+

wm4

8
= 1.

(2.17)

This technique of mass redistribution reduces dramatically the numerical dispersion
(Marfurt, 1984; Jo et al., 1996; Hustedt et al., 2004).

2.5 Dispersion analysis of the 3-D finite differences

stencil

Now that the parsimonious mixed staggered grids finite differences procedure has been
introduced, I am interested in the analysis of the numerical dispersion of the obtained
stencil for a plane wave in an infinite homogeneous medium.

Consider an infinite homogeneous velocity model of velocity c and a constant density
equal to 1. From Appendix C of Operto et al. (2007), the discrete wave equation (without
PML conditions) reduces to

ω2

c2
(wm1p000 +

wm2

6
p1 +

wm3

12
p2 +

wm4

8
p3) +

w1

h2
(p1 − 6p000)

+
w2

3

[
1

h2
(p1 − 6p000) +

1

4h2
(2p2 − 24p000)

]
+

w3

4
(6p3 − 4p2 + 8p1 − 48p000),

(2.18)

where

p1 = p100 + p010 + p001 + p−100 + p0−10 + p00−1,

p2 = p110 + p011 + p101 + p−110 + p0−11 + p−101 + p1−10

+ p01−1 + p10−1 + p−1−10 + p0−1−1 + p−10−1,

p3 = p111 + p−1−1−1 + p−111 + p1−11 + p11−1 + p−1−11 + p1−1−1 + p−11−1.

(2.19)

Following a classic harmonic approach, I insert the discrete expression of a plane wave,
plmn = e−ιhk(l cos φcosθ+m cos φ sin θ+n sin φ) where ι2 = −1, in equation (2.18). The phase velocity
is given by ω

k
. The normalized phase velocity is defined by Vph =

vph

c
and the number of

nodes per wavelength (λ) by G = λ
h

= 2π
kh

. After some straightforward although cumbersome
manipulations, the following expression for the numerical phase velocity is obtained,

Vph =
G√
2Jπ

√
w1(3− C) +

w2

3
(6− C −B) +

2w3

4
(3− 3A + B − C),

(2.20)

where J = (wm1 + 2wm2C + 4wm3B + 8wm4A) with

A = cos a cos b cos c,

B = cos a cos b + cos a cos c + cos b cos c,

C = cos a + cos b + cos c.

(2.21)
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and a = 2π
G

cos φ cos θ, b = 2π
G

cos φ sin θ and c = 2π
G

sin φ. We can easily check that,
Vph −→ 1 when G −→ ∞ for J = 1 and for the 3 cases (w1, w2, w3) = (1, 0, 0), (0, 1, 0)
and (0, 0, 1) whatever are φ and θ. This validates the expression of the phase velocity in
equation (2.20).
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Figure 2.4: Dispersion curves for phase veloc-
ity. a) Stencil 1 without mass averaging. b)
Stencil 2 without mass averaging. c) Stencil
3 without mass averaging. The curves are
plotted for angles θ and φ ranging from 0 to
45o.
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Figure 2.5: Phase velocity dispersion curve
for mixed-grid stencil: a) without mass aver-
aging. b) with mass averaging. The curves
are plotted for angles θ and φ ranging from
0 to 45o.

The five independent parameters wm1, wm2, wm3, w1, w2 which minimize the least
squares norm of the misfit 1−Vph need to be evaluated. These coefficients are estimated by
a global optimization procedure based on a Very Fast Simulating Annealing algorithm (Sen
and Stoffa, 1995). The cost function is minimized for 5 angles φ and θ spanning between 0
and 45o and for 4 values of G ranging between 4 and 10.

The values wm1 = 0.4964958, wm2 = 7.516875E − 02, wm3 = 4.373936E − 03, w1 =
1.8395265E − 05 and w2 = 0.890077 are found, which imply wm4 = 5.69038E − 07 and
w3 = 0.1099046. The coefficients show that stencils 2 and 3 have a dominant contribution
in the mixed-grid stencil. On the other hand, the mass coefficients show a dominant
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2.5. Dispersion analysis of the 3-D finite differences stencil

contribution of the coefficients located at the collocation node and at the nodes associated
with stencil 1.

The dispersion curves for the three stencils 1, 2 and 3 without mass averaging are
shown in Figure 2.4. These stencils used individually would require up to 40 grid nodes
per wavelength. The phase velocity dispersion curve for the mixed stencil without mass
averaging are shown in Figure 2.5.

Note how the dispersion curves for different incidence angles are focused illustrating the
isotropy of the stencil. However, the accuracy of the stencil remains poor (Figure 2.5-a)).
Combining the mixed-grid discretization strategy with the mass averaging allows us to
mitigate both numerical anisotropy and dispersion (Figure 2.5-b)). The phase velocity
dispersion curves suggest that a discretization rule of 4 grid nodes per wavelength can be
used. If the wave propagation modeling algorithm is used as an engine for full-waveform
inversion, this discretization rule is optimal in the sense that the theoretical resolution of
full-waveform inversion at normal incidence is half the wavelength (Miller et al., 1987). In
fact, the Nyquist criterion suggests that in order to correctly sample any given signal and
avoid aliasing issues, more than two grid nodes per minimum wavelength are necessary.

Conclusion

In this chapter, I was interested in expounding the design of the 3-D finite differences
stencil which is used to discretize the Helmholtz equation based on Operto et al. (2007).
The governing idea is to design both compact second-order and accurate stencil to mitigate
the matrix fill-in during the LU decomposition. I have introduced the different ingredients
to build an efficient stencil. The staggered particle velocity-pressure grids avoid the red-
black pattern phenomenon. The parsimonious strategy reduces the memory storage. The
mixed grids strategy improve the behavior with regards to the numerical anisotropy. The
anti-lumped mass approach guarantees a small numerical dispersion. This strategy leads to
a discretization rule of four grid nodes per propagated wavelength. This rule is optimal for
our imaging strategy based on full waveform inversion since theoretical resolution is half
the wavelength.
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Chapter 3

Numerical methods for frequency
domain wave modeling

In the previous chapter, I introduced a suitable discretization of the frequency domain
wave equation. Once the wave equation is discretized, it can be recast as a linear matrix
system Ap = s and resolved either in the time or the frequency domain. In the time
domain, explicit time marching scheme is preferred since it avoids to build and invert the
big impedance matrix A, necessary at each time step. In the frequency domain, several
approaches are available to solve the linear matrix system: the direct solver approach
through an LU decomposition (Press et al., 1992; Operto et al., 2007), the iterative solver
approach (Riyanti et al., 2007; Plessix, 2007) and the hybrid solver approach based on
domain decomposition (Haidar, 2008; Sourbier et al., 2008b).

Direct solvers are the method of choice when the robustness is the primary concern.
This approach is known for its multi right hand sides (RHS) resolution efficiency, an
essential feature in the prospect of imaging where the seismic wave modeling for thousands
of seismic sources is involved. It is possible nowadays to solve 3-D problems with a few
million unknowns in a robust way with solvers exploiting modern parallel supercomputers.
Unfortunately, direct methods suffer from their high time complexity and memory storage
and from their poor scalability which prevent to tackle problems involving several tens of
millions of unknowns.

On the other hand, iterative solvers require fewer storage and often fewer computation
operations depending on the required accuracy. Nevertheless, the performance of iterative
methods depends strongly on the spectral properties of the linear system to solve. To
improve efficacy and robustness, an efficient preconditioner need to be found. This task is
critical and can be cumbersome.

The third class of solvers, hybrid methods, tries to find a compromise between the two
previous solvers through a domain decomposition method. The direct solver is applied
to small domains (subdomains), thus the storage and computation issues are mitigated.
The iterative solver is applied to a reduced system, built only for the interface grid nodes,
leading to a better conditioned system than the full system. In addition, several efficient
algebraic preconditioners can be used independently of the physics behind the numerical
problem to solve.

Both direct and hybrid solvers have been implemented as a modeling engine in our FWI
software. Indeed, I will first expand theoretical and practical properties of the direct and
hybrid solvers. Then, I will validate the hybrid solver with regards to analytic solutions
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in homogeneous media and direct solver solutions in complex heterogeneous media. I will
finally discuss their numerical complexities with regards to each other and against iterative
and time domain solvers.

3.1 Direct solver

The most accurate and robust approach to solve a linear system is the direct method.
Solution precision in this case is the machine precision. Nevertheless, this approach is
nowadays limited to sparse matrices problems of few millions of unknowns due to its
numerical cost in terms of CPU time and memory storage requirements and to limitations
related to matrix conditioning issues. Unfortunately, the condition number increases when
the size of the considered physical problem increases.

3.1.1 Theory

Direct methods are based on Gauss elimination technique. Direct methods aim to rewrite
the system

Ap = s,

(3.1)

into a more manageable form like

(LU)p = s,

(3.2)

where L is a lower triangular matrix and U is an upper triangular matrix for an asymmetric
matrix.

This system is then efficiently solved in two steps, upward and downward elimination
phases, through inserting the temporary vector y,

Ly = s,

Up = y.

(3.3)

For sparse matrices, only non zero matrix terms are stored. In the same way, only
non zero terms introduced in the LU decomposition are computed. However, the matrix
decomposition leads to L and U matrices denser than the initial matrix and less than the
full one. This issue is called fill-in. During the last decades, many techniques to reduce
the fill-in have been developed. These techniques renumber/reorder the rows/columns of
the matrix based on its graph. For these reasons, these techniques are called reordering
techniques (George and Liu, 1981; Amestoy et al., 1996; Ashcraft and Liu, 1998).

3.1.2 Complexity & scalability analysis

3.1.2.1 Theory

The main advantage of direct methods is their efficiency to deal with multiple right hand
side (RHS) terms (Marfurt, 1984). In fact once the LU decomposition is done and L and U
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matrices are stored in the core memory, solutions are obtained by simple substitutions of
the RHS terms. This can be written in a numerical way as

(LU) [p1,p2,p3, ...,pN] = [s1, s2, s3, ..., sN] .

(3.4)

This property is very important for applications such as seismic imaging based on
waveform inversion where thousands of sources, i.e. RHS, are involved. On the other hand,
the main drawback of the direct methods is the LU decomposition itself and its CPU
computation and memory storage cost. Indeed, if we consider a cubic numerical domain
n×n×n, i.e. the impedance matrix order is n3, the CPU computation complexity is O(n9)
and memory storage complexity is O(n6). For sparse matrices and using efficient reordering
techniques such as METIS, based on nested dissection, these complexities can be lowered
to respectively O(n6) and O(n4) (Ashcraft and Liu, 1998; George and Liu, 1981).

U
L

Multi-
sources/RHS
Solve

Ordering

A

Impedance
matrix

Pre-processing

Solving

Figure 3.1: Direct solver modeling flowchart.

3.1.2.2 Parallel direct solver MUMPS

I propose in this section to assess the complexity and scalability properties of the massively
parallel direct solver MUMPS for wave modeling applications (Amestoy et al., 2006;
MUMPS-team, 2007). The MUMPS solver is based on a multifrontal method (Duff and
Reid, 1983; Liu, 1992). The multifrontal method consists of a succession of factorizations of
dense matrices called frontal matrices to take advantage of the optimized libraries for dense
linear algebra (BLAS, BLACS, SCALAPACK libraries). The frontal matrices form the
supernodes of an assembly tree (a particular form of an elimination tree) which describes
the order in which the matrix can be factored. The assembly tree is built during the analysis
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or symbolic factorization phase. During this phase, ordering techniques are performed
to minimize the dependencies in the assembly tree and so the fill-in during factorization.
For ordering, I used METIS which is based on a hybrid multilevel nested dissection and
multiple minimum degree algorithm (Karypis and Kumar, 1998).

I assessed the performances of MUMPS solver for our specific application considering
cubic FD grids of increasing dimension n. n varies from 40 to 130. The number of MPI
processes also varies. I used one MPI process with 8 GB of memory for n between 40 and
70 and 8 MPI processes between 80 and 130. For the values of n between 120 and 130, the
analysis phase succeeded while the factorization phase has not been performed because of
lack of core memory.

The Figure 3.2 plots the ratio between LU CPU-operations complexity and the theoretical
time complexity O(n6). The curve tends to a constant value. This confirms the theoretical
time complexity. The number of LU factors divided by memory complexity is plotted in
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Figure 3.2: MUMPS LU decomposition time complexity.

Figure 3.3. The curve still presents a slope and suggests that the memory complexity
is higher than O(n4). The same statement is suggested by Operto et al. (2007, Figure
11). If the same plot is drawn for the complexity O(n4Log2(n)), the curve becomes nearly
flat (constant ≈ 4) and implies that the memory complexity is closer to O(n4Log2(n))
than O(n4) (Figure 3.4). Nevertheless, this memory does not correspond to the real used
memory. In fact, extra memory called overhead memory is added. Overhead memory
explains supplementary memory needed for parallel implementation of LU factorization.
Figure 3.5 shows the ratio between LU factors memory and total used memory. The
difference represents overhead memory. This explains the jump at n = 80 since the
simulations for n ≤ 70 are executed in sequential and n ≥ 80 in parallel.

3.2 Hybrid solver based on domain decomposition

To overcome the overburden memory complexity of the LU decomposition, I implemented,
in collaboration with F. Sourbier and A. Haidar, the hybrid (direct-iterative) solver based
on domain decomposition method (DDM) (Haidar, 2008). For domain decomposition, an
element-partitioning without overlapping is followed (Saad, 2003). The direct solver is
applied on smaller numerical computation subdomains thus memory requirement is less
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Figure 3.5: MUMPS memory overheads.

restricting and the iterative solver is applied on a reduced system (built at only boundary
grid nodes) thus convergence and preconditioning issues are less challenging.

On the other hand, the hybrid solver should be less efficient with regards to multi-RHS
resolution than the direct solver since the iterative component linearly increases with the
number of RHSs.

3.2.1 Theory

The domain decomposition method consists in splitting the computational domain Ω into
subdomains Ωi (Figure 3.6). Each subdomain shares interface nodes with its adjacent
subdomains. Interface nodes belong to the domain Γ. Therefore, each subdomain Ωi can
be divided into two subgroups: interior nodes Ii (pi in Figure 3.6) and interface/boundary
nodes Γi (pb in Figure 3.6).

After reordering the interior nodes by subdomain Ωi and labeling the interface nodes
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Figure 3.6: Domain splitting in the hybrid method.

last, the system Ap = s becomes

AI1I1 0 · · · · · · 0 AI1Γ1

0 AI2I2

. . . · · · ... AI2Γ2

...
. . . AI3I3

. . .
... AI3Γ3

...
...

. . . . . . 0
...

0 · · · · · · 0 AInIn AInΓn

AΓ1I1 AΓ2I2 AΓ3I3 · · · AΓnIn ĀΓΓ





pI1

pI2

pI3

...
pIn

p̄Γ


=



sI1

sI2

sI3

...
sIn

sΓ


, (3.5)

and in a more compact form[
AIiIi

AIiΓi

AΓiIi
ĀΓΓ

] [
pIi

p̄Γ

]
=

[
sIi

sΓ

]
, (3.6)

where pIi
denotes unknowns located at interior domains Ii and p̄Γ denotes unknowns located

at interface nodes domain Γ.

Eliminating pIi
from the second block row of equation (3.6) leads to the following

reduced system for p̄Γ,

(ĀΓΓ − AΓiIi
A−1
IiIi

AIiΓi
)p̄Γ = sΓ − AΓiIi

A−1
IiIi

sIi

Sp̄Γ = sΓ − AΓIi
A−1
IiIi

sIi
.

(3.7)

The matrix S = ĀΓΓ − AΓIi
A−1
IiIi

AIiΓ is the Schur complement matrix (Saad, 2003)
(note the use of Einstein notation). This Schur complement system (3.7) can be expanded
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to a useful expression

S =
∑

i

RT
Γi

SiRΓi

=
∑

i

RT
Γi

(AΓiΓi
− AΓiIi

A−1
IiIi

AIiΓi
)RΓi

,

(3.8)

where Si is referred to as local Schur complement and involves submatrices from the
impedance matrix A. The local Schur complement matrix Si is a dense matrix even if A
is sparse. RΓi

: Γ→ Γi is the canonical restriction which maps vectors defined on Γ into
vectors defined on Γi, and RT

Γi
: Γi → Γ its transpose. This form is interesting because it

highlights how it is natural to parallelize matrix-vector products involving S since each
local Schur complement can be computed and stored independently on different processors.

The Schur complement system (3.7) is significantly better conditioned than the original
matrix system. For example, if we consider the system resulting from the discretization
of the Laplace operator on a mesh with spacing h, the condition number of the relative
matrix A is κ(A) = O(h−2). Using two non-overlapping subdomains reduces the condition
number of the Schur complement matrix to κ(S) = O(h−1) (Haidar, 2008).

3.2.2 Additive Schwarz preconditioner

3.2.2.1 Standard approach

As mentioned previously, it is crucial to have an efficient preconditioner when solving a linear
system with an iterative method. It is the case of the Schur complement equation (3.7). The
preconditioner transforms the original system into another one that have the same solution
but better convergence properties. If the initial Schur complement system is Sp = s, the
preconditioned system reads SMp = s where M approximates S−1.

I focus on a class of preconditioner called additive Schwarz preconditioner (Saad, 2003;
Haidar, 2008). This preconditioner is related directly to domain decomposition methods.
Such preconditioners belong to the class of algebraic preconditioners. This suggests that
this type of preconditioners does not depend on the physics of the linear system to solve.

Consider the Schur complement system (3.8). The additive Schwarz preconditioner is
defined as

MAS =
∑

i

RT
Γi

S̄−1
i RΓi

.

(3.9)

where S̄i is called the local assembled Schur complement and defined such as, S̄i = RΓi
SRT

Γi
.

S̄i corresponds to the restriction of the Schur complement to the interface Γi.
The evaluation of the Schur complement and the computation of the additive Schwarz

preconditioner can be implemented intuitively in parallel. In fact, the preconditioner
is the sum up of the inverses of local assembled Schur complements. Nevertheless, the
compututation of the local assembled Schur complement interface nodes terms implies to
apply some MPI point-to-point communications between neighbor subdomains since the
interface nodes are shared by neighbouring subdomains.
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3.2.2.2 Improved approach

In this section, I present a new class of additive Schwarz preconditioners. I call it “shifted
Laplace additive Schwarz” preconditioner for Schur complement system. To build this
new preconditioner, I combine the standard approach of additive Schwarz preconditioner
with the well known shifted Laplace preconditioner used in the iterative methods for the
Helmholtz equation (Vuik et al., 2003; Erlangga et al., 2003, 2004; Erlangga, 2005; Riyanti
et al., 2006).

Consider the simplified Helmholtz equation,

Ap := [∆ + k2]p = s,

(3.10)

where k is the wavenumber and A is the Helmholtz operator. The general shifted Laplace
operatorM reads

Mp := [∆ + (β1 + ιβ2)k
2]p = s,

(3.11)

where (β1, β2) ∈ R× R and ι =
√
−1.

Erlangga (2005, chapter 4, 6) widely discusses the choice of the optimal values of the
pair (β1, β2) and bases his discussion on the study of the eingenvalues of the 1-D Helhmoltz
problem. Figure 3.7 is extracted from Erlangga (2005) and shows the impact of different
shifted Laplace preconditioners on the eigenvalues distribution, therefore on the convergence.

  

Figure 3.7: Spectral pictures of AM−1 without damping and different values of (β1, β2):
(a) (0,0), (b) (-1,0), (c) (0,1), (d) (1,1), (e) (1,0.5), (f) (1,0.3). (From Erlangga (2005)).

Erlangga (2005) has also shown that the introduction of viscosity (attenuation) improves
the convergence since the system has better properties (Figure 3.8). This may explain
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3.2. Hybrid solver based on domain decomposition

the efficiency of the complex shifted Laplace preconditioner since the introduction of the
imaginary part of the complex shift is equivalent to the introduction of attenuation. In
fact, the damped simplified Helmholtz equation can be expressed as,

Aαp := [∆ + (1− ια)k2]p = s,

(3.12)

which corresponds to a particular choice of (β1, β2) = (1,−α).

  

(a)

Figure 3.8: Spectral pictures of AM−1 with (β1, β2)=(1,0.5): (a) without attenuation, (b)
with attenuation. (From Erlangga (2005)).

An empirical optimal choice of the pair (β1, β2) for our Schur problem is (1, β2 ∈ [0.01 :
0.02]) while Erlangga (2005) has advised (1, 0.5).

3.2.2.3 Comparison of the two classes of preconditioners

Impact of the attenuation on the GMRES convergence: 3-D SEG/EAGE salt
model A simulation is performed with the SEG/EAGE salt model originally discretized
on a 676 × 676 × 210 FD grids with a grid interval of 20 m leading to a computational
domain of dimensions 13.5×13.5×4.18 km3. The minimum and maximum velocities are 1.5
and 4.482 km/s respectively. The salt model is a slowly varying sedimentary medium within
which is embedded a salt body leading to a strong velocity contrast between sediments and
salt (Figure 3.9-a).

The salt model was resampled with a grid interval of 30 m to perform a simulation at a
frequency of 12.5 Hz corresponding to 4 grid nodes per minimum propagated wavelengths
(Figure). The number of grid nodes in the PML layers is 6 grid nodes. The simulation was
performed on the IBM Blue Gene (Babel) of IDRIS computer center on 14× 14× 5 = 980
processors using subdomains of 33× 33× 30 grid nodes. Two Gigabytes of core memory
were allocated per MPI process. The source coordinates are (1.05 km, y = 1.05 km , z =
0.3 km). The PML absorbing boundary conditions are implemented along the six faces of
the model and, therefore, no free surface is considered in this simulation.

When Q = 10000, i.e. attenuation is neglected, the number of GMRES iterations
required to decrease the error down to ε = 10−3 and ε = 10−2 were 1375 and 954 respectively.
The monochromatic wavefield for ε = 10−3 is shown in Figure 3.9-b).

When a heterogeneous attenuation model is used with Q = 50 in the salt body
(Figure 3.10-a), these numbers of iterations decrease to 111 and 57 respectively. This
highlights the dramatic positive impact of attenuation on the convergence of the iterative
resolution of the Schur complement system.
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Figure 3.9: SEG/EAGE salt model. Q= 10000. a) Velocity model. b) Monochromatic
wavefield at 12.5 Hz.
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Figure 3.10: SEG/EAGE salt model. a) Attenuation model. b) Monochromatic wavefield
at 12.5 Hz.
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2-D overthrust model In order to study the impact of the preconditioner on the
convergence, I apply the previously defined additive Schwarz preconditioners. I have
considered a 2-D complex velocity model extracted from the SEG/EAGE overthrust model,
a constant attenuation model Q = 10000 and seven frequencies ranging from 3.5 to 20 Hz.
Note that the computation grid is not adapted to the frequency and only the 20-Hz finest
grid (227×3×841) is considered. The adopted decomposition is 4×1×10 subdomains. The
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Figure 3.11: Impact of preconditioning type on GMRES convergence. solid red) Additive
Schwarz preconditioner. dashed green) Schifted Laplace Additive Schwarz.

Figure 3.11 illustrates the convergence rate of each of the used preconditioners and plots
the number of iterations in the GMRES part with respect to the frequency. It shows clearly
that the convergence rate is deteriorating (the number of iterations is increasing) with
increasing frequency with the additive Schwarz preconditioner (Erlangga, 2005). However,
if the shifted Laplace additive Schwarz is used, the convergence rate is improved and the
number of iterations tends to reach a plateau around one hundred iterations.

3-D overthrsut model The second application has been applied on the 3-D overthrust
velocity model. The discretization is adapted to the frequency 7 Hz. The FD grid dimension
is 71× 275× 275 grid nodes including PML layers (≈ 5.5 million unknowns). The adopted
domain decomposition is 3× 9× 9. In this application, two different Q factor values have
been used. The first, Q=10000, means that no attenuation is considered while the second
introduces the attenuation (Q=300).

Table 3.1 gathers the numbers of iterations obtained with the different configurations
related to the Q factor value and the choice of the preconditioner and for a precision criterion
ε = 10−3. Two main conclusions emerge: first, the introdution of the attenuation improves
the GMRES convergence (Erlangga, 2005) and second, the shifted Laplace preconditioner
has a better behaviour than the standard approach.
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Table 3.1: Impact of preconditioning type on GMRES convergence.

Attenuation (Q factor) Standard Shifted Laplace

Q = 10000 1150 330
Q = 300 350 170

3.2.3 Parallel implementation & performances

In parallel distributed environments, each subdomain is assigned to one MPI process.
During the hybrid solver resolution procedure, we can distinguish two different phases: a
preprocessing phase which does not depend on the source/RHS term and a solving phase.
Figure 3.12 summarizes the two phases of the hybrid solver resolution.
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Figure 3.12: Hybrid solver modeling flowchart.

During the preprocessing phase, local matrices AIiIi
, AΓiIi

, AIiΓi
and AΓiΓi

are extracted
from the assembled matrix A. Concurrent factorizations applied to local matrices AIiIi

are
performed by each MPI process using the direct solver MUMPS. MUMPS can provide the
local Schur complement during the LU decomposition. However, the Si matrix is dense and
its storage in core may be memory demanding. An alternative is to avoid the explicit building
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of Si to perform the matrix-vector product of the form Six = (AΓiΓi
− AΓiIi

A−1
IiIi

AIiΓi
)x,

which must be repeated for each RHS, by implementing the matrix-vector products AΓiΓi
x,

y = AIiΓi
x, AΓiIi

z and the resolution phase z = A−1
IiIi

y.
The last step in the preprocessing phase is to build the preconditioner. As mentioned in

the previous section, the local preconditioner consists in the inverse of the assembled local
Schur complement S̄i. First, the local Schur complement Si is built with MUMPS. Depending
whether additive Schwarz or shifted additive Schwarz preconditioner is considered, one
or two LU decompositions with MUMPS are respectively necessary: one on the shifted
Helmholtz system to get the local Schur complement necessary to build the preconditioner
and one on the Helmholtz system to get the LU decomposition of the local matrix AIiIi

and/or the local Schur complement. Then, some point-to-point communications between
neighbor subdomains are necessary to compute interface nodes terms. An LU decomposition
on the dense matrix S̄i with the function CGETRF of the LAPACK package.

The second phase depends on the source/RHS term and is referred to as the solving
phase. It is splitted into two main steps: the resolution of the interface nodes system
(preconditioned Schur complement system) and the interior nodes system.

The preconditioned Schur complement system is resolved with the iterative method
called GMRES (Generalized Minimal RESidual) (Saad, 2003). GMRES approximates the
solution by the vector in the Krylov subspace with a minimum residual. The stopping
criterion for the iterative method GMRES is the backward error ε = ‖Ap− s‖/‖s‖. The
implemented parallel version of GMRES has been developed by Frayssé et al. (1997).

Once the interface nodes solution p̄Γ in system (3.7) is computed, the interior nodes
unknowns are concurrently computed by solving pIi

= A−1
IiIi

(sIi
− AIiΓp̄Γ).

More details on the hybrid solver can be found in Haidar (2008); Sourbier et al. (2008b,a).

3.2.3.1 Complexity analysis

Memory complexity The hybrid solver allows for a significant memory saving compared
to the direct one. This is quantified from the theoretical memory complexity of LU
factorization of a sparse matrix and the ratio between the size of the full domain and that
of the subdomains. This heuristic complexity is specific to the FD discretization used in
Operto et al. (2007) and nested-dissection reordering. The local memory allocated in the
hybrid method includes the memory allocated for concurrent sequential factorizations, for
the storage of the local Schur complements and of the preconditioner of the iterative solver
on each domain. If we consider a cubic domain of size n× n× n and a decomposition of
k × k × k subdomains, the LU decomposition memory complexity is O(n4/k2Log2(n/k)).
The order of the matrix Si is the subdomain interface nodes number, the complexity of
which is O(n2/k2), therefore the memory complexity for the storage of the dense Si is
O(n4/k4). The size of the local preconditioner is the same as local Schur complement
Si, thus its memory complexity is O(n4/k4). The total memory is simply obtained by
multiplying the local memory by the total number of subdomains k3 and summarized in
Table 3.2.

The memory requirement increases with the number of MPI processes with the direct
approach because of overheads while it decreases with the hybrid method with the number
of subdomains. The initial objective to overcome the burden memory cost of the direct
solver is then reached thanks to the hybrid approach based on domain decomposition
method.
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Table 3.2: Memory complexity of the direct and hybrid solvers.

Direct Solver Hybrid Solver

3-D ov × 4× n4Log2(n) 2× n4/k + (4× n4Log2(n/k))/k

n – Dimension size of a 3-D n3 grid
k – Number of subdomain along each direction
ov – Memory overhead coefficient (ov ≈ 2)

Time complexity The time complexity of an LU factorization of a sparse matrix for
a 3-D FD problem is O(n6) (Section 3.1.2). Therefore, the time complexity of the local
LU factorizations is O((n/k)6) and dramatically decreases as the number of subdomains
increases. The time complexity of the LU factorization of the dense preconditioner is
O((n/k)4) and also dramatically decreases when k increases. The time complexity of the
iterative solver is O((NitNs(n/k)4) and corresponds to the computational cost of matrix-
vector product of dense matrices of dimension (n/k)2 performed Nit×Ns times where Nit is
the number of GMRES iterations and Ns is the number of shots. Assuming a linear increase
of the iteration number with the dimension of the computational domain, O(Nit) = O(n),
and a dense 3-D surface acquisition, O(Ns) = O(n2), the theoretical time complexity
reduces to O(n7/k4). If we now assume that the number of subdomains in one direction k
proportionnally increase with n, O(k) = O(n) such that the workload of each processor is
roughly kept constant, then, the theoretical time complexity is O(n3). The assumption that
the O(Nit) = O(n) will be tested heuristically with several following numerical experiments
with the SEG/EAGE salt and overthrust model.

Numerical analysis on SEG/EAGE salt model First, a numerical complexity
analysis is performed with the SEG/EAGE salt model originally discretized on a 676 ×
676 × 210 FD grids with a grid interval of 20 m leading to a computational domain of
dimensions 13.5 × 13.5 × 4.18 km3. The minimum and maximum velocities are 1.5 and
4.482 km/s respectively. The salt model is a slowly varying sedimentary medium within
which is embedded a salt body leading to a strong velocity contrast between sediments and
salt (Figure 3.9-a).

The complexity analysis is performed on the IBM Blue Gene cluster of the IDRIS
computing center. Simulations are performed for frequencies 5, 7.5, 10 and 12.5 Hz. The
grid interval is adapted to each frequency to satisfy a discretization criterion of four grid
nodes per wavelength. The resulting grid intervals are 75 m, 50 m, 37.5 m and 30 m for
the frequencies 5, 7.5, 10 and 12.5 Hz, respectively. The corresponding grid dimensions are
provided in Table 3.3. The problem size increases from 2.43 to 32 millions of unknowns.
The number of processors for each frequency modeling was chosen such that the size of
the subdomains is kept roughly constant, namely, such that the processor workload is kept
constant for all the frequencies. The size of a subdomain is in average 31× 31× 31 which
is close to the maximum size that can be tackled with 2 Gb of memory per MPI process.
The number of processors increases with frequency from 72 to 980. All the simulating
parameters are outlined in Table 3.4.

The total elapsed time, the elapsed time for the RHS-dependent phase and the number
of GMRES iterations are shown in Figure 3.13 and are outlined in Table 3.4. The number
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Table 3.3: SEG/EAGE salt and overthrust applications parameters.

Model f(Hz) h(m) nx × ny × nz Nu(10
6)

Salt 5 75 180× 180× 56 2.43
Salt 7.5 50 269× 260× 84 8.25
Salt 10 37.5 360× 360× 112 17.16
Salt 12.5 30 450× 450× 140 32.02

Overthrust 3.6 150 134× 134× 32 1.08
Overthrust 5.4 100 200× 200× 46 3.11
Overthrust 7.2 75 266× 266× 62 6.97
Overthrust 9 60 334× 334× 78 12.44
Overthrust 10.8 50 400× 400× 94 19.38

f – Frequency
h – Spacing interval
nx – X-dimension nodes number
ny – Y-dimension nodes number
nz – Z-dimension nodes number
Nu – Number of unknowns

of GMRES iterations linearly increases with frequency. The increase of the number of
GMRES iterations with the frequency was expected since the number of subdomains
increases with frequency to keep the processor workload constant. An increasing number
of subdomains leads to a degradation of the preconditioner and hence an increase of the
number of GMRES iterations. The total elapsed time and the RHS-dependent elapsed time
also increase roughly linearly with frequency. To estimate the observed time complexity,
I plot the quantity NP T/nc as a function of the frequency in Figure 3.13-c). NP is the
number of processors, T is the elapsed time (the total time or the RHS-dependent time), n
is the number of grid nodes in the model along the horizontal direction and c is an exponent
such that the plotted curve remains centered aroung the value of 1. The expression nc gives
the complexity of the HSM algorithm. I found that the observed complexity is respectively
O(n3.4) and O(n3.8) for the total run and RHS-dependent task respectively. The observed
complexity of the full algorithm is O(n3.4) and is slightly higher than the theoretical one,
O(n3), that was found assuming that O(k) = O(n). The time complexity on each processor
defined by T/nc is plotted in 3.13-d). I found an observed complexity of O(n0.3) and O(n0.7)
respectively, which is better than the theoretical complexity of O(n) when we assume that
O(k) = O(n). This shows that the efficiency can be greater than 1.

31



Chapter 3. Numerical methods for frequency domain wave modeling

Table 3.4: SEG/EAGE salt and overthrust applications parameters.

f(Hz) NP kx × ky × kz nx × ny × nz na
x × na

y × na
z Ttot(s) TRHS(s) Nit

5 72 6× 6× 2 32× 32× 33 6× 6× 5 588 61 40
7.5 243 9× 9× 3 31× 31× 32 5× 5× 6 672 91 74
10 576 12× 12× 4 31× 31× 31 6× 6× 6 689 114 96
12.5 980 14× 14× 5 33× 33× 30 6× 6× 5 797 109 111

3.6 50 5× 5× 2 30× 30× 24 8× 8× 8 222 24 32
5.4 128 8× 8× 2 28× 28× 31 12× 12× 8 313 35 66
7.2 243 9× 9× 3 32× 32× 28 11× 11× 11 599 106 119
9 432 12× 12× 3 30× 30× 32 13× 13× 9 699 174 234
10.8 1024 16× 16× 4 26× 26× 28 8× 8× 9 425 175 487

f – Frequency
NP – Number of MPI processes
nx – X-dimension subdomains number
ny – Y-dimension subdomains number
nz – Z-dimension subdomains number
nx – X-dimension nodes number
ny – Y-dimension nodes number
nz – Z-dimension nodes number
na

x – X-dimension PML nodes number
na

y – Y-dimension PML nodes number
na

z – Z-dimension PML nodes number
Nu – Number of unknowns
Ttot – Total elapsed time
TRHS – Total RHS-dependent elapsed time
Nit – Number of GMRES iterations
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Figure 3.13: Numerical time complexity on the salt model. a) Total and RHS-dependent
elapsed time. b) Number of GMRES iterations. c) Normalized numerical complexity. d)
One MPI process normalized numerical complexity.
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Numerical analysis on SEG/EAGE overthrust model The dimension of the
overthrust model is 20× 20× 4.65 km3 (Figure 3.14). The original model was discretized
on a 801× 801× 187 FD grid with a grid interval of 25 m. The minimum and maximum
velocities are 2.178 km/s and 6 km/s, respectively. The overthrust model represents a
thrust area above a decollement level with a weathered layer in the near surface, and
therefore, provides a more structurally-complex environnement than the salt model. Then,
it provides a complementay case study to assess the robustness of the hybrid solver approach
for modeling in heterogeneous medium.
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Figure 3.14: SEG/EAGE overthrsut velocity model.

Simulations in the overthrust model were performed for frequencies 3.6, 5.4, 7.2, 9
and 10.8 Hz on the same IBM Blue Gene machine. The grid interval was adapted to
the modeled frequency to satisfy the criterion of four grid nodes per wavelength. The
grid dimensions and the domain decompositions designed for this complexity analysis are
outlined in Tables 3.3 and 3.4. The elapsed times, the number of GMRES iterations and
the estimated complexities are shown in Figure 3.15. For the overthrust model, I found
that the time complexity is O(n3.5) and O(n4.2) for the full run and for the RHS-dependent
task respectively. The corresponding time complexities per processor have a complexity
of O(N1.1) and O(N1.8) respectively. The time complexity of the full algorithm is slighlty
higher than the theoretical one as for the salt model. The time complexity of the RHS-
dependent phase has significantly degraded compared to that obtained with the salt model,
which highlights the sensitivity of the iterative component of the hybrid solver to the
structural complexity of the subsurface model.
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Figure 3.15: Numerical time complexity on the overthrust model. a) Total and RHS-
dependent elapsed time. b) Number of GMRES iterations. c) Normalized numerical
complexity. d) One MPI process normalized numerical complexity.
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3.2.3.2 Analysis of GMRES convergence criterion

Contrary to the direct solvers for which solutions have a high accuracy (machine precision),
the hybrid solver allows us to choose our criterion to stop GMRES iterations. The
convergence criterion ε for the backward error on the GMRES algorithm controls the
accuracy of the solution and is defined by ε = ‖Ap − s‖/‖s‖. Of course, the number of
iterations and the CPU time increase in GMRES when the convergence criterion ε decreases.
Snapshots computed in a 2-D homogeneous velocity model, illustrated in Figure 3.16 for
four subdomains, shows clearly that strong reflections at the subdomains edges due to
domain decomposition appear at ε = 10−1, become weak at ε = 10−2 and disappear at
ε = 10−3. A value of ε = 10−3 seems to provide the best tradeoff between accuracy and
iteration count. A similar analysis is performed in chapter 7 in order to assess the necessary
convergence criterion for the imaging problem.
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Figure 3.16: Snapshots in 2-D homogeneous velocity model. The considered domain
decomposition is 2× 2. a) ε = 10−1. b) ε = 10−2. c) ε = 10−3. The dash lines delineate the
four subdomains.

More details and examples on more complex velocity models can be found Sourbier
et al. (2008b).
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3.2.3.3 Scalability analysis

In this section, I aim to study the scalability properties of the hybrid solver. Scalability
reflects the behavior of a parallel computer program to deal with a given problem size with
increasing computational resources. The scalability analysis of the hybrid solver, where
the improved preconditioner is used, is performed on the SEG/EAGE overthrust and salt
models. Realistic physical attenuation Q-models were considered.

Numerical analysis on SEG/EAGE salt model The scalability analysis was per-
formed on the IBM Blue Gene (Babel) and the IBM Power 6 (Vargas). On the IBM Blue
Gene, the modeled frequency is 7.5 Hz and the grid interval is 50 m. This leads to a FD
grid of dimensions 270 × 270 × 84 corresponding to 8.18 millions of unknowns. On the
IBM Power 6, the modeled frequency is 5 Hz and the grid interval is 75 m. This leads to
a FD grid of dimensions 180× 180× 56 corresponding to 2.77 millions of unknowns. An
increasing number of subdomains was used. The different domain decompositions were
designed such that the subdomains geometry is as close as possible to a cube in order to
minimize the number of interface nodes. The number of subdomains increases from 300 to
1944 on the IBM Blue Gene and from 50 to 432 on the IBM Power 6. The total elapsed
time and the elapsed time of the RHS-dependent phase (this latter time includes the time
spent in GMRES and the time required to compute interior solutions), the number of
GMRES iterations and the efficiency of the full computation and of the RHS-dependent
phase are plotted in Figure 3.17 and are outlined in Table 3.5.

The efficiency is given by

E =
TrefN

ref
P

TNP
NP

,

where Tref is the elapsed time obtained on the smallest number of processors, N ref
P , and

TNP
is the elapsed time obtained on NP processors.

The first conclusion is that the number of GMRES iterations roughly linearly increases
with the number of subdomains. This expected result shows the degradation of the pre-
conditioner accuracy with the number of subdomains. Second, the elapsed time of the
RHS-dependent phase remains almost constant when the number of subdomain increases.
This means that, when the number of subdomains increases, the computational burden
resulting from the increasing number of GMRES iterations is balanced by the computa-
tional saving on each processor provided by the decreasing of the size of the subdomains.
Third, the computational cost of the RHS-independent phase, measured by the difference
between the total time and the RHS-dependent time, rapidly decreases with the number of
subdomains which is consistent with the numerical complexity of the LU factorization and
the preconditioner building. The efficiency of the full run remains always greater than one,
and increases with the number of processor when faster processors are used. In contrast,
the efficiency of the RHS-dependent phase decreases with the number of processors since
the elapsed time of the RHS-dependent phase remains almost constant whatever is the
number of used processors. The behavior of the algorithm is slightly better on the IBM
Power 6 than on the IBM Blue Gene as shown on the efficiency curves because of faster
processors on the Power 6. This highlights the good scalability of the algorithm resulting
from a limited number of communications.

In the case of a large number of RHS, the best strategy is clearly to use a number of
processors as small as possible to maintain the efficiency of the RHS-dependent phase close
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Chapter 3. Numerical methods for frequency domain wave modeling

to 1. Groups of shots (i.e., RHS) can be distributed over groups of NP processors where NP

denotes the number of processors required to perform one domain decomposition such that
each group of NP processors proceed a limited number of shots (if N tot

P is the total number
of processors, the number of RHS per groups of NP processors will be NsNP /N tot

P ). In
contrast, in the case of only one RHS as it can be the case when source encoding techniques
(chapter 8) are used, the best strategy is to use a significant number of processors to make
negligible the computational cost of the RHS-independent preprocessing step.

Table 3.5: Scalability analysis for the 3-D salt and overthrust models.

Computer Model NP kx × ky × kz nx × ny × nz

Babel Salt 300 10× 10× 3 29× 29× 32
Babel Salt 484 11× 11× 4 26× 26× 26
Babel Salt 980 14× 14× 5 21× 21× 20
Babel Salt 1620 18× 18× 5 16× 16× 20
Babel Salt 1944 18× 18× 6 16× 16× 16

Babel Overthrust 243 9× 9× 3 32× 32× 28
Babel Overthrust 576 12× 12× 4 23× 23× 21
Babel Overthrust 980 14× 14× 5 20× 20× 16
Babel Overthrust 1536 16× 16× 6 18× 18× 12
Babel Overthrust 1944 18× 18× 6 16× 16× 12

Vargas Salt 50 5× 5× 2 38× 38× 33
Vargas Salt 72 6× 6× 2 32× 32× 33
Vargas Salt 192 8× 8× 3 24× 24× 22
Vargas Salt 400 10× 10× 4 19× 19× 17
Vargas Salt 432 12× 12× 3 16× 16× 22

Vargas Overthrust 72 6× 6× 2 35× 35× 28
Vargas Overthrust 98 7× 7× 2 30× 30× 28
Vargas Overthrust 243 9× 9× 3 24× 24× 20
Vargas Overthrust 363 11× 11× 3 20× 20× 20
Vargas Overthrust 432 12× 12× 3 18× 18× 20
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3.2. Hybrid solver based on domain decomposition

na
x × na

y × na
z Ttot(s) TRHS(s) Nit Etot ERHS

10× 10× 6 520 77 83 1 1
8× 8× 10 255 48 114 1.26 1.00

12× 12× 8 97 30 202 1.64 0.79
9× 9× 8 88 58 472 1.09 0.25
9× 9× 6 56 30 612 1.42 0.39

11× 11× 11 599 106 119 1 1
5× 5× 11 132 43 229 1.92 1.00
7× 7× 9 96 59 534 1.54 0.45

11× 11× 5 110 89 842 0.86 0.19
11× 11× 5 101 85 1124 0.74 0.16

5× 5× 5 224 23 30 1 1
6× 6× 5 129 14 36 1.21 1.18
6× 6× 5 38 7 68 1.53 0.88
5× 5× 6 13 4.6 102 2.15 0.64
6× 6× 5 12 5 129 2.18 0.54

5× 5× 5 125 15.1 49 1 1
5× 5× 5 90 11.2 60 1. 0.99
8× 8× 7 33 9.8 135 1.13 0.46

10× 10× 7 24 10.5 220 1.05 0.29
8× 8× 7 19 10.1 285 1.10 0.25

NP – Number of MPI processes
nx – X-dimension subdomains number
ny – Y-dimension subdomains number
nz – Z-dimension subdomains number
nx – X-dimension nodes number
ny – Y-dimension nodes number
nz – Z-dimension nodes number
na

x – X-dimension PML nodes number
na

y – Y-dimension PML nodes number
na

z – Z-dimension PML nodes number
Nu – Number of unknowns
Ttot – Total elapsed time
TRHS – Total RHS-dependent elapsed time
Nit – Number of GMRES iterations
Etot – Efficiency based on the total elapsed time
ERHS – Efficiency based on the RHS-dependent elapsed time

Numerical analysis on SEG/EAGE overthrust model The same scalability analysis
is performed on the SEG/EAGE overthrust model. On the IBM Blue Gene, the modeled
frequency is 7.5 Hz and the grid interval is 75 m. This leads to a FD grid of dimensions
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Figure 3.17: Scalability analysis for the 3-D salt model on Babel: a) Elapsed time. b)
GMRES iterations. c) Efficiency. and Vargas: d) Elapsed time. e) GMRES iterations. f)
Efficiency. Black line for the total and gray line for the RHS-dependent time/efficiency.

266 × 266 × 62 corresponding to 6.2 millions of unknowns. On the IBM Power 6, the
modeled frequency is 5.4 Hz and the grid interval is 100 m. This leads to a FD grid of
dimensions 200 × 200 × 46 corresponding to 2.89 millions of unknowns. The number of
subdomains increases from 243 to 1944 on the IBM Blue Gene and from 72 to 432 on the
IBM Power 6. The total elapsed time and the elapsed time of the RHS-dependent phase,
the number of GMRES iterations and the efficiency of the full computation and of the
RHS-dependent phase are plotted in Figure 3.18 and are outlined in Table 3.5. A similar
behavior of the algorithm than for the salt model is observed: the number of GMRES
iteration increases with the number of subdomains and the resulting computational burden
is balanced by the decrease of the subdomain dimensions. The higher structural complexity
of the overthrust model compared to the salt model is however illustrated by the fact that
the elapsed times increase more significantly after a critical number of processor in the
overthrust-model case compared to the salt-model case. This is more obvious on the IBM
Blue Gene where the processors have a slower clock frequency.

40



3.2. Hybrid solver based on domain decomposition
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Figure 3.18: Scalability analysis for the 3-D overthrust model on Babel: a) Elapsed time.
b) GMRES iterations. c) Efficiency. and Vargas: d) Elapsed time. e) GMRES iterations.
f) Efficiency. Black line for the total and gray line for the RHS-dependent time/efficiency.
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Chapter 3. Numerical methods for frequency domain wave modeling

3.3 Practical implementation issues

Before going to the numerical examples section in order to validate and compare the two
different approaches involved in the seismic wave modeling, i.e. direct and hybrid solver, I
will be interested in some practical issues related to particular boundary conditions that
allow to simulate 2-D wave propagation with a 3-D software and to the implementation of
the source.

3.3.1 Mimicking 2-D wave propagation with the 3-D software

Two-dimensional experiments can be designed considering 2.5-D velocity models (laterally
invariant in the y-direction) and an infinite line source in the y direction. The infinite line
source in the y direction was implemented on a limited computational domain in the y
direction using periodic boundary conditions on the two faces of the model corresponding
to y = 0 and y = ymax.

The periodic boundary conditions that were implemented are[
∂P

∂y

]
y=−h/2,ymax+h/2

= 0.

They are applied on two virtual ghost faces located outside the computational domain
at positions y = −h/2 and y = ymax + h/2 where h stands for the grid interval.

We applied 3-D and 2-D FWI to a dip section of the overthrust model (Aminzadeh et al.,
1997), discretized on a 801×187 grid with a grid spacing h = 25 m. For the 3-D application,
the dip section of the overthrust model was duplicated 3 times in the y direction leading to
a 3-D 801× 3× 187 finite differences grid. A 2-D wavefield computed in this 2.5-D model
with the above mentioned boundary conditions is shown in Figure 3.19. PML absorbing
boundary conditions are set on the 4 edges of the 2-D model.
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Figure 3.19: A monochromatic wavefield obtained when mimicking 2-D seismic wave
propagation with the 3-D code. The wavefield was computed on a velocity section extracted
from SEG/EAGE overthrust model at a frequency f = 5Hz.
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3.3. Practical implementation issues

3.3.2 Source implementation at arbitrary position

In this paragraph, I am interested in a usual problem in finite differences seismic modeling.
The issue consists in implementing a source if its position does not coincide with a grid node.
The simplest solution is to put the source on the nearest grid node. This is efficient and
does not introduce big discrepancies if the spacing interval is sufficiently small. However, for
an efficient frequency domain full waveform inversion implementation, the computational
grid is adapted to frequency which leads for small frequencies to coarse grids. A better
approach is necessary to reach an acceptable solution. This consists in spreading the source
term on the surrounding grid nodes. Hicks (2002) has proposed an efficient distribution
approach. Consider the elementary Dirac (explosive) source. The source term is replaced
by its truncated approximation, the cardinal sine. The cardinal sine is located at the source
position and the appropriate weights are put in the surrounding nodes. In addition, if the
source is positioned on a grid node, the cardinal sine verifies that zeros coincide with the
grid nodes except for the source position. Note that the length of the spreading is limited
to a few grid nodes using a taper function. Otherwise, the spreading is computationally too
expensive, especially if many sources are involved such as in imaging. Hicks (2002) has also
detailed how to implement the dipole (force) source and the ghost effect at the free surface.
Note that the same strategy can be used to extract the data at the receiver positions when
these latter do not coincide with grid nodes.
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Figure 3.20: Validation of the distributed source implementation on a homogeneous medium.
The numerical solution in the fine grid is in solid black and in the coarse grid in solid red.
Differences are in dashed blue. a) Dip profile. b) Inline profile.

The implementation of the distributed source as in (Hicks, 2002) has been validated
on a homogeneous velocity model taking account of the free surface effects. Figure 3.20
illustrates the comparison between the solution computed in a fine FD grid where the
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Chapter 3. Numerical methods for frequency domain wave modeling

source is positioned on a grid node (reference solution) and in a coarse grid where the
source is spread. The fit between the two numerical solutions is quite good except near the
source position.

In order to validate the two seismic wave modeling approaches and compare between
their memory and CPU time requirements, numerical examples on either homogeneous
or heterogeneous (SEG/EAGE overthrust and salt models) velocity models have been
performed.

The validation of the 3-D FD stencil developed in the chapter 2 is detailed in Operto
et al. (2007).

3.4 Numerical examples

The numerical examples based on hybrid solver were performed on the IDRIS IBM Power6
cluster. Only 3.5 Gbytes of memory per MPI process are allowed. Those based on the direct
solver were performed on a distributed-memory architecture cluster located at Geoazur
Institute and composed of 18 nodes, each of them includes two quad-core 2.7-GHz Opteron
processors with 64 Gbytes of shared memory. This allows to reduce the number of processors
and therefore to minimize the overhead memory.

3.4.1 Validation against the analytical solution in homogeneous
medium

In order to validate the modeling engine, the numerical direct and hybrid solver solutions
are compared with the analytical Green’s function and with each other. The analytical
Green’s function G(r, t) is given by

G(r, t) =
1

4πc2

δ(t− r
c
)

r
,

(3.13)

where t denotes the time, c the wave velocity and r the propagated distance (Aki and
Richards, 1980, chapter 4).

Note that two convergence criteria were tested for the hybrid solver, ε = 10−2 and 10−3.
The P-wave velocity is 4 km/s and the density is 2000 kg/m3. The frequency is 20 Hz.
The grid size is 41× 41× 201 and the grid interval is 50 m. The PML layer is discretized
with ten grid nodes and hence spans over two and a half wavelengths. For this simulation, I
used 32 2.4-GHz-cores with 2 Gbytes of memory per core, either for direct or hybrid solver.

Examples of mono-frequency pressure wavefields and residuals between different solutions
are shown in Figures 3.21 to 3.23. Some horizontal profiles extracted from the pressure
wavefields (Figures 3.24 and 3.25) are compared after correction for geometrical spreading
(1

r
in Equation (3.13)). The fit between Green’s function, direct solver and hybrid solver

solution at ε = 10−3 is quite good (Figures 3.24-a), -c) and 3.25-b)). However, there are
some discrepancies with hybrid solver solution at ε = 10−2 (Figures 3.24-b) and 3.25-a)).
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Figure 3.21: Validation on homogeneous medium. a) Analytic Green’s function. b)
Differences with numerical Green’s function obtained with direct solver.
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Figure 3.22: Validation on homogeneous medium. a) Analytic Green’s function. b)
Differences with numerical Green’s function obtained with hybrid solver at a convergence
criterion ε = 10−2. c) Differences with numerical Green’s function obtained with hybrid
solver at a convergence criterion ε = 10−3.
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Figure 3.23: Validation on homogeneous medium. a) Numerical Green’s function obtained
with direct solver. b) Differences with numerical Green’s function obtained with hybrid
solver at a convergence criterion ε = 10−2. c) Differences with numerical Green’s function
obtained with hybrid solver at a convergence criterion ε = 10−3.
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Figure 3.24: Validation on homogeneous
medium. Quantitative comparison between
dip profiles extracted at (X = 2km, Y =
2km). a) Analytic (solid black) and direct
solver (solid red). b) Analytic (solid black)
and hybrid solver at a convergence criterion
ε = 10−2 (solid red). c) Analytic (solid black)
and hybrid solver at a convergence criterion
ε = 10−3 (solid red). Differences are in dashed
blue.
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Figure 3.25: Validation on homogeneous
medium. Quantitative comparison between
dip profiles extracted at (X = 2km, Y =
2km). a) Direct solver (solid black) and hy-
brid solver at a convergence criterion ε =
10−2 (solid red). b) Direct solver (solid black)
and hybrid solver at a convergence criterion
ε = 10−3 (solid red). Differences are in dashed
blue.
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3.4.2 SEG/EAGE overthrust velocity model

The second set of tests were done on SEG/EAGE overthrust velocity model. The numerical
direct and hybrid solver at ε = 10−2 and 10−3 solutions are compared with each other. The
frequency is 5 Hz. The grid size is 61× 265× 265 and the grid interval is 75 m leading to
6 grid nodes per wavelength. The PML layer is discretized with five grid nodes and hence
spans over almost one wavelength. The problem involves 5.3 millions unknowns.

Mono-frequency pressure wavefields and residuals between different solutions are shown
in Figures 3.26. Some horizontal and vertical profiles extracted from the pressure wavefields
(Figures 3.27 and 3.28) are compared. The fit between direct solver and hybrid solver
solution at ε = 10−3 is quite good (Figures 3.27-b) and 3.28-b)). However, there are some
discrepancies with hybrid solver solution at ε = 10−2 (Figures 3.27-a) and 3.28-a)).
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Figure 3.26: Validation on SEG/EAGE overthrust velocity model. a) Numerical solution
with direct solver. b) Differences with numerical solution with hybrid solver at a convergence
criterion ε = 10−2. d) Differences with numerical solution with hybrid solver at a convergence
criterion ε = 10−3.

The Table 3.6 gathers the CPU time and memory storage required for the simulations
based on either the direct or the hybrid solver. Results show that as expected the hybrid
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Figure 3.27: Validation on SEG/EAGE overthrust velocity model. Quantitative comparison
between Xline profiles extracted at (Z = 2.25km, X = 9.9km). a) Direct solver (solid black)
and hybrid solver at a convergence criterion ε = 10−2 (solid red). b) Direct solver (solid
black) and hybrid solver at a convergence criterion ε = 10−3 (solid red). Differences are in
dashed blue.
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Figure 3.28: Validation on SEG/EAGE overthrust velocity model. Quantitative comparison
between dip profiles extracted at (X = 9.9km, Y = 9.9km). a) Direct solver (solid black)
and hybrid solver at a convergence criterion ε = 10−2 (solid red). b) Direct solver (solid
black) and hybrid solver at a convergence criterion ε = 10−3 (solid red). Differences are in
dashed blue.

solver allows mitigating the memory requirement of LU decomposition and the elapsed time
in the preprocessing phase (LU decomposition and LU decomposition on subdomains and
Schur complement and preconditioner building for the direct and hybrid solvers respectively)
while the direct solver is much more efficient in the solving phase and therefore for multi-RHS
simulations.
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Table 3.6: Comparison between the time and memory requirements of the simulations on
the overthrust model based on either direct or hybrid solver.

Hybrid Solver (ε = 10−3) Direct Solver

Np 243 96
Mem(Gb) 170 245
Tp(s) 38 1900
Ts(s) 33 3

Np – Number of MPI processes
Mem – Total memory
Tp – Elapsed time for preprocessing (LU decomposition and LU decomposition on
subdomains and Schur complement and preconditioner building for the direct and hybrid
solvers respectively)
Ts – Elapsed time for solving one RHS

3.4.3 SEG/EAGE salt velocity model

The final set of tests were done on SEG/EAGE salt velocity model. The numerical direct
and hybrid solver at ε = 10−2 and 10−3 solutions are compared with each other. The
frequency is 5 Hz. The grid size is 69× 225× 225 and the grid interval is 60 m leading to
6 grid nodes per wavelength. The PML layer is discretized with five grid nodes and hence
spans over almost one wavelength. The problem involves 4.3 million unknowns.

Mono-frequency pressure wavefields and residuals between different solutions are shown
in Figures 3.29. Some horizontal and vertical profiles extracted from the pressure wavefields
(Figures 3.30 and 3.31) are compared. The fit between direct solver and hybrid solver
solution at ε = 10−3 is quite good (Figures 3.30-b) and 3.31-b)). However, there are some
discrepancies with hybrid solver solution at ε = 10−2 (Figures 3.30-a) and 3.31-a)).

As for the previous example, CPU time and memory required for the simulations are
given in Table 3.7. The same discussion apply for the salt model and highlight the previous
conclusions.
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Figure 3.29: Validation on SEG/EAGE salt velocity model. a) Numerical solution with
direct solver. b) Differences with numerical solution with hybrid solver at a convergence
criterion ε = 10−2. d) Differences with numerical solution with hybrid solver at a convergence
criterion ε = 10−3.
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Figure 3.30: Validation on SEG/EAGE salt velocity model. Quantitative comparison
between Xline profiles extracted at (Z = 2.04km, X = 6.72km). a) Direct solver (solid
black) and hybrid solver at a convergence criterion ε = 10−2 (solid red). b) Direct solver
(solid black) and hybrid solver at a convergence criterion ε = 10−3 (solid red). Differences
are in dashed blue.
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Figure 3.31: Validation on SEG/EAGE salt velocity model. Quantitative comparison
between dip profiles extracted at (X = 6.72km, Y = 6.72km). a) Direct solver (solid black)
and hybrid solver at a convergence criterion ε = 10−2 (solid red). b) Direct solver (solid
black) and hybrid solver at a convergence criterion ε = 10−3 (solid red). Differences are in
dashed blue.
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Table 3.7: Comparison between the time and memory requirements of the simulations on
the salt model based on either direct or hybrid solver.

Hybrid Solver (ε = 10−3) Direct Solver

Np 243 96
Mem(Gb) 55 213
Tp(s) 31 2573
Ts(s) 24 6

Np – Number of MPI processes
Mem – Total memory
Tp – Elapsed time for preprocessing (LU decomposition and LU decomposition on
subdomains and Schur complement and preconditioner building for the direct and hybrid
solvers respectively)
Ts – Elapsed time for solving one RHS
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3.5 Discussion on seismic modeling for seismic imag-

ing

The final discussion is devoted to the comparison of the different approaches considered
for seismic wave modeling in the prospect of full waveform inversion where thousands of
sources are involved. Different properties or criteria are discussed such as the CPU time
complexity, especially for the case of multi-RHS resolution, the memory complexity, the
scalability of the approach on large parallel computing platforms and the robustness of the
method. A similar discussion was the topic of the publication Virieux et al. (2009).

In addition to direct and hybrid frequency domain seismic modeling approaches, explicit
scheme time domain method has been implemented in parallel. The implementation is
based on a domain decomposition method, on a forth-order in space O(x4) and second-order
in time O(t2) finite differences scheme (Levander, 1988) and C-PML boundary conditions
(Komatitsch and Martin, 2007). The iterative method alternative as well is discussed basing
my discussion on the works of Erlangga and collaborators (Vuik et al., 2003; Erlangga,
2005; Riyanti et al., 2006; Plessix, 2007; Erlangga and Herrmann, 2008).

Table 3.8 gathers the theoretical memory and CPU time complexities of the different
discussed approaches. Note that the memory complexity of either the time domain or the
iterative solver corresponds to the memory necessary to store the multiple source solutions
while the direct and hybrid solvers present an additional memory cost resulting from the
LU decomposition (storing L and U matrices in the core memory), the Schur complement
and its preconditioner building (preprocessing phase).

Table 3.8: Memory and CPU time complexities of the different methods used in seismic
wave modeling.

DSM HSM TDM ISM
MC O(n4Log2(n)) +O(n3Ns) O(n4/k) +O(n3Ns) O(n3Ns) O(n3Ns)
TC O(n6)/SLU +O(n4Ns)/SS O((n/k)4NsNit) O((n3NtNs)/k

3) O(n3NitNs)

DSM – Direct solver method
HSM – Hybrid solver method
TDM – Time solver method
ISM – Iterative solver method
MC – Memory complexity
TC – CPU time complexity
k – Number of subdomains in one direction, i.e. associated decomposition is k × k × k
Ns – Number of shots
Nit – Number of iterations (≈ O(n))
Nt – Number of time samples/steps (≈ O(n2))
SLU – Speed up of parallel LU decomposition
SS – Speed up of parallel LU solve

The memory complexities suggest that the iterative solver and time domain methods
are much more less memory demanding than the direct and hybrid solvers for single
source modeling. This explains that for multi-RHS simulations these methods are generally
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parallelized on the shots, i.e. one shot is allocated to one MPI process, since the memory
requirements are affordable on nowadays computers for realistic seismic targets and low
frequencies (5-10 Hz). This parallelization approach is referred to coarse grain approach.
This clearly implies that these approaches are very scalable and have almost perfect speed
up and efficiency.

In contrast, the memory requirements of either the direct or hybrid solver impose a fine
grain parallelization approach. This means that the parallelization is performed through
a domain decomposition independent of the RHS, i.e. parallel LU decomposition for the
direct solver and domain decomposition method for the hybrid solver. As mentioned in the
respective sections, the direct solver presents poor scalability in parallel platforms due to
the LU decomposition. The hybrid solver is better scalable but does not reach the time
domain or iterative solver scalability. The two parallelization approaches of course can be
mixed.

The CPU time complexity of the iterative and the hybrid solvers depend on the
convergence rate of the iterative solving. These complexities strongly depend on the
preconditioning efficiency and therefore the dependency of the number of iterations Nit

with respect to the size of the problem and the frequency. Recently, Erlangga and Her-
rmann (2008) have proposed an iterative approach based on a multi-grid shifted Laplace
preconditioning strategy to remedy to this limitation. On the other hand, the direct solver
is closely depending on the LU decomposition which suffers from limitations related to
matrix conditioning, which degrades with increasing problem size, and poor scalability.
The explicit time-marching scheme time complexity is well settled and depends only on the
time and space discretization rules.

The iterative and the time domain solvers have theoretically the best CPU time
performances. Nevertheless, it is still not clear which solver is the best choice, especially for
multi-RHS resolution, on small and medium size problems (applications at low frequencies).
To better assess the different discussed aspects related to CPU time, simulations on the
7-Hz overthrust model (71× 275× 275) were performed with the direct solver MUMPS,
the hybrid and the time domain solvers. The direct and hybrid solver were performed on
192 MPI processes while the time domain simulation was performed in sequential mode,
i.e. one MPI process. To compare between the different approaches, I consider that the
time domain solver is perfectly scalable and divide the sequential time by the number
of MPI processes used for the other simulations which is 192 MPI processes. CPU time
requirements are gathered in Table 3.9.

For one source, the best choice is the time domain solver (9 s). The direct solver leads
to the biggest CPU computation time (≈ 2550 s). This is due to the LU decomposition
complexity since the time for solving is only 3 s. The hybrid solver has a mitigated
computation time (67 s). The elapsed time in the preprocessing phase (LU decomposition
and Schur complement/preconditioner building) is 55 s and 12 s in the solving phase.

For multi-RHS resolutions, the behavior is not completely the same. Figure 3.32 plots
the respective computation time curves for the different solvers with respect to the number
of sources. The slope of the curves is related to the RHS-dependant solving phase of
each approach, i.e. 3 s for the direct, 12 s for the hybrid and 9 s for the time domain
solver. The Y-intercept or origin ordinate of curves represents the preprocessing phase
computation time. The time domain solver is better that the hybrid solver independently of
the number of the sources. However, the direct solver curve intercepts the hybrid and time
domain solvers curves at Ns = 277 and Ns = 425 respectively, where Ns is the number of
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Table 3.9: CPU time for preprocessing and solving phases for the 7-Hz overthrust model.

DSM HSM TDM
Np 192 192 1
TP (s) 2550 55 -
TS(s) 3 12 1670

DSM – Direct solver method
HSM – Hybrid solver method
TDM – Time solver method
Np – Number of MPI processes
TP – CPU time for preprocessing phase
TS – CPU time for solving phase

sources. This clearly proves that the direct solver is very efficient for multi-RHS resolution
applications of small dimension such as in seismic imaging based on full waveform inversion
at low frequencies.

The Figure 3.33 plots the same quantities for a different number of MPI processes. This
latter decreases the slope of the three curves by the same ratio and does not change the
Y-intercept. The figure shows that even if the time domain solver is better than the hybrid
one, the difference between respective slopes is not so high (9 s and 12 s respectively)
and implies that any improvement in the convergence of the hybrid solver can lead to a
competitive approach. The direct solver is the most appropriate choice for medium size
applications due to its high multi-RHS resolution efficiency.
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domain approaches on the 7-Hz overthrust model.
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Conclusion

In this chapter, I have introduced the wave propagation modeling strategy adopted in the
prospect of seismic imaging based on full waveform inversion. One of the main important
features necessary in FWI is the multiple sources modeling efficiency. The modeling is based
on either a massively parallel direct or hybrid direct-iterative solver. For each of them,
theoretical aspects as well as complexity and scalability analysis have been introduced in
order to support our choice.

The direct solver is very efficient with regards to multi-RHS resolution while the LU
factorization can be a bottleneck due to its high order complexity. Moreover, the parallel
direct solver suffers from a poor scalability. On contrary, the hybrid solver has got better
scalability. The memory complexity is mitigated by the domain decomposition method
since the LU are henceforth performed on smaller subdomains. However, the hybrid solver
is less efficient with regards to multi-RHS resolution due to the iterative (GMRES) part
necessary to perform for each source. In addition, the hybrid solver requires a tradeoff
analysis between the memory storage and the computation time through the search of the
optimal domain decomposition.

The iterative solver is a very promising approach in terms of memory and CPU time
complexities, even if its robustness is still questioned. The time domain solver is a
competitive approach thanks to its good scalability and robustness.
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Chapter 4

Theory of local optimization

The aim of optimization is to find the variable/model that optimizes a given objective
function. Without loss of generality, I will use “minimize” instead of “optimize”. In fact,
maximize a function is equivalent to minimize its opposite (“minus” the function). There
are typically two main approaches for optimization:

• Global optimization aim to reach the global minimum of an objective function.
The algorithms are generally computationally demanding. There two main classes
global optimization: deterministic approaches (branch and bound, etc.) explore
the search space using for example a divide and conquer scheme and probabilistic
approaches (simulated annealing, Monte-Carlo, genetic algorithms, ) seek to optimize
an appropriate probability function.

• Local optimization aims to find a local minimum in the vicinity of an initial “guess”
model. Algorithms in this case are more affordable to deal with huge problems such
as 3-D problems. If the initial guess is sufficiently close to the global minimum, then
the local optimization will converge to the global minimum.

Local optimization algorithms are iterative. They start with an initial “apriori” vari-
able/model and generate a sequence of improved estimates until convergence to the min-
imum. To update the model, most algorithms use values of the objective function and
possibly its first and second derivatives. Typically, two fundamental strategies to move
from an iterate to the next one are considered:

• “Line search” algorithms choose a direction and search along it for a new iterate that
minimizes the objective function. The “distance to move” or “step length” can be
a fixed value obtained with “apriori” information or computed through solving an
other optimization problem.

• “Trust region” algorithms restrict the search of the minimizer in a region around
some “apriori” model. If the trust region is too large, the search region is shrinked
and the minimization is redone.

In some way, the two strategies differ in the order in which they choose the “direction” and
the “step length” to move to the next iterate.

For Line search algorithms, the most obvious direction is the “steepest descent” direction
given by minus the gradient (first-order derivative) of the objective function (Taylor’s

63



Chapter 4. Theory of local optimization

theorem). The other well known search direction is the “Newton” direction. This search
direction needs to compute the inverse of the Hessian (second-order derivative) of the
objective function. This task may be computationally demanding. In this case, the Hessian
is approximated and a class of search direction is defined and known as “Quasi-Newton”
direction. “Conjugate gradient methods” use the knowledge of the previous iterate search
direction and build a new direction such as they are “conjugate”.

In this chapter, I will focus on the fundamentals of local optimization, specifically the
“line search” methods. I will next expand the different ways to compute the “search direction”
and “step length”.

4.1 Line search methods

Let’s consider a function f which depends on the variable m. The objective of local
optimization is to find m∗ which minimize f ,

min
m

f(m).

(4.1)

As mentioned in the introduction, most of local optimization algorithms only consider the
function and its first-order and second-order derivatives. It implies the strong “apriori”
that the function f is very close to its quadratic approximation.

Consider the second-order Taylor series approximation of the function f around the
point mk,

f(mk + p) = f(mk) + pT∇f(mk) +
1

2
pT∇2f(mk + tp)p

= f(mk) + pT∇f(mk) +
1

2
pT∇2f(mk)p +O(||p||3),

(4.2)

where t belongs to (0, 1).
To find the minimizer, line search local optimization algorithms try to build an iterating

chain that has this general form

mk+1 = mk + αkpk,

(4.3)

where αk is called the “step length” and pk the “descent direction” or “search direction”
(Nocedal and Wright, 1999). This means that for any descent direction p and step length α,

f(mk + αp) = f(mk) + αpT∇f(mk) +
1

2
α2pT∇2f(mk + tp)p

= f(mk) + αpT∇f(mk) +
1

2
α2pT∇2f(mk)p +O(||αp||3),

(4.4)

where t belongs to (0, α).
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4.1.1 First-order optimality condition

If m∗ is a local minimizer of a continuously differentiable function f in an open neighborhood
of m∗, then ∇f(m∗) = 0 (Proof in (Nocedal and Wright, 1999)).

4.1.2 Second-order optimality condition

If m∗ is a local minimizer of a function f and ∇2f exists and is continuous in an open
neighborhood of m∗, then ∇f(m∗) = 0 and ∇2f(m∗) is positive semidefinite (Proof in
(Nocedal and Wright, 1999)).

4.2 Descent direction

4.2.1 Steepest descent method

The most natural search direction is the “steepest descent” defined as

pSD
k = −∇f(mk).

(4.5)

It is the direction along which the function decreases the most rapidly. The steepest
descent direction involves only the first-order derivative or gradient of the function f .

To demonstrate this assumption, consider the first-order Taylor series approximation

f(mk + αp) = f(mk) + αpT∇f(mk) +O(||αp||2).
(4.6)

The direction p that minimizes the function f satisfies

min
p

pT∇f(mk), subject to ||p|| = 1.

(4.7)

The solution is intuitive,

p = − ∇f(mk)

||∇f(mk)||
.

(4.8)

More details can be found in Nocedal and Wright (1999). The convergence of the steepest
descent method is linear.

The main advantage of the steepest descent method is that it only involves the gradient
of the function contrary to Newton or quasi-Newton methods as it will be shown later.
This does not mean that the computation of the gradient is easy. In fact, it depends on
how we compute it. People have been used to explicitly compute and store the Jacobian
or Fréchet derivatives matrix and use it when necessary. However, this matrix can need
a huge amount of memory, thus need to be stored in the hard disk. This leads to some
Input/Output (I/O) issues. An elegant way to compute the gradient without computing
the Jacobian matrix is more and more used in the seismic community and is known as the
adjoint-state method (Tromp et al., 2005; Plessix, 2006). This issue will be the object of a
next section.
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4.2.2 Newton method

To obtain the Newton direction, consider the Taylor series approximation (4.4)

f(mk + αp) ≈ f(mk) + αpT∇f(mk) +
1

2
α2pT∇2f(mk + tp)p := Fk(p),

(4.9)

where Fk(p) is the quadratic approximation of f(mk + αp).
The variable p that minimizes Fk(p) is called the Newton direction and is expressed as

pN
k = −(∇2f(mk))

−1∇f(mk).

(4.10)

The Newton direction is reliable when the function f and its quadratic approximation
F are very close. The convergence of the Newton method is quadratic.
The main disadvantage of the Newton method is the need to evaluate the Hessian ∇2f(mk).
It is cumbersome, error-prone and prohibitive.

4.2.3 Quasi-Newton method

Quasi-Newton methods represent an alternative to Newton method in that way they do
not require the computation of the Hessian. They only need an approximation of it. The
quasi-Newton direction can write as

pQN
k = −Hq−1

k ∇f(mk).

(4.11)

where Hq is an approximation of the Hessian. In the following, Hq is called quasi-Hessian.
Hq is built such that it satisfies the equation known as the “secant equation” (Nocedal

and Wright (1999) for details),

Hqk+1sk = yk.

(4.12)

where sk = mk+1 −mk and yk = ∇fk+1 −∇fk. Note that the secant equation corresponds
simply to a finite difference approximation of the second-order derivative, i.e the Hessian.

Two of the most popular formulae for updating Hq are the “symmetric-rank-one” (SR1)
formula defined by

Hqk+1 = Hqk +
(yk −Hqksk)(yk −Hqksk)

T

(yk −Hqksk)T sk

,

(4.13)

and the BFGS (Broyden-Fletcher-Goldfarb-Shanno) formula defined by

Hqk+1 = Hqk −
Hqks

T
k skHqk

sT
k Hqksk

+
yky

T
k

yT
k sk

.

(4.14)

66



4.3. Step length

Practically, implementations avoid the factorization of Hq at each iteration. Instead
to update Hq, they update the inverse of Hq. In fact, it can be demonstrated that the
equivalent BFGS formulae for the inverse of Hq is given by

Hq−1
k+1 =

(
I − sky

T
k

yT
k sk

)
Hq−1

k

(
I − yks

T
k

yT
k sk

)
+

sks
T
k

yT
k sk

,

(4.15)

where I is the identity matrix.

The convergence of quasi-Newton methods is superlinear.

4.2.4 Conjugate gradient methods

The conjugate gradient direction has the general form

pk = −∇fk + βkpk−1,

(4.16)

where βk is a scalar that ensures that pk and pk−1 are conjugate.

Conjugate gradient methods were originally designed to solve a linear system of equations
Ax = b, where A is symmetric and positive definite. This problem is equivalent to the
problem of minimizing the quadratic function defined as 1

2
xT Ax− bT x. Conjugate gradient

methods were next extended to nonlinear optimization problems.

Fletcher and Reeves (1964) have shown how to extend the linear conjugate gradient to
nonlinear problems and presented the Fletcher-Reeves method. Many variants of nonlinear
conjugate gradient methods were then proposed, the most efficient is the Polak-Ribière
method (Polak and Ribière, 1969).

The nonlinear conjugate gradient methods are generally more efficient than the steepest
descent method but do not attain Newton method efficacy.

4.3 Step length

The ideal choice of the step length is the minimizer of the function Φ defined as

Φ(α) = f(mk + αpk).

(4.17)

We face a tradeoff in computing the step length. In fact, we would like to get α that
minimizes Φ, but this can be too prohibitive. Practical methods perform an inexact line
search to identify a step length that achieves an adequate reduction of f . Typically, these
algorithms try out a sequence of candidates. A first step, bracketing phase, consists in
determining an interval that contains an adequate step length. The second step, selection
phase, consists in performing an interpolation or bisection phase within this interval in
order to get the best step length.
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4.3.1 Wolfe conditions

The Wolfe conditions (Nocedal and Wright, 1999) read

f(mk + αkpk) ≤ f(mk) + c1αk∇fT
k pk

∇f(mk + αkpk)
T pk ≥ c2∇fT

k pk,

(4.18)

where 0 < c1 < c2 < 1. The first inequality of system (4.18) is called Armijo condition. It
stipulates that αk give a sufficient decrease in the objective function. The second inequality
is called the curvature condition.

A step length may satisfy the Wolfe conditions without being particularly close to the
minimizer of the function Φ. The strong Wolfe conditions assume that

f(mk + αkpk) ≤ f(mk) + c1αk∇fT
k pk∣∣∇f(mk + αkpk)

T pk

∣∣ ≥ c2

∣∣∇fT
k pk

∣∣ .

(4.19)

4.3.2 Goldstein conditions

The Goldstein conditions read

f(mk) + (1− c)αk∇fT
k pk ≤ f(mk + αkpk) ≤ f(mk) + cαk∇fT

k pk,

(4.20)

where 0 < c < 1
2
. A disadvantage of the Goldstein conditions conpared to the Wolfe

conditions is that the first inequality of system (4.20) may exclude all minimizers of the
function Φ.

4.3.3 Examples of step length selection algorithms

4.3.3.1 Backtracking line search with interpolation

This algorithm takes account only of the Armijo condition. This latter can be written as

Φ(αk) ≤ Φ(0) + c1αkΦ
′(0).

(4.21)

If the initial step length α0 satisfies the condition (4.21), we finish the search. Otherwise,
the interval [0, α0] contains acceptable step lengths. Through a quadratic approximation of
the function Φ that passes through the points (0, Φ(0)), (0, Φ′(0)) and (α0, Φ(α0)) in the
interval [0, α0], we can define a new trial value as

α1 =
Φ′(0)α2

0

2[Φ(α0)− Φ(0)− Φ′(0)α0]
.

(4.22)

If α1 satisfies (4.21), we terminate the search. Otherwise, a cubic approximation of Φ gives
a new step length (Nocedal and Wright, 1999). We do the same thing with the two last
step lengths until we satisfy the condition (4.21).
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4.3.3.2 Line search algorithm for Wolfe conditions

The algorithm is detailed in the Algorithm (1) (Nocedal and Wright, 1999). The procedure
is based on the knowledge that the interval (αi−1, αi) contains step lengths that satisfy
strong Wolfe conditions. To perform the last step of the algorithm, interpolation procedure
can be used. More details on the function zoom (Algorithm (2)) are in Nocedal and Wright
(1999).

Algorithm 1 Line search algorithm for Wolfe conditions (Nocedal and Wright, 1999)

Set α← 0, choose αmax and α1 ∈ (0, αmax)
i← 1
loop

Evaluate Φ(αi)
if Φ(αi) > Φ(0) + c1αkΦ

′(0) OR [Φ(αi) ≥ Φ(αi−1) AND i > 1] then
α∗ ← zoom(αi−1, αi) and stop

end if
Evaluate Φ′(αi)
if |Φ′(αi)| ≤ −c2Φ

′(0) then
α∗ ← αi and stop

end if
if Φ′(αi) ≥ 0 then

α∗ ← zoom(αi, αi−1) and stop
end if
Choose αi+1 ∈ (αi, αmax)
i← i + 1

end loop

4.3.3.3 Discussion

Algorithms based on Wolfe conditions or strong Wolfe conditions behave generally better
than backtracking algorithms. However, the curvature condition (second condition) is very
restrictive when dealing with huge problems. Indeed, we need to evaluate the gradient
of the function f at the point mk + αkpk besides the point mk necessary for the Armijo
condition. This task can be prohibitive and the step length search is limited to backtracking
techniques.

Conclusion

The main topic brought up during this chapter is local optimization methods. I have been
focused on line search algorithms since our full waveform inversion approach is based on it.
I was interested in introducing the main features of such algorithms. Typical line search
algorithms are based on a quadratic approximation of the function to optimize (generally
minimize) through a second-order Taylor expansion. This implies that the function to
minimize is close to its approximation in the vicinity of the initial variable/model.

The minimization process is based on the construction of a perturbation chain starting
from an initial model to reach a local minimum, due to local optimization process, which
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Algorithm 2 zoom (Nocedal and Wright, 1999)

loop
Interpolate (quadratic, cubic or bisection) to find a trial step length αj ∈ (αlo, αhi)
Evaluate Φ(αi)
if Φ(αi) > Φ(0) + c1αkΦ

′(0) OR Φ(αi) ≥ Φ(αlo) then
αhi ← αi

else
Evaluate Φ′(αi)
if |Φ′(αi)| ≤ −c2Φ

′(0) then
α∗ ← αj and stop

end if
if Φ′(αi)(αhi − αlo) ≥ 0 then

αhi ← αlo

end if
αlo ← αj

end if
end loop

can correspond to the global minimum if the initial model (well chosen) is in the vicinity of
the global minimum. Such line search algorithms divide the process into two steps: the first
step consists in finding an appropriate search direction such as the steepest descent, Newton,
quasi-Newton, etc., and the second step in applying the optimal step length (amplitude).
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Full waveform inversion

In the eighties, Tarantola (1984a) and Lailly (1984) have formulated the seismic imaging
problem as a least squares nonlinear inverse problem generally called waveform inversion or
full waveform inversion (FWI). The aim of waveform inversion is to extract the complete
information provided by the recorded data through a complete seismic modeling of the wave
propagation including multiple reflections and diving waves in order to bypass imaging
limitations of the standard imaging procedure in complex media such as salt body dipping
flanks imaging. The optimal expected spatial resolution of FWI is half the wavelength of
the wave provided that wide aperture acquisitions and wide frequency bandwidth sources
are used. Moreover, FWI is a quantitative imaging method that provides, in addition to an
image of the subsurface, a characterization of the medium physical properties.

The objective is to minimize the differences between predicted and observed seismograms.
Unfortunately, the approach have shown to suffer from the presence of many local minima
when applied to short or medium offsets reflection data (Mora, 1989). Fortunately, this
property of least squares misfit function is less arduous at low frequencies than at high
frequencies. Indeed, the width of the valley of the global minimum is proportional to the
inverse of the frequency (Bunks et al., 1995). Therefore, a multi scale imaging strategy can
be settled through successively inverting small to high frequencies.

In the nineties, Pratt (Pratt and Worthington, 1990; Pratt, 1990) have reformulated
waveform inversion in the frequency domain. Pratt and collaborators apply waveform
inversion to crosshole (Pratt, 1999) and wide aperture (large offsets) data (Pratt et al.,
1996a; Brenders and Pratt, 2006, 2007) taking advantage of diving waves. In the frequency
domain, the inversion procedure intrinsically defines a multi scale/resolution strategy where
we first invert low frequency components and include progressively higher frequencies. This
multi scale strategy allows mitigating the nonlinearity of the inverse problem. In addition,
only few discrete frequencies are necessary to provide an acceptable image thanks to
wavenumber redundancy (Sirgue and Pratt, 2004), thus favor frequency domain formulation
to be efficient.

During the two last decades, many researchers have performed synthetic and real data
case studies that have clearly shown the benefit of this approach (Pratt et al., 1996a; Ravaut
et al., 2004; Dessa et al., 2004; Operto et al., 2006b,a; Jaiswal et al., 2008; Sears et al., 2008;
Choi and Shin, 2008). Nevertheless, different investigations have shown that it is imperative
to have a good starting pair (initial velocity model, lowest frequency (≤ 3−5Hz)) (Brenders
and Pratt, 2006, 2007) to manage the nonlinearity of FWI. Data frequency content is closely
related to the source frequency content. Many efforts have been carried out to improve

71



Chapter 5. Full waveform inversion

low frequency data quality. Regarding the initial velocity model, investigations have been
interested to evaluate the usefulness of models built with standard techniques such as first
arrival traveltime (FATT) or reflection tomography (Ravaut et al., 2004; Dessa et al., 2004;
Brenders and Pratt, 2006, 2007; Jaiswal et al., 2008). Results were mitigated according to
large offsets and low frequencies availability and quality. Other techniques were proposed
to remedy to this lack of efficacy such as stereotomography (Lambaré, 2008; Prieux et al.,
2009), phase inversion (Shin and Min, 2006; Min and Shin, 2006) and Laplace domain
inversion (Shin and Cha, 2008; Shin and Ha, 2008).

During the last years, the efforts have been concentrated on the 3-D FWI. The applica-
tions have been restricted to the acoustic approximation of the seismic wave propagation
since FWI is based on complete seismic wave propagation modeling which is extremely
computational demanding in 3-D. This partially explains why efforts have been particularly
concentrated on the development of an efficient 3-D seismic wave modeling engine. Based on
the efficacy of the use of direct solver in 2-D thanks to its multi-RHS resolution efficiency, I
have proposed the same approach in 3-D (Ben-Hadj-Ali et al., 2008). Despite the limitations
related to the LU decomposition CPU time and memory complexities, I have shown that
the method still perform efficiently for small to medium problem sizes of few millions of
unknowns, in other words for small frequencies (≤ 7Hz). Warner et al. (2007) and Erlangga
and Herrmann (2008); Plessix (2007) have recommended to use an iterative method to
solve the Helmholtz system. Plessix and Perkins (2009); Plessix (2009) have presented an
application of anisotropic FWI on deep-water OBS data recorded in the Golf of Mexico.
Sirgue et al. (2007b) use a time domain modeling and compute monochromatic responses
through a discrete Fourier transform. Sirgue et al. (2009) have applied frequency domain
FWI on Valhall (Munns, 1985; Kommedal et al., 2004) real data set and have shown the
imaging resolution improvement with regards to reflection tomography velocity model which
was used as an initial model for FWI.

In this chapter, I first expose the least squares formulation of FWI and Newton-like
methods to solve this inverse problem, and focus on the frequency domain formulation.
Then, I discuss the properties, advantages and drawbacks of waveform inversion.

5.1 Formulation

In this section, I aim to expound the mathematical formulation of full waveform inversion.
The problem is set up as a local optimization problem that aims to minimize the misfit δd
defined as the differences at the receivers between the observed/recorded data do and the
computed/modeled data dc = dc(m) where m is the model. The misfit vector δd reads
then δd = do − dc(m). The model m represents the physical parameters of the subsurface.
It depends on considered physical approximation of the wave equation: acoustic/elastic,
homogeneous/heterogeneous, viscosity, isotropic/anisotropic, etc.

Generally, the problem is set up as a least squares problem. In fact, the L2-norm
minimizes the probability of maximum likelihood (Tarantola, 1987).

The upcoming mathematical developments are independent of the domain in which we
consider the data: time domain (Tarantola, 1984a,b; Lailly, 1984), frequency domain (Pratt
and Worthington, 1990; Pratt, 1990), Laplace domain (Shin and Cha, 2008), etc.
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5.1. Formulation

5.1.1 Least squares criterion

The unconstrained/unweighted least squares misfit function C(m) reads

C(m) =
1

2
L2(δd) =

1

2
δdT δd∗,

(5.1)

where T is the transpose symbol and ∗ defines the conjugate symbol. As mentioned in
the chapter 8, local optimization methods search for a local optimum in the vicinity of
a starting model m0. The first step is to linearize the misfit function around m0. This
suggests that only small perturbations hold. In the framework of the Born approximation
(Born and Wolf, 1993; Beydoun and Tarantola, 1988), m can be written as the sum of the
starting model m0 and a perturbation model δm and reads m = m0 + δm.

The second step consists of expanding the second-order Taylor series of the misfit
function C(m),

C(m0 + δm) = C(m0) +
M∑

j=1

∂C(m)

∂mj

∣∣∣∣
m=m0

δmj +
1

2

M∑
j=1

M∑
k=1

∂2C(m)

∂mj∂mk

∣∣∣∣
m=m0

δmjδmk

+ O(||m||3),
(5.2)

where M denotes the dimension of the vector m.

The misfit function reaches its minimum when its first-order derivative vanishes (first-
order optimality condition, chapter 8). The first-order derivative with respect to a model
parameter ml reads

∂C(m)

∂ml

=
∂C(m)

∂ml

∣∣∣∣
m=m0

+
M∑

j=1

∂2C(m)

∂mj∂ml

∣∣∣∣
m=m0

δmj,

(5.3)

and implies the compact expression with respect to m,

∂C(m)

∂m
=

∂C(m)

∂m

∣∣∣∣
m=m0

+
∂2C(m)

∂m2

∣∣∣∣
m=m0

δm.

(5.4)

∂C(m0)
∂m

is called the gradient and ∂2C(m0)
∂m2 the Hessian. Setting ∂C(m)

∂m
to zero gives the

expression of the descent direction,

δm = −

[
∂2C(m)

∂m2

∣∣∣∣
m=m0

]−1
∂C(m)

∂m

∣∣∣∣
m=m0

.

(5.5)

This descent direction equation corresponds to Newton direction (Chapter 8).
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5.1.2 Newton, Gauss-Newton & steepest descent directions

The objective of this section is to expand the expressions of the gradient and the Hessian
and retrieve the descent directions presented in the chapter 8. I only consider the frequency
domain formulation of the waveform inversion. In this case, data are complex valued. For
more details, see Pratt et al. (1998); Ben-Hadj-Ali et al. (2008).

5.1.2.1 Gradient expression

The first-order derivative of the misfit function with respect to ml reads

∂C(m)

∂ml

= −1

2

N∑
i=1

[
∂dci

∂ml

(doi
− dci

)∗ + (doi
− dci

)
∂d∗ci

∂ml

]

= −
N∑

i=1

<
[(

∂dci

∂ml

)∗

(doi
− dci

)

]
,

(5.6)

where N represents the number of terms in the data vector and is directly related to the
acquisition, i.e. shots and receivers number. < defines the real part of a complex value. In
a more compact form, it reads

∇Cm =
∂C(m)

∂m
= −<

[(
∂dc(m)

∂m

)T

(do − dc(m))∗

]
.

(5.7)

For the model m0, the gradient reads

∇Cm0 =
∂C(m)

∂m

∣∣∣∣
m=m0

= −<

[(
∂dc(m)

∂m

)T
∣∣∣∣∣
m=m0

(do − dc(m0))
∗

]
= −<

[
JT

0 δd∗
0

]
,

(5.8)

where J0 is the Fréchet derivatives matrix.

5.1.2.2 Hessian expression

Following the same approach as in for the gradient, the Hessian reads

∂2C(m)

∂m2

∣∣∣∣
m=m0

= <
[
JT

0 J∗0
]
+ <

[(
∂J0

∂m

)T

(δd∗
0 · · · δd∗

0)

]
.

(5.9)

The first term <
[
JT

0 J∗0
]

is called the approximate Hessian. It is the zero-lag correlation
between the partial derivative of wavefields with respect to different parameters. Therefore,
it represents the spatial correlation between the images of different point scatterers. It can
be viewed as a resolution operator resulting from limited bandwidth of the source and the
acquisition geometry. Indeed, applying the inverse of the Hessian is equivalent to applying
a spiking deconvolution of the gradient of the misfit function.
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5.2. Numerical issues

The term <
[
JT

0 J∗0
]

is diagonal dominant since the diagonal terms are defined by zero-
lag auto-correlation. This diagonal term reduces the effects of the geometrical spreading.
Therefore, in the frame of surface acquisition, it helps to scale the deep perturbations (large
offsets / small amplitudes) with respect to the shallow perturbations (near offsets / high
amplitudes).

The second term <
[(

∂J0

∂m

)T
(δd∗

0 · · · δd∗
0)

]
is the zero-lag correlation between the second-

order partial derivative of the wavefields with data residuals. Since first-order partial
derivative is related to single scattering, it can be expected that second-order partial
derivative is related to double or multiple scattering.

5.1.2.3 Descent direction

The descent direction equation (5.5) (Newton direction) reads

δm =

{
<

[
JT

0 J∗0 +

(
∂J0

∂m

)T

(δd∗
0 · · · δd∗

0)

]}−1

<
[
JT

0 δd∗
0

]
.

(5.10)

Newton direction has locally a quadratic convergence. Generally, the second term of

the Hessian (<
[(

∂J0

∂m

)T
(δd∗

0 · · · δd∗
0)

]
) is neglected since in the framework of the Born

approximation multiple scattering are neglected (Pratt et al., 1998). This leads to a
quasi-Newton direction called Gauss-Newton and expressed as below,

δm =
{
<

[
JT

0 J∗0
]}−1<

[
JT

0 δd∗
0

]
.

(5.11)

If the Hessian is replaced by a scalar α, the expression gives the steepest descent direction,

δm = α<
[
JT

0 δd∗
0

]
.

(5.12)

5.2 Numerical issues

5.2.1 Gradient computation through adjoint method

Consider the forward problem Ap = s and one source s and one frequency f . The
differentiation of this equation with regards to the model parameter mi leads to

A
∂p

∂mi

= − ∂A

∂mi

p.

(5.13)

∂p
∂mi

is the partial derivative of wavefields. The extraction of the values of the partial
derivative of wavefields at the receiver positions allows building the Fréchet derivative

matrix J. Indeed, J =
(

∂(Rp)
∂m

)
where R is the restriction operator which extracts the

75



Chapter 5. Full waveform inversion

solution at the receivers. If we insert the expression of the J and the relation (5.13) in the
gradient expression (5.7), we get

∇Cm = −<

[(
∂dc(m)

∂m

)T

δd∗

]

= −<

[(
∂(Rp)

∂m

)T

δd∗

]

= <

[
pT

(
∂A

∂m

)T

(A−1)T (RT δd∗)

]
.

(5.14)

RT is the prolongation operator adjoint to R.
Each column of A−1 represents the Green function for an impulse source located at

each node of the model space. In virtue of the reciprocity in space of the Green function,
the matrix A−1 is symmetric and (A−1)T = A−1. Hence, (5.14) reads

∇Cm = <

[
pT

(
∂A

∂m

)T

A−1(RT δd∗)

]

= <

[
pT

(
∂A

∂m

)T

Rb

]
.

(5.15)

Rb is called the backpropagated residuals wavefield. The conjugate symbol ∗ indicates the
backpropagation. Note that the residuals associated with one source are assembled to form
one vector. This means that for each source, the computation of the gradient reduces to the
simulation of two forward problems, the first one to compute the wave equation solution
and extract the data at the receivers, the second one to backpropagate the residuals at
once.

This strategy to compute the gradient is known as the adjoint method (Plessix, 2006).
It derives from the Lagrange formulation of constrained optimization (Nocedal and Wright,
1999; Akcelik, 2002).

This recalls the imaging principle of wavefield continuation migration methods (Claer-
bout, 1985; Biondi, 2006), especially reverse time migration.

For multiple sources and frequencies, the expression of the gradient reads

∇Cm =
∑

s

∑
f

<

[
pT

(
∂A

∂m

)T

Rb

]
.

(5.16)

5.2.2 Hessian approximations

Due to the cost of the Hessian computation and storage, only manageable approximations
are used. We also need to take into account that we need its inverse. Thus, two classes
of approximations are possible: diagonal approximations of the Hessian, hence simple to
invert or manageable approximations of the inverse of Hessian.
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5.2.2.1 Diagonal of the approximate Hessian

Consider the approximate Hessian Ha (Pratt et al., 1998) defined by

Ha = <
[
JTJ∗

]
.

(5.17)

One element of the sensitivity matrix reads

Jk(s,r),l = uT
s

[
∂AT

∂ml

]
A−1δr,

(5.18)

where k(s, r) denotes a (source,receiver) couple, with s and r are respectively shot and
receiver positions. δr is an impulse source located at the receiver position r. To build
the sensitivity matrix, we need to simulate one forward problem for each source and each
receiver. This means that the computation cost of the approximate Hessian depends closely
on the acquisition geometry.

The storage of the approximate HessianHa is generally cumbersome for huge acquisitions,
such as in three dimensions (3-D). A way to circumvent the problem is to consider a coarser
acquisition in which we build the approximate Hessian (Operto et al., 2006b,a) and use
only its diagonal part. This provides a good scaling of the gradient (Pratt et al., 1998;
Ravaut et al., 2004).

5.2.2.2 Diagonal of the pseudo Hessian

Shin et al. (2001) have proposed a computationally efficient approximation of the approx-
imate Hessian. Indeed, they have proposed to use only the virtual sources fi = − ∂A

∂mi
p

(Equation (5.13)) instead of A−1fi. The pseudo Hessian Hp reads then

Hp = <
[
FTF∗] ,

(5.19)

where F(i,j) = (fi)j is the virtual sources matrix (Shin et al., 2001). This expression reduces
the cost of the approximation of the Hessian to the cost of the gradient. Indeed, computing
the pseudo Hessian implies to simulate only forward problems for the sources instead of
the sources and receivers in the case of the approximate Hessian. The evaluation of the
pseudo Hessian can be done simultaneously with the gradient of the misfit function. This
reduces dramatically the computation and storage effort. As for the approximate Hessian,
only the diagonal part of the pseudo Hessian is used in practice.

5.2.2.3 Limited memory BFGS (L-BFGS) approximation of the Hessian

Sometimes, it is necessary to consider non diagonal terms of the Hessian to get an acceptable
convergence. A smart way to accomplish this objective is the BFGS approach (Section 4.2.3).
Nocedal (1980) proposed and efficient variant of BFGS method, called L-BFGS, that limits
the memory storage requirements.
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Let us recall the BFGS formula for the inverse of the quasi-Hessian Hq,

Hq−1
k+1 =

(
I − sky

T
k

yT
k sk

)
Hq−1

k

(
I − yks

T
k

yT
k sk

)
+

sks
T
k

yT
k sk

,

(5.20)

where sk = mk+1 −mk and yk = ∇Ck+1 −∇Ck. This relation is recursive. The inverse of
the quasi-Hessian at a given iteration depend only of the models and the gradients of the
function at all the previous iterations.

In the L-BFGS algorithm, the models and the gradients of the function are stored only
for a limited number of iterations. In addition, the inverse of the quasi-Hessian is not
explicitly stored. The product Hq−1

k ∇C(mk) is implicitly evaluated through inner products
and vector summations involving ∇C(mk) and the limited stored sequence (si, yi) (Nocedal
and Wright, 1999, page 178).

5.2.3 Source estimation

In practice, the source wavelet is unknown. To update the source, we minimize our misfit
function (5.1) with regards to the source unknown. The relationship between the seismic
wave field and the source is linear, hence,

p = Gs,

(5.21)

where G is the Green function and s is the source wavelet. The misfit function (5.1) reads

C(m) =
1

2
(do − dc)

T (do − dc)
∗

=
1

2
(do − sGR)T (do − sGR)∗,

(5.22)

where GR is the restriction of Green function G at the receivers positions. The differentiation
of (5.22) with respect to s leads to the update expression of the source,

s =
dT

o G∗
R

GT
RG∗

R
.

(5.23)

The estimation of the source as the estimation of the model perturbation is performed
iteratively. At each iteration, the source as well as the model perturbation is updated.

5.3 Full waveform inversion: issues

5.3.1 Preconditioning & regularization

Nonlinear inverse problems are known for their severe ill-posedness. In order to mitigate
ill-posedness, some preconditioning and regularization are generally applied. The misfit
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function (5.1) becomes

C(m) =
1

2

[
δdTCdδd∗ + (m−mapriori)

TCm(m−mapriori)
∗]

=
1

2

[
δdTWd

TWdδd∗ + (m−mapriori)
TWm

TWm(m−mapriori)
∗] ,

(5.24)

where Cd = Wd
TWd is a preconditioning operator and Cm = Wm

TWm a regularization
operator. A widespread choice of Cd and Cm is the inverse of model and data covariance
operators respectively (Bayes apriori (Tarantola, 1987; Scales and Smith, 1994)).

Wd corresponds to a weighting/filtering operator that applies on the data. Wd can
permit to weight data with respect to offset in order to strengthen the far offset data in
the case of crustal scale imaging (Operto et al., 2006b) or in order to define a multi scale
imaging strategy based in a progressive introduction of near to far offsets data.

Wm can be a roughness operator generally obtained by taking a first or second-order
finite differences operator. In this case, it aims to impose a smoothness constraint on the
model. Such regularization operator is the Tikhonov regularization (Tikhonov and Arsenin,
1977). An alternative choice is total variation regularization (Gholami and Siahkoohi, 2009).
It belongs to the edge preserving class. As inferred by the class name, it aims to preserve
both the smooth and blocky parts of the model.

The same operations detailed for the previous misfit function (5.1) apply for (5.24) and
lead to the model perturbation

δm =
{
<

[
JT

0 CdJ
∗
0

]
+ Cm

}−1<
[
JT

0 Cdδd∗
0

]
= Cm

−1
{
<

[
JT

0 Cm
−1J∗0

]
+ Cd

−1
}−1<

[
JT

0 δd∗
0

]
.

(5.25)

Practically, the gradient is smoothed with a Gaussian filter (Ravaut et al., 2004; Ben-
Hadj-Ali et al., 2008) such that

δmi = α (diagHa + εI)−1 Gm<
{

pT

[
∂AT

∂mi

]
A−1Cdδd

∗
}

,

(5.26)

where diag Ha = diag<{ JT
0 Cd J∗0} denotes the diagonal elements of the weighted

approximate Hessian Ha, J0 denotes the sensitivity matrix and Gm is a Gaussian smoothing
operator. ε denotes a prewhitening factor that prevents singularities.

5.3.2 Resolution power & multi-scale strategy

In this section, I am interested in studying the spatial resolution of full waveform inversion.
I will show that the optimal resolution is half the wavelength.

Let us consider a homogeneous background model of velocity c, an incident monochro-
matic plane wave propagating in the source-scatterer direction, and a scattered monochro-
matic plane wave in the far-field approximation propagating in the scatterer-receiver
direction r (Figure 5.1). The incident and scattered Green’s functions can be approximated
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ps = pr = 1/c

Figure 5.1: 1-D scattering experiment scheme.

as

G0(x, s) ≈ exp(ιks.x)

G0(x, r) ≈ exp(ιkr.x),

(5.27)

where k0 = ω/c, s, r and x are respectively the source, receiver and scatterer position
vectors. The gradient of the misfit function reads

∇C(m) ≈ −
∑

s

∑
r

<{exp(ιks.x) exp(ιkr.x)δd∗}

≈ −
∑

s

∑
r

<{exp(ιk(s + r).x)δd∗} .

(5.28)

The gradient has the form of a truncated Fourier series where the integration variable
is the scattering wavenumber vector k = k(s + r) and the coefficients of the series are
the data residuals. At a given frequency, the acquisition geometry controls the sampling
and the bandwidth of the Fourier series through the summation over the sources and
receivers (Figure 5.1). To see more clearly the relationship between spatial resolution and
the acquisition geometry, consider the expression of the wavenumber k written as

k =
2ω

c
cos (θ/2)n,

(5.29)

where n is a unit vector in the direction of the slowness vector (s + r). This highlights the
relationship between spatial resolution power of FWI and the frequency-offset pair. One
frequency and one aperture in the data space map one wavenumber in the model space.
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Therefore, they have a redundant control of the wavenumber coverage. This redundancy
increases with the aperture bandwidth. Pratt and Worthington (1990), Sirgue and Pratt
(2004) and Brenders and Pratt (2007) have proposed to decimate the wavenumber coverage
redundancy in the frequency domain FWI by limiting the inversion to a few discrete
frequencies. This data reduction leads to a computationally efficient frequency domain
FWI and allows the managing of a compact volume of data, two main advantages with
comparison to time domain FWI formulation. The rule for the selection of the frequencies
to be used in the FWI is that the maximum wavenumber imaged by a frequency matches
the minimum vertical wavenumber imaged by the next frequency. A guideline of frequencies
selection for 1-D velocity model problems is detailed in Figure 5.2 from Sirgue and Pratt
(2004). In a homogeneous medium and for a plane reflector, the guideline of frequencies
selection reads

∆fn+1 = fn+1 − fn = (1− αmin)fn+1,

(5.30)

where αmin is a constant that depends on the offset and the reflector depth. According to
this guideline, the frequency interval increases with the frequency.

f

kz kz

max

kz

min

f1 f2 f3
(from Sirgue, 2003)

Figure 5.2: Illustration of the frequency discretization strategy. (From Sirgue, 2003)

The low frequencies of the data and the wide apertures contribute to resolve the
intermediate and large wavelengths of the medium. At the other side of the wavenumber
spectrum, normal incidence wavenumbers lead to a maximum resolution of half a wavelength
(λ

2
) if data provide. The ability of the wide apertures to resolve the large wavelengths of

the medium has encouraged many studies to consider long-offset acquisition geometries
to design better posed FWI problems (Pratt et al., 1996b; Ravaut et al., 2004). Indeed,
the equation (5.29) implies that the large wavelengths can be resolved provided that
wide-aperture data are recorded by the acquisition geometry.
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Conclusion

Full waveform inversion is formulated as a least squares optimization problem where the
misfit function between the recorded and predicted data is minimized. The inverse problem
is linearized through the Born approximation while the seismic wave modeling is nonlinear.
The linearization leads to the Newton, quasi-Newton or steepest descent algorithms to solve
this optimization problem, where the gradient and/or the Hessian of the misfit function
have to be evaluated. The gradient computation is based on the adjoint-state method
where two forward problems are required per source: one to compute the shot wavefield
and one to backpropagate the residuals wavefield. The Hessian is approximated since its
evaluation and storage are computationally demanding.

Since the problem is highly nonlinear and ill-posed, preconditioning and regularization
are performed in order to mitigate nonlinearity and ill-posedness. Preconditioning applies
in the data domain while regularization applies in the model domain.

According to the resolution study, the optimal expected spatial resolution is half the
wavelength provided that large offset acquisition geometries and wide frequency bandwidth
sources are used.

The frequency domain presents many advantages since the frequency sampling is
undersampled thanks to wavenumber redundancy which leads to the inversion of a few
discrete frequencies and defines a multi resolution/scale imaging strategy through the
inversion of small to high frequencies.
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Parallel implementation 1

In this chapter, I will exclusively be interested in the practical aspects of the implementation
of the 3-D frequency domain FWI software. The FWI software interfaces both the direct
and hybrid solver approaches, introduced in the chapter 8, to simulate the seismic wave
propagation solutions. Therefore, the domain decomposition method, which is used in both
modeling approaches, drives the FWI implementation. The practical aspects are mainly
related to parallelism and data management. This latter is crucial in 3-D, even if the
data are decimated in the frequency domain, since the data storage requirements demand
important facilities. In fact, the storage requirements for a dense 3-D acquisition may be
critical.

The FWI software is written in Fortran90 and the parallelism is based on Message
Passing Interface (MPI) communication standard.

First, I will briefly introduce the frequency domain FWI algorithm. Then, I will be
interested in the specificities of the implementation of the 3-D FWI software.

1The reader may skip this chapter if he is not interested in the practical implementation issues.
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Chapter 6. Parallel implementation 1

6.1 Frequency domain FWI algorithm

In this section, I introduce the frequency domain FWI algorithm. The algorithm has been
detailed in Sourbier et al. (2009). The multi scale/resolution inversion strategy implies to
successively process increasing frequencies or groups of frequencies. Thus, the main loop of
the FWI algorithm is the frequency loop.

A detailed frequency domain FWI algorithm is shown in Figure 6.1. Three main parts
can be distinguished: the gradient, Hessian approximation and step length. For each one of
these parts, multi-source forward problems are simulated. The forward problem simulation
can be performed by both the direct and hybrid solver approaches. The gradient and
Hessian computation is straightforward. The optimal step length is estimated through
parabolic fit.

The parabolic fit approach tries to find the optimal step length and involves evaluating
many times the misfit function. A first value α0 is already evaluated from the gradient
calculation. The two other values α1 and α2 satisfy that

α0 ≤ α1 ≤ α2,

C(α1) ≤ C(α0) and C(α1) ≤ C(α2).

Each additional misfit function evaluation needs a multi-source forward problem simulation.
Once three valid values are evaluated, the minimum of the parabolic function describing
these points is used as the line search step length.
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Figure 6.1: Frequency domain FWI flowchart.
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6.2 Practical FWI implementation aspects

In this part, the practical aspects of the FWI software implementation are discussed
in order to focus on the specificities of the 3-D implementation. As mentioned in the
previous section, the forward problem is based on both the direct and hybrid solvers.
The parallel implementation of the direct and hybrid solver modeling is based on the
domain decomposition method. Therefore, the FWI algorithm is driven by the domain
decomposition approach.

6.2.1 Domain decomposition management

For the hybrid solver approach, the domain decomposition is fixed by the user. However,
with the direct solver MUMPS, the domain decomposition is driven by the LU factorization
and matrix scaling and pivoting issues. Therefore, the domain distribution may change
at each iteration since the matrix changes. This issue may prevent to efficiently manage
data. To overcome this problem, a second level of domain decomposition is set up by the
user. A mapping operation is then performed to redistribute the solutions in accordance
to this domain decomposition instead of MUMPS decomposition which is no longer used
(Figure 6.2).

MUMPS domain decomposition
(may change at each iteration)

User domain decomposition
(fixed)

Domains mapping

1

2

3

4

1

2

3

4

Figure 6.2: Domains mapping operation between MUMPS and user-defined domain decom-
positions.

6.2.2 Acquisition management

The information related to the acquisition have been used to be stored in 2-D by the
host process (Sourbier et al., 2009). In 3-D, this strategy may be not applicable for dense
acquisition systems. In fact, for a 3-D acquisition with 4000 shots and 50000 receivers per
shot, some arrays related to the acquisition such as the correspondence between shots and
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6.2. Practical FWI implementation aspects

their receivers represent about 700 Mbytes. In common parallel platforms, only 2 Gbytes
per core of memory are available. In order to overcome this issue, these arrays are stored
in a distributed form. Each process stores only information related to each subdomain. It
means that the acquisition data is distributed between the subdomains that contain a part
of the acquisition.

6.2.3 Data management

All the forward problem solutions (FPS) remain distributed in-core in the algorithm. No
disk swapping is used in the FWI algorithm. If not enough memory is available to store in-
core all the FPSs, the computation of the multi-RHS resolution is performed in a sequential
loop over partitions of RHS terms. Each partition loads in-core the maximum number of
solutions fitting the available memory. At each partition, the gradient, misfit function and
Hessian are updated.

The data extracted at receivers positions are stored in a distributed form contrary to
2-D implementation where they are stored by the host process (Sourbier et al., 2009). This
prevents a memory bottleneck for dense 3-D seismic acquisition. In addition, the fixed
domain decomposition prevents to search the receiver positions in the local distributed
wavefields when extracting the solutions at receivers. In fact, the search is done only once
and a global-local indices correspondence is performed once for all.

Conclusion

A 3-D parallel visco-acoustic frequency domain FWI software has been developed. Both
the direct and hybrid approaches have been implemented as seismic wave modeling engines
since both are based on the domain decomposition strategy. In 3-D, data and acquisition
information have to be appropriately managed in parallel due to related high memory
storage requirements.
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Chapter 7

Numerical Examples

In the previous chapters of the Inverse Problem part, I have introduced the theoretical and
practical implementation aspects of full waveform inversion. In this chapter, I am interested
in validating the FWI software with several synthetic applications on homogeneous and
complex models and of different problem sizes. The seismic wave modeling for these FWI
applications is based either on the direct (FWID) or hybrid solver (FWIH).

I first introduce the FWID applications, which have been extracted from the paper
Ben-Hadj-Ali et al. (2008), in order to show the expected high-resolution images which can
be obtained by FWI and highlight the efficiency of FWID on small to medium problem sizes.
Then, I present FWIH applications in order to study the convergence criterion, introduced
in the chapter 5 for the hybrid solver and studied for the seismic wave modeling, for the
seismic imaging problem.

7.1 FWID applications

In this section, I present several synthetic applications with different complexities in order
to validate FWID software and show expected FWI imaging results. The sections 7.1.1
to 7.1.4 are extracted from Ben-Hadj-Ali et al. (2008) with minor modifications.

7.1.1 3D full-waveform inversion in 2D configuration

We applied 3D and 2D FWI to a dip section of the overthrust model (Aminzadeh et al.,
1997) (Figure 7.1), discretized on a 801× 187 grid with a grid spacing h = 25 m. For the
3D application, the dip section of the overthrust model was duplicated 3 times in the y
direction leading to a 3D 801× 3× 187 finite-difference grid.

The 2D acquisition geometry consists of a line of 200 sources and receivers equally-spaced
on the surface. The corresponding 2.5D acquisition geometry consists of duplicating 3 times
the source and receiver lines in the y direction. The true model was augmented with a
250-m-thick layer on top of it and the source and receiver were deepened accordingly to
avoid having sources and receivers just below the PML-model interface. Velocities in this
layer are vertically homogeneous and are equal to that on the surface of the original model.
We observed strong instabilities during FWI in the near surface velocities when this layer
is not added to the model (Figure 1c in Ravaut et al. (2004)). These instabilities can also
be removed by setting the true velocities in the first hundred meters of the starting model
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without augmenting the model with an artificial layer (Operto et al., 2008).
The starting model for inversion is obtained by smoothing the true velocity model with

a Gaussian function of horizontal and vertical correlation lengths of 500 meters (Figure 7.1).
We inverted sequentially 7 frequencies ranging from 5 to 20 Hz. For each frequency,

we compute 40 iterations. The final velocity models inferred from 2D and 3D FWI are
shown in Figure 7.2. Some vertical profiles extracted from these models are compared
in Figures 7.3. They are very similar hence, providing a first validation of the 3D FWI
algorithm. The agreement between the final FWI models and the true model is also quite
good although we noticed some discrepancies between the true and reconstructed velocities
around a low velocity layer located at 0.7-1 km depth (Figure 7.3b). This discrepancy is not
observed when the first 100 meters of the true model are set in the starting model (Operto
et al., 2008). Some high-amplitude perturbations are still slightly underestimated mainly
due to an insufficient number of iterations (the profiles in Figure 7.3 can be compared with
those obtained from 2D FWI using 80 iterations per frequency in (Operto et al., 2008)).
These results also give some insights on the high spatial resolution which can be achieved
in the velocity models at relatively low frequencies (i.e., < 15 Hz) by FWI of global offset
data thanks to the continuous sampling of the wavenumber spectrum up to a maximum
wavenumber of 2/λ15Hz m−1 (λ15Hz denotes the wavelength corresponding to a frequency
of 15 Hz).
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7.1. FWID applications

Figure 7.1: Imaging of a dip section of the
overthrust model: a) True velocity model. b)
Starting velocity model.

Figure 7.2: Imaging of a dip section of the
overthrust model: (a) Final velocity model
from 2D FWI. (b) Final velocity model from
3D FWI.

Figure 7.3: Imaging of a dip section of the
overthrust model: Comparison between ver-
tical profiles extracted from the true (blue
line), the starting (black line) and the 2D
and 3D FWI models (red and green lines
respectively). The two series of profile are
located at 4.5 and 13.5 km of distance. The
2D and 3D FWI profiles are almost identical.
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7.1.2 Inclusion models

In this section, we present the application of 3D FWI for simple velocity models composed
of homogeneous background with one and two inclusions. The models are discretized on
a small 31 × 31 × 31 grid with 50 m and 250 m cubic cells respectively. The velocity in
the background medium is 4000 m/s. The inverted frequencies are 3.72, 6.07, 10.00 and
16.27 Hz and 1.75, 2.35, 3.00 and 3.75 Hz for the one-inclusion and two-inclusion models
respectively. The criteria to select the inverted frequencies was to remove the wavenumber
redundancy in the model space (Sirgue and Pratt, 2004). The frequencies were inferred
from the relationship between wavenumber, frequency and aperture angle provided by the
theory of diffraction tomography. This relation leads to an increasing frequency interval
with frequency due to the linear relation between wavenumber and frequency (Sirgue and
Pratt, 2004). One hundred sources (10x10) and 36 receivers (6x6) are uniformly distributed
on the top and bottom sides of the 3D model respectively. Source and receiver spacing
are 150 m and 250 m respectively for the single-inclusion model and 750 m and 1250 m
respectively for the two-inclusion model.

We first consider the case of a velocity model with one inclusion in the homogeneous
background. The velocity in the inclusion is 3500 m/s (Figure 7.4). The inclusion is centered
on the 3D grid. The 4 frequencies were inverted successively. Some horizontal and vertical
sections of the inclusion are shown in Figure 7.4. Note the vertically-elongated shape of
the inclusion in the vertical cross-section section and the symmetric shape of the inclusion
in the horizontal slice. The vertically-elongated shape of the inclusion is due to the fact
the top and bottom parts of the inclusion are mainly sampled by downgoing transmitted
wave paths (i.e., forward-scattered wavepaths) which have a limited resolution power while
the shape of the inclusion in a horizontal plane is mainly controlled by reflections (i.e.,
backward-scattered wavepaths) associated with shots and receivers located near a same face
of the 3D model. This relationship between the aperture illumination and the resolution of
the imaging is also illustrated on the two profiles extracted from a vertical and horizontal
section running through the inclusion. The vertical profile exhibits a clear deficit of high
wavenumbers due to transmission-like reconstruction while the horizontal profile exhibits
slight deficit of small wavenumbers due to reflection-like reconstruction. The symmetry
of the image of the inclusion in the horizontal plane which results from the symmetry of
the inclusion with respect to the acquisition geometry is an additional validation of the 3D
FWI algorithm.

The second example contains two spherical inclusions (3500 m/s and 4500 m/s) cor-
responding to a positive and negative perturbations in the homogeneous background
(Figure 7.5(a)). The center of the two inclusions lies on the same vertical plane in the
middle of the grid. The aim of this test is to verify that the 3D inversion handles properly
multiple scattering occurring between the two inclusions. The starting model, the frequen-
cies involved in the inversion and the acquisition geometry are the same as those of the
previous example. For this case study, the 4 frequencies were inverted both successively
and simultaneously (Figures 7.5(b-e) and 7.5(f)). In both cases, the inversion successfully
imaged the two inclusions.
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Figure 7.4: Imaging of 1 inclusion by 3D FWI.
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tions of the true inclusion. b) vertical (left)
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sion after inversion of the 3.72-Hz frequency.
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16.27-Hz frequency. d) vertical (left) and hor-
izontal (right) profiles extracted from models
shown in (a) (black lines) and (c) (red lines).
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7.1.3 Inclusion+interface velocity model

A more realistic example consists of a velocity-gradient layer above a homogeneous layer.
An high-velocity inclusion corresponding to a velocity perturbation of more than 1km/s
was incorporated into the velocity-gradient layer (Figure 7.6). The minimum and maximum
velocities are 3.8 and 6.0 km/s respectively. It is discretized on a 100× 100× 40 grid with
a grid spacing h = 62.5 m, which corresponds to a physical domain of 6.25 km x 6.25
km x 2.5 km. The grid spacing h was kept constant over the successive mono-frequency
inversions and was set according to the maximum inverted frequency. The starting model
for inversion is the velocity-gradient layer extended down to the bottom of the model
(Figure 7.6). The acquisition geometry consists of two regular grids of 17×17 = 289 sources
and receivers deployed on the surface. The receiver grid is shifted with respect to the
shot one such that each receiver is midway between 4 adjacent shots. This source-receiver
configuration was chosen to avoid recording high-amplitude zero-offset data which degrades
the inversion conditioning. The distance between either two sources or receivers is 312.5
m. We sequentially inverted 5 frequencies ranging from 1.76 and 12.15 Hz. We computed
20 iterations per frequency. The final FWI velocity model is shown in Figure 7.7(a).
A vertical profile across the inclusion extracted from the final FWI perturbation model
(i.e., the difference between the final FWI model and the starting model) is shown in
Figure 7.7(b). It is compared with that extracted from the true perturbation model after
low-pass filtering at the theoretical resolution of FWI at 12 Hz. The bottom layer is well
recovered thanks to the large offset coverage allowing to quantitatively image a broad range
of the layer wavelengths. The shape of the inclusion is incompletely recovered with respect
to the expected resolution of the imaging at 12 Hz although the velocity amplitude in the
inclusion is fully recovered (Figure 7.7(b-c)). The spectra of the two profiles reveals that
the amplitudes of the low wavenumbers were incompletely recovered. This is probably due
to an insufficient number of iterations as suggested by the plot of the objective function as
a function of iteration number (Figure 7.7(c)). Moreover, some discrepancies in the shape
of the two spectra of Figure 7.7(c) for wavenumbers higher than 0.0017 m−1 suggest that
the inversion may have converged towards a local minimum. This may have been caused
by the high-amplitudes of the model perturbations and the related complex interactions
between waves multi-scattered between the bottom of the inclusion and the top of the
layer which make the inverse problem more non linear. We speculate that simultaneous
inversion of multiple frequencies following the multi scale approach of Bunks et al. (1995)
may help to manage this non linearity. Qualitative inspection of the vertical profiles also
reveals a slight deficit of small (vertical) wavenumbers in the image of the inclusion and of
the bottom layer (this is suggested by the negative velocity perturbations with respect to
the true model). This deficit is again explained by the surface acquisition geometry which
illuminates the vertical components of the wavenumber vector with reflections only.
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7.1. FWID applications

Figure 7.6: Imaging of the inclusion/interface model. (right) True velocity model. (left)
Starting velocity model for FWI.
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Figure 7.7: Imaging of the inclusion/interface
model: (a) Final FWI velocity model. (b)
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from the true perturbation velocity model
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ical resolution of 12.15-Hz FWI (red) and
from the final FWI perturbation velocity
model. (c) Spectral amplitudes as a func-
tion of wavenumber of the profiles shown in
b). These spectra suggest that wavenumbers
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7.1.4 SEG/EAGE overthrust model

The 3-D SEG/EAGE overthrust model is a constant density acoustic model covering an
area of 20 km x 20 km x 4.65 km (Aminzadeh et al., 1997). It is discretized with 25 m
cubic cells, representing an uniform mesh of 801 × 801 × 187 nodes. The minimum and
maximum velocities in the overthrust model are 2.2 and 6.0 km/s respectively (Figure 7.9).

Figure 7.9: The 3D SEG/EAGE overthrust model.

7.1.4.1 Overthrust model: channel target

Due to limited available computer resources, our first application was restricted to a small
section of the overthrust model centered on a channel. The maximum frequency involved
in the inversion was 15 Hz. A horizontal slice and a vertical section of the model are shown
in Figure 7.11. The model covers an area of 7. km x 8.75 km x 2.25 km and is discretized
with a grid spacing h = 50 m. This leads to a 141 × 176 × 46 grid. The minimum and
maximum velocities are 3.3 and 6.0 km/s respectively. The acquisition geometry consists of
two regular grids of 44x33 sources and receivers on the surface corresponding to a total of
1452 sources and receivers. The distance between either two sources or receivers is 200 m.
The receiver array is shifted according to the source array following the same geometry that
of the previous example. We sequentially inverted 5 frequencies ranging from 5 to 15 Hz.
For each frequency, we computed 7 iterations. The starting velocity model was obtained by
smoothing the true model with a wavenumber filter with a cut-off wavenumber of 1./500
m−1 (Figure 7.11). The final FWI model provides a low-pass version of the true model
(Figure 7.12). In order to assess the accuracy of the FWI, we low-pass filter the true model
in the time domain with a cut-off frequency of 15 Hz to roughly mimic the exact velocity
model that would have been inferred by FWI (Figure 7.13). Qualitative comparison between
the final FWI velocity model and the low-pass filtered true model shows a good agreement
between the two models. Comparison between a vertical profile extracted from the starting
model, the low-pass true velocity model and the final FWI model is shown in Figure 7.14.
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The agreement is reasonably good with again a slight deficit of small wavenumbers in the
FWI profile due to the surface-to-surface illumination. We note also an underestimation of
velocities in the deep part of the model (see the high-velocity layer above 2 km depth in
Figure 7.14). They may be due to an insufficient number of iterations. Indeed, the deep
structures are mainly constrained by later-arriving reflections of smaller amplitude recorded
at larger offsets. Misfit reduction may be slower for these arrivals since the value of the
objective function is dominated by the residuals of the high-amplitude shallow arrivals
during the first iterations. The weighting operator in the data space corresponding to an
amplitude gain with offset, eq. (5.25) may help to speed up the reduction of the long-offset
residuals at the partial expense of the short-offset ones during late iterations. However,
this strategy requires to check that short-offset residuals were sufficiently reduced to avoid
propagating errors associated with inaccurate shallow structures deeper in the model. This
detailed tuning of 3D FWI still requires further investigations.

To perform this application, we used 60 MPI processes distributed over 15 dual-core
biprocessor nodes. Each MPI process used 1.5 Gbytes of RAM (see Table 7.1). Seven
iterations of the inversion of one frequency took approximately 45 hours. Table 7.1 gathers
information related to running time and memory requirement for LU factorization, multi-
shot resolutions (both tasks being devoted to the forward problem), gradient and diagonal
Hessian computation. Running time for the solution phase is very small (0.9 s per source)
and illustrates the main advantage of frequency-domain modeling methods based on direct
solvers for tomographic applications involving few thousands of source. Computation of the
gradient is also negligible in the frequency domain (4 s) thanks to the summation without
disk swapping over a very compact volume of data limited to few frequency components.
Moreover, increasing the number of cores in the inversion would have led to a significant
reduction of the computational time at the partial expense of memory saving due to memory
overhead during parallel factorization (Operto et al., 2007).
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Table 7.1: Computational cost of the imaging of the overthrust model (channel)

MEMFACTOALL
(GBytes) 67.

MEMFACTOPROC
(GBytes) 1.5

TIMEFACTO (s) 510.
TIMESOLV EALL

(s) 1270.
TIMESOLV ESOURCE

(s) 0.9
TIMEGRADIENT (s) 4.
TIMEdiagHESSIANa

(s) 3093.
TIMEITERATION (s) 18865.

MEMFACTOALL
– Total memory allocated during factorization.

MEMFACTOPROC
– Average allocated memory per working processor during factorization.

TIMEFACTO – Elapsed time for factorization.
TIMESOLV EALL

– Total elapsed time for multi-shot resolution.
TIMESOLV ESOURCE

– Elapsed time for resolution for 1 source.
TIMEGRADIENT – Elapsed time for gradient computation.
TIMEdiagHESSIANa

– Elapsed time for diagonal Hessian computation.
TIMEITERATION – Average elapsed time for processing one iteration.

Figure 7.10: Imaging of a channel in the
overthrust model: true velocity model. a)
Cross-section at x=4 km. b) Horizontal slice
at z=1.5 km.

Figure 7.11: Imaging of a channel in the
overthrust model: starting velocity model.
a) Cross-section at X=4 km. b) Horizontal
slice at Z=1.5 km.
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Figure 7.12: Imaging of a channel in the
overthrust model: FWI velocity model after
successive inversion of the 5 frequencies. a)
Cross-section section at x=4 km. b) Horizon-
tal slice at z=1.5 km.

Figure 7.13: Imaging of a channel in the
overthrust model: low-pass filtered true ve-
locity model. a) Cross-section at X=4 km.
b) Horizontal slice at Z=1.5 km.

Figure 7.14: Imaging of a channel in the overthrust model: comparison between vertical
profiles extracted from the starting model (red dashed line), the low-pass filtered true model
(blue solid line) and the final FWI velocity model (black dot line). The profile is located at
(X = 3.5 km, Y = 4.4 km).
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7.1.4.2 Overthrust model: thrust target

We now consider the imaging of a significant target of the overthrust model which incorpo-
rates the main thrusts of the model (Figure 7.15). The minimum and maximum velocities
are respectively 2.2 and 6.0 km/s. The model covers an area of 13.425 km x 13.425 km x
4.65 km.

The acquisition geometry consists of two coincident 43× 43 = 1849 grid of sources and
receivers deployed on the surface. The distance between either two sources or receivers is
300 m. A receiver spacing of 300 meters is representative of the spacing between 2 adjacent
nodes in a dense 3D wide-azimuth node survey (Clarke et al., 2007). We used the same
spacing between 2 adjacent shots and receivers although a more representative shot survey
could have been designed by using smaller shot and line intervals in the dipline and crossline
directions respectively. The increased number of shots should not lead to a dramatic increase
of the computational time for the gradient estimation since the residuals recorded at the
shot positions (by virtue of shot-receiver reciprocity) can be propagated in one go for each
receiver. The extra computational cost caused by denser shot survey would have resulted
from the building and storage of denser residual sources (term δd∗ in eq. (5.25)) and from
the more expensive backward/forward substitutions providing the solutions of A−1Cdδd

∗.
On contrary, the CPU time required to compute the diagonal Hessian would dramatically
increase since it requires a forward simulation per non redundant shot and receiver positions.
However, a good approximation of the diagonal Hessian may be computed on a coarser shot
grid with a shot interval of the same order that of the receiver one (Operto et al., 2006b).
We sequentially inverted 3 frequencies: 3.5, 5 and 7 Hz. We computed 10 iterations per
frequency. For this application, we adapted the grid interval to the inverted frequency. Grid
intervals were h = 150 m, 100 m and 75 m for the frequencies 3.5, 5 and 7 Hz respectively.
Note that the source and receiver positions were chosen such that they coincide with the
position of the nodes of the FD grids associated with the 3 inverted frequencies. This
allowed us to bypass the problem of accurate implementation of point sources in a coarse
FD grid which is a critical issue of 3D frequency-domain FWI when the grid interval is
adapted to the frequency (Hicks, 2002).

These discretizations lead respectively to grids of dimension 90× 90× 32, 135× 135× 47
and 180× 180× 63. The starting velocity model was obtained by smoothing the true model
with a 3D Gaussian function with a correlation length of 500 meters in the 3 directions
(Figure 7.16). The FWI velocity models after inversion of the 3.5-Hz, 5-Hz and 7-Hz
frequencies are shown in Figures 7.17, 7.18 and 7.19 respectively. One can note a square
pattern superimposed on the horizontal and vertical slices of the FWI velocity models
obtained close of inversions of frequencies 5 and 7 Hz (Figures 7.18 and 7.19). Size of
the square matches the shot and receiver spacing suggesting that it corresponds to the
footprint of the coarse acquisition geometry. This footprint increases from 5 to 7 Hz as the
model resolution increases. The acquisition footprint has no preferential orientation due to
the fact that both shots and receivers are uniformally deployed all over the surface with a
constant spacing in the dip and cross directions. Another illustration of the footprint of
the acquisition coarseness on 3D frequency-domain FWI was illustrated by Sirgue et al.
(2007a).

For this application, we run 32 processes distributed over 8 dual-core biprocessor nodes
(4 MPI processes/node) for the 150-m grid (frequency 3.5 Hz), 60 processes distributed over
20 dual-core biprocessor nodes (3 MPI processes/node) for the 100-m grid (frequency 5 Hz)
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and 90 processes distributed over 30 dual-core biprocessor nodes (3 MPI processes/node) for
the 75-m grid (frequency 7 Hz) respectively. Note that the number of process per dual-core
biprocessor node was decreased from 4 to 3 as the size of the problem increases in order to
increase the amount of shared memory assigned to each processor for large problems. This
allows optimization of the memory use at the partial expense of the running time since the
memory overhead decreases with the number of processes.

The 10 iterations took about 24 hours, 72 hours and 120 hours for the 3.5-Hz, the
5-Hz and the 7-Hz frequencies respectively. More detailed information are gathered in the
Table 7.2.

Figure 7.20 shows the convergence rate for each processed frequency. This convergence
rate can be compared with that shown in Figure 7a of Sirgue et al. (2007a) for the frequency
3.5-Hz keeping in mind that the whole overthrust model was imaged in Sirgue et al. (2007a).

The data fit is illustrated in the frequency domain for the 3.5-Hz, 5-Hz and 7-Hz
frequencies for 2 shots in Figures 7.21 and 7.22 respectively. We compare the spectral
amplitude and the phase of the monochromatic wavefields at the receiver positions computed
in the true velocity model and in the FWI models at the first and last iterations of the three
mono-frequency inversions. One shot is located at the upper-left corner of the receiver plane
(Figure 7.21) while the second shot is on the middle of the receiver array (Figure 7.22). The
misfit reduction between the first and last iterations is more obvious at 3.5 Hz illustrating
slower convergence as the frequency increases (Figure 7.20). We note also that this misfit
reduction is more effective for the shot located in the middle of the receiver array illustrating
again the difficulty to match the lower-amplitude arrivals recorded at larger offsets. As
for the channel case study, the objective function is less sensitive to the residuals of these
low-amplitude arrivals and more iterations would have been required to cancel them.

Figure 7.15: Imaging of the thrust system in
the overthrust model: true velocity model.
a) Cross-section at X=3.3 km. b) Horizontal
slice at Z=1.5 km.

Figure 7.16: Imaging of the thrust system
in the overthrust model: starting velocity
model. a) Cross-section at X=3.3 km. b)
Horizontal slice at Z=1.5 km.
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Table 7.2: Computational cost of the imaging of the overthrust model (thrust system)

FREQUENCY (Hz) 3.5 5 7
GRID 90× 90× 32 135× 135× 47 180× 180× 63
MEMFACTOALL

(GBytes) 16. 64. 175.
MEMFACTOPROC

(GBytes) 0.4 1.1 2.3
TIMEFACTO (s) 72. 340. 1850.
TIMESOLV EALL

(s) 310. 995. 3450.
TIMESOLV ESOURCE

(s) 0.165 0.535 1.795
TIMEGRADIENT (s) 0.65 1.44 35.
TIMEdiagHESSIANa

(s) 1999. 3432. 4000.
TIMEITERATION (s) 2940. 13650. 44870.

FREQUENCY – Inverted frequency
GRID – Dimension of the 3D FD grid
MEMFACTOALL

– Total memory allocated during factorization
MEMFACTOPROC

– Average allocated memory per working processor during factorization
TIMEFACTO – Elapsed time for factorization
TIMESOLV EALL

– Total elapsed time for multi-shot resolution
TIMESOLV ESOURCE

– Elapsed time for resolution of 1 source
TIMEGRADIENT – Elapsed time for gradient computation
TIMEdiagHESSIANa

– Elapsed time for diagonal Hessian computation
TIMEITERATION – Average elapsed time for processing one iteration

Figure 7.17: Imaging of the thrust system in
the overthrust model: 3.5-Hz FWI velocity
model. a) Cross-section at X=3.3 km. b)
Horizontal slice at Z=1.5 km.

Figure 7.18: Imaging of the thrust system
in the overthrust model: 5-Hz FWI velocity
model. a) Cross-section at X=3.3 km. b)
Horizontal slice at Z=1.5 km.
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Figure 7.19: Imaging of the thrust system
in the overthrust model: 7-Hz FWI velocity
model. a) Cross-section at X=3.3 km. b)
Horizontal slice at Z=1.5 km.
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Figure 7.20: Imaging of the thrust system
in the overthrust model: objective function
versus iteration number for the 3.5-Hz, 5-Hz
and 7-Hz frequencies.
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Figure 7.21: Imaging of the thrust system in the overthrust model: a) amplitude (left) and
phase (right) of the 3.5-Hz wavefield computed in the true velocity model at the receiver
positions. The horizontal and vertical axis label the receiver number in the dip and cross
directions respectively. The source is located in the upper-left corner of the receiver array.
b) same than (a) but the wavefields were computed in the starting model of the 3.5-Hz
inversion. c) Difference between maps shown in a) and b). d) Same than (a) but the
wavefields were computed in the final model of the 3.5-Hz inversion. e) Difference between
maps shown in (a) and (d). (f-j): same as for (a-e) but for the 5-Hz frequency. (k-o): same
as for (a-e) but for the 7-Hz frequency.
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Figure 7.22: Imaging of the thrust system in the overthrust model: Same as for Figure 7.21
but for a source located in the middle of the receiver array.
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7.2 FWIH applications

Although the accuracy analysis of the hybrid solver has shown that the optimal ε value is
10−3 for the seismic wave modeling, many precision values of ε were tested (10−3 ≤ ε ≤ 10−1)
for the FWIH approach to investigate this statement for imaging.

7.2.1 Single anomaly model

Aim of the first example is to image a single sphere anomaly in a homogeneous background
model. The model is discretized on a small 31× 31× 31 uniform grid with a grid interval of
50 m. The velocity in the background medium is 4000 m/s. The velocity in the anomaly
is 3500 m/s. The anomaly is centered on the 3-D grid. Sources and receivers (6× 6) are
uniformly distributed on the top and bottom, left and right, front and back sides of the
3-D model respectively. Source and receiver spacing is 250 m. The inverted frequencies
are 3.72, 6.07, 10.00 and 16.27 Hz. The 4 frequencies are inverted successively. For
FWIH simulations, the full domain is splitted into 8 equal subdomains. Two data sets
are computed in the true model with the direct and hybrid solver (10−3 <= ε <= 10−1)
respectively. Both data sets were used to perform inversion using the FWID and FWIH
algorithms in order to verify the consistency between the solutions computed with the direct
and hybrid solver. The results are gathered in the Figures 7.23 to 7.27. The figures show
that the precision value ε = 10−1 is not sufficient and that imaging results are not acceptable
(Figure 7.24) while for ε ≤ 10−2 (Figure 7.25) the two approaches lead to approximately
the same results. This is encouraging in the meaning that this shows that the precision
criterion is less limiting in imaging than modeling problem (ε = 10−3). This statement
should be confirmed on more complex examples.
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Figure 7.23: Velocity anomaly imaged by
FWID in an inverse crime configuration.
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Figure 7.24: Velocity anomaly imaged by
FWIH (ε = 10−1) from data computed with
direct solver.
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Figure 7.25: Velocity anomaly imaged by
FWIH (ε = 10−2) from data computed with
direct solver.
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Figure 7.26: Velocity anomaly imaged by
FWIH (ε = 10−3) from data computed with
direct solver.
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Figure 7.27: Velocity anomaly imaged by FWIH (ε = 10−3) in an inverse crime configuration.
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7.2.2 SEG/EAGE overthrust velocity model - Channel target

Aim of the second example is to image a complex velocity model which consists in a
small target of the 3-D SEG/EAGE Overthrust velocity model focusing on the channel. A
horizontal slice and a vertical section of the target are shown in Figure 7.28. The model
covers an area of 4.95 × 4.95 × 2.25 km3. It is discretized on a 100 × 100 × 46 uniform
grid with an interval of 50 m corresponding to 46 × 104 unknowns. The minimum and
maximum velocities are 3.3 and 6.0 km/s respectively. The acquisition geometry consists
of two regular grids of (89× 89) sources and (12× 12) receivers on the surface. Source and
receiver spacing are 50 m and 400 m respectively. The starting velocity model is obtained
by smoothing the true model with a wavenumber filter with a cut-off wavenumber of 1/500
m−1 (Figure 7.29). I sequentially invert 5 frequencies ranging from 5 to 14 Hz. For each
frequency, I compute 7 iterations. I use 32 processes for both FWID and FWIH. I compare
results obtained by FWID and FWIH applied data which are computed in the true model
either with the direct or hybrid solver (10−3 ≤ ε ≤ 10−2).

Results are shown in the Figures 7.30 to 7.33 respectively. Models obtained with FWID
and FWIH are almost identical providing an additional validation of the FWIH code
and confirming that a precision ε = 10−2 is sufficient to get reliable results. The main
computational cost indicators are gathered in Table 7.3. The FWIH code requires 30 %
less memory than the FWID one. The limited memory saving provided by FWIH results
from the small size of the computational grid (46 × 104) and from the limited number
of processors (32). The more the size of the model and the number of processor will
increase, the more the memory saving provided by FWIH will be significant according
to the theoretical memory complexities provided in Table 3.2. Time to perform FWIH
simulations is 3.7 higher that required by FWID. This results from the cost of the iterative
solver used in the hybrid method when multiple-shot simulations are performed. Given that
the scalability of the iterative solver is better than that of the LU factorization, the time
requirement of FWIH should get closer to that of FWID when the size of the computational
domain and the number of processors will increase for a given number of sources.

Table 7.3: Computational resources requirements of FWID and FWIH.

Mem (Gb) T f(s) T s(s) T total(s)

Direct solver 19.2 191 0.5 24700
Hybrid solver 13.5 17 13 91000

Mem – Total allocated memory
T f – Average elapsed time for factorization
T s – Elapsed time for the solution step
T total – Average elapsed time to invert one frequency
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Figure 7.28: Channel velocity model: a)
Cross-section at x=2.45 km. b) Horizontal
slice at z=1.45 km.
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Figure 7.29: Starting channel model for FWI.
a) Cross-section at X=2.45 km. b) Horizon-
tal slice at Z=1.45 km.
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Figure 7.30: Velocity model imaged by FWID in an inverse crime configuration after a
successive inversion of the 5 frequencies. a) Cross-section at X=2.45 km. b) Horizontal
slice at Z=1.45 km.
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Figure 7.31: Velocity model imaged by FWIH
(ε = 10−2) in an inverse crime configuration
after successive inversion of the 5 frequencies.
a) Cross-section at X=2.45 km. b) Horizon-
tal slice at Z=1.45 km.
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Figure 7.32: Velocity model imaged by FWIH
(ε = 10−2) from data computed with direct
solver after successive inversion of the 5 fre-
quencies. a) Cross-section at X=2.45 km. b)
Horizontal slice at Z=1.45 km.
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Figure 7.33: Velocity model imaged by FWIH
(ε = 10−3) in an inverse crime configuration
after successive inversion of the 5 frequencies.
a) Cross-section at X=2.45 km. b) Horizon-
tal slice at Z=1.45 km.

0

1

2D
ep

th
 (

km
)

0 1 2 3 4
Inline (km)

3300
3800
4300
4800
5300
5800

m
/s

0

1

2

3

4

C
ro

ss
lin

e 
(k

m
)

0 1 2 3 4
Inline (km)

3300

3800

4300

4800

5300

5800

m
/s

Figure 7.34: Velocity model imaged by FWIH
(ε = 10−3) from data computed with direct
solver after successive inversion of the 5 fre-
quencies. a) Cross-section at X=2.45 km. b)
Horizontal slice at Z=1.45 km.
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Conclusion

In this chapter, I have validated the FWI software, based either on direct (FWID) or
hybrid (FWIH) solver, on homogeneous and complex media. FWID is very efficient on
medium size problems thanks to multi-RHS resolution but suffers from LU decomposition
time complexity and memory storage requirements. FWIH helps to overcome memory
burden but is less efficient with regards to multi-RHS resolution. Hopefully, the convergence
criterion is higher for the imaging problem (ε = 10−2) than the seismic wave modeling
(ε = 10−3), which mitigates the computational CPU time.
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Part III

Joint Simultaneous-shot & Phase
Encoding techniques: an innovative

strategy to boost FWI ?
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Chapter 8

Simultaneous-shot & Phase Encoding
strategy

This chapter is a paper in preparation which will be submitted to the journal “Geophysics”.

Because 3-D prestack depth imaging methods such as prestack depth migration and full
waveform inversion (FWI) are computationally expensive, the simultaneous-shot technique
(Capdeville et al., 2005) can provide an interesting tradeoff between computational efficiency
and imaging accuracy. Taking advantage of the linear relationship between the seismic
wavefield and the source, the simultaneous-shot technique consists of assembling individual
sources to mitigate the number of seismic wave simulations performed during the imaging.
The computational cost of one migration or FWI iteration is reduced proportionally to
the number of sources gathered in each shot assemblage or super-shot. However, the
imaging is altered by artifacts associated with the interferences between the individual
sources of a given super-shot, that may require additional iterations of the inversion before
convergence towards an acceptable model. These artifacts can be reduced by applying a
specific phase code to each source before the assemblage of the super-shot. This technique,
called phase encoding (PE) (Morton and Ober, 1998; Jing et al., 2000; Romero et al.,
2000), was originally proposed for prestack migration. Romero et al. (2000) have discussed
several frequency-dependant and frequency-independent phase encodings and proposed
two main approaches for prestack shot-record migration: 1) multiple shots per migration,
versus, 2) multiple migrations of all the shots. The first approach considers assemblages
of phase-coded shots and proceeds migration with these assemblages instead of the single
shots. The second approach considers all the phase-coded shots in one assemblage, proceeds
many migrations with the single assemblage and stacks all the migration results. For
both approaches, phase encoding significantly reduces the computational cost and lead to
acceptable images. Liu et al. (2002) have proposed an accurate phase encoding scheme for
prestack plane-wave migration and validated their approach on the 2-D Marmousi velocity
model.

Since the imaging kernels of prestack migration and frequency domain FWI are basically
the same, the technique can be used in FWI algorithms without any particular modification.
In fact, the gradient of the objective function, which can be viewed as the imaging kernel
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of iterative inversion methods, is computed by cross-correlating the shot wavefield with
the back-propagated residuals wavefield, such as in migration algorithms based on the
wavefield-continuation imaging principle (Claerbout, 1985). Therefore, migration can be
performed with one iteration of inversion (Lailly, 1984).

Krebs et al. (2009) have studied the combination of simultaneous-shot and phase
encoding techniques on the time domain waveform inversion. They called their strategy
Encoded Simultaneous-Source Full Waveform Inversion (ESSFWI). They have demonstrated
the efficiency of such imaging strategy compared to the standard approach in waveform
inversion on 2D acoustic synthetic data inversions. They have investigated several issues
such as the sensitivity of this imaging strategy to the length of the code, starting model and
noise. They have concluded that this innovative imaging strategy is robust with regards
to noise and initial model and that short codes show greater efficiency which avoids the
simulation of longer seismograms than that of the conventional approach which would mean
a decrease in the computational efficiency.

We propose to analyze the joint simultaneous-shot and phase encoding strategy for
frequency domain FWI. The frequency domain FWI defines hierarchically a multi scale
imaging strategy since the iterative inversion process proceeds from the small frequencies
to the higher ones to inject higher wavenumbers in the model. The inversion is applied
sequentially to few discrete frequencies or groups of frequencies. Due to this hierarchical
inversion, different strategies for the application of the phase encoding can be viewed. In
the frequency domain in contrast with the time domain FWI, encoding simply consists
in applying a phase shift through a complex term multiplication. The encoding may
be regenerated without any restriction. Indeed, it may be regenerated at each iteration,
for each frequency or group of frequencies and even for each frequency in the group of
frequencies. In addition, several types of phase encodings can be compared. The random
phase encoding have shown to be the most efficient. As in Romero et al. (2000), we analyze
the two strategies of simultaneous-shot, i.e. partial or full source assembling. We assess the
performances of the method either when only a limited number of sources are assembled
within several super-shots (Ben-Hadj-Ali et al., 2009a) or when all the sources are assembled
to form one single super-shot (Ben-Hadj-Ali et al., 2009b). The two approaches show very
good efficacy when applied to noise-free data. However, the second strategy is very sensitive
to noise.

In this paper, we first readdress the fundamental theory of simultaneous-shot and
phase encoding techniques. We present the partial and full strategies of simultaneous-shot
approach. We also discuss the importance of the regeneration of the encodings. Then, we
quantify the performances of this imaging strategy based on realistic synthetic case studies
using the SEG/EAGE overthrust model. Furthermore, we analyze the impact of randomly
distributed noise.

8.1 Method

8.1.1 Frequency-domain FWI

FWI is generally recast as an iterative local optimization problem based on the minimization
of the least-squares objective function (Tarantola, 1984a; Pratt et al., 1998) given by,

Ck (m) =
(
do − dk

c (m)
) (

do − dk
c (m)

)∗
(8.1)

116



8.1. Method

where m is the model parameter, do the recorded/observed data and dk
c (m) the pre-

dicted/computed data at iteration k. The model perturbation, based on the second-order
approximation of the objective function and a preconditioned gradient method (Ben-Hadj-
Ali et al., 2008), is given by,

δmk = −αkGm

(
diagHk

a + γkId
)−1

Gk (8.2)

where diagHk
a is the diagonal of the approximate (Pratt et al., 1998) or pseudo Hessian (Shin

et al., 2001) used as a preconditioning of the gradient, Gm is a smoothing regularization
operator, Gk is the gradient, Id is the identity matrix, αk is the step length and γk is a
damping/prewhitening factor that prevents numerical instabilities.

The gradient can be efficiently computed by the adjoint-state method (Plessix, 2006). In
the frequency domain, the contribution of one shot to the gradient is given by the product of
the incident wavefield emitted by the shot with the backpropagated (i.e., conjugate) residuals
wavefield and with a sparse radiation-pattern matrix W, obtained by differentiating the
impedance matrix with respect to the model parameter where the gradient is estimated.
The gradient is simply formed by summing the contribution of all the shots, that gives,

Gk = −
∑

frequencies

∑
shots

P TWPR

= −
∑

frequencies

∑
shots

P TWA−1
(
do − dk

c

)∗
(8.3)

where P is the incident wavefield, PR the backpropagated residuals wavefield, A the
impedance matrix, the discrete forward modeling operator, Ap = s, and W the radiation
pattern matrix. T denotes transpose and ∗ conjugate.

8.1.2 Simultaneous-shot technique

The computational burden in FWI resulting from multi-source simulations can be mitigated
by assembling sources in a super-shot. The computational time saving during one FWI
iteration is, ideally, proportional to the number of sources assembled into the super-shot
(Equation 8.4). However, this shot assemblage introduces artifacts in the gradient and
Hessian estimations, that result from cross-talk effects between different sources of a super-
shot. Therefore, cross-talks may induce to iterate more and densify frequency sampling in
order to improve the wavenumber redundancy and make the inversion process more robust.
The expected speed up is defined as

Speed up =
Computation time without source assembling

Computation time with source assembling

=
NS N its

S N f
S

NS−S N its
S−S N f

S−S

. (8.4)

where NS, N its
S and N f

S and NS−S, N its
S−S and N f

S−S are the number of the sources, iterations
and frequencies for the single source and simultaneous-shot strategies respectively.

We illustrate our purpose with the gradient G of a super-shot S composed of 2 sources
S1 and S2. R1 and R2 are the backpropagated residual wavefields associated with sources
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Chapter 8. Simultaneous-shot & Phase Encoding strategy

S1 and S2, respectively (Figure 8.1). Note that the same reasoning could apply for the
Hessian. The gradient can be schematically written as

G = SWR∗

= [S1WR∗
1 + S2WR∗

2] + [S1WR∗
2 + S2WR∗

1] (8.5)

where (S = S1 + S2; R = R1 + R2) in virtue of the superposition principle.

The first bracketed term corresponds to the standard gradient formed by stacking
the contribution of each individual shot while the second term corresponds to cross-
talk interferences between sources S1 and S2. This extra term alters the imaging result.
Minimization of related artifacts is achieved by the so-called phase encoding (PE) technique.

8.1.3 Phase encoding technique for frequency domain FWI

Encoding sources with an arbitrary weight when added into the same super-shot can reduce
artifacts coming from interferences. Encoding weights a1 and a2 will be expressed with a
phase term such that |ai| = | exp(ιφi)| = 1; i = 1, 2 and (S = a1S1 +a2S2; R = a1R1 +a2R2).
Equation (8.5) becomes

G = [S1WR∗
1 + S2WR∗

2] + [a1a
∗
2S1WR∗

2 + a∗1a2S2WR∗
1] (8.6)

One may notice that these phase terms act only on the cross-talk terms (Figure 8.1) and
the PE strategy can minimize the second bracketed term in equation (8.6) through judicious
choice of phases φi. Several phase encodings have been proposed such as deterministic
PE (Jing et al., 2000) and random PE (Morton and Ober, 1998; Romero et al., 2000).
Random PE (RPE) generates random phases in the interval [0, 2π]. Deterministic PE
(DPE) assumes that sources in the super-shot are very close and expresses the phase φk in
function of the previous phases φi; i = 1, k − 1 as given by the following equation,

tan(φk) = −
∑k−1

i=1 cos(φi)∑k−1
i=1 sin(φi)

(8.7)

An alternative PE (PPE) has been tested as well and consists in taking equidistant phases
in the interval [0, 2π], i.e. φi = 2(i − 1)π/N where N equals the number of sources in a
super-shot.

In contrast to the time domain FWI where the phase encoding is applied through an
addition of time samples to the seismograms, the encoding is performed simply through
a multiplication with a complex term ai = exp(ιφi). Therefore, neither the generation
nor the application of phase encodings implies significant extra computation cost in the
frequency domain. In the hierarchical frequency domain FWI strategy where only few
discrete frequencies are inverted, the phases codes may be regenerated for each frequency
or group of frequencies and even for each frequency in the group of frequencies and at
each iteration of the iterative inversion process. The simultaneous inversion of a group of
frequencies have shown to be more robust than the sequential strategy if noise is involved
or for elastic FWI (Brossier et al., 2009a).
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8.2. Numerical Examples

Figure 8.1: Source Assembling & Phase Encoding strategy.

8.2 Numerical Examples

In all the numerical examples, the same code, based on the hybrid solver, is used to either
compute observed data (forward problem) or to invert them (inverse problem). Nevertheless,
it is not an inverse crime exercise. In fact, data are computed at a GMRES convergence
criterion equal to 10−3 while they are inverted at 10−2 (Sourbier et al., 2008a).

8.2.1 2-D overthrust model case study

In this section, we analyze the behavior of source assembling with/without phase encoding
techniques and quantify their performances. Two-dimensional experiments can be designed
considering 2.5-D velocity models (laterally invariant in the y-direction) and an infinite line
shot in the y direction (Ben-Hadj-Ali et al., 2008) in order to simplify our image analysis
although we consider 3-D numerical simulations. We apply 3-D FWI to a dip section
extracted from the SEG/EAGE overthrust velocity model (Figure 8.2(a)), discretized on a
801× 187 grid with a grid spacing h = 25 m. For the 3-D application, the dip section of
the overthrust model is duplicated 3 times in the y direction leading to a 3-D 801× 3× 187
finite-difference grid. PML absorbing boundary conditions are set on the 4 edges of the 2-D
model while periodic conditions are implemented in the y-direction to mimic an infinite
medium. The starting model for inversion is obtained by smoothing the true velocity
model with a Gaussian function of horizontal and vertical correlation lengths of 500 meters
(Figure 8.2(b)). We invert sequentially 7 frequencies ranging from 3.5 to 20 Hz. The
sequential approach will be referred to as the sequential single-frequency strategy. For each
frequency, we compute 15 iterations. The 2-D acquisition geometry consists of a line of 199
sources and 200 receivers equally-spaced on the surface. The final FWI model obtained
without shot assembling is shown in Figure 8.2(c) as reference result.

8.2.1.1 Partial source assembling

First, twenty-five super-shots of 8 sources each are inverted. We build super-shots by
gathering either 8 near (cluster super-shot) or distant sources (coarse super-shot) (Figure 8.3).
We invert 15 iterations per frequency. The RPE encoding is regenerated at each iteration.
Computation time to regenerate codes is negligible compared to other computational tasks.
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Figure 8.2: 2-D overthrust model application. a) True velocity model. b) Starting velocity
model. c) Reference (considering separate sources) FWI velocity model (15 iterations per
frequency).

Figure 8.4 shows a comparison between obtained models if codes are regenerated at each
iteration or not. The regeneration of the encodings is necessary to significantly reduce
cross-talks and lead to good results.

Figure 8.3: Scheme of the Partial Source Assembling strategies: 4 sources per super-shot.

Results obtained with the cluster super-shot approach are outlined in Figure 8.5. The
FWI model obtained with shot assembling but without PE is shown in Figure 8.5(a). The
footprint (cross-talk artifacts) when considering super-shots is clearly visible especially in
the shallower part of the model whose imaging is more sensitive to coarse spacing between
sources. The FWI models obtained with the three PE strategies, i.e., RPE, DPE and
PPE, are shown in Figures 8.5(b-d) respectively. The three PE techniques succeed to
reduce the artifacts in the shallow part of the model. The RPE approach provides the best
overall image. This is further confirmed by the L2-norm between the FWI and the true
models (Table 8.1).

Results obtained with the coarse super-shot approach are outlined in Figure 8.6. The
FWI model obtained with shot assembling but without PE is shown in Figure 8.6(a). The
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Figure 8.4: 2-D overthrust model application. a) PE changes at each frequency. b) PE
changes at each iteration
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Figure 8.5: 2-D overthrust model application. FWI velocity model with cluster approach
(15 iterations per frequency): a) Super-shot no-PE. b) Super-shot & DPE. d) Super-shot
& RPE. e) Super-shot & PPE.

footprint (cross-talk artifacts) when considering super-shots is less important than with the
cluster approach. The FWI models obtained with the three PE strategies, i.e., RPE, DPE
and PPE, are shown in Figures 8.6(b-d) respectively. The three PE techniques succeed
to reduce the artifacts in the FWI model. The RPE approach provides the best overall
image. DPE gives the worst result since it violates the basic assumption that requires near
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Figure 8.6: 2-D overthrust model application. FWI velocity model with coarse approach
(15 iterations per frequency): a) Super-shot no-PE. b) Super-shot & DPE. d) Super-shot
& RPE. e) Super-shot & PPE.

sources in a super-shot.

With appropriate PE strategy, i.e. RPE, cluster super-shot approach (Figure 8.5(c))
gives a slightly better result than the coarse approach (Figure 8.6(c)), especially in the
shallow part of the model.

Super-shots simulations last nearly 8 times less than the simulation without shot
gathering. This is consistent with theory since 8 times less forward problems, which is the
most intensive part of the CPU time, have been performed. The results are gathered in
Table 8.2.

Table 8.1: Normalized L2-norm residuals (%) between different FWI and true models.

No-PE DPE RPE PPE

Without shot assembling 3.76 - - -
Cluster approach 5.01 4.66 4.47 4.93
Coarse approach 5.99 5.86 4.45 5.75
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8.2.1.2 Full source assembling

The same configuration in terms of acquisition and models than that of the previous
application is considered. However, all 199 sources are gathered in one super-shot. The
final FWI model obtained without PE is shown in Figure 8.7. The number of iterations per
frequency inversion was increased to one hundred. The inversion did not converge towards
an acceptable velocity model. This failure may be explained by two reasons: first, a super-
shot composed with closely-spaced sources is equivalent to a horizontal plane-wave source
in virtue of the Huygens principle, that prevents a sufficiently-broad aperture illumination
required to obtain well-resolved image of complex structures. Second, the cross-talk terms
are not efficiently mitigated if no PE is used.

The FWI model obtained for one super-shot and RPE is shown in Figure 8.8. Two
hundreds iterations per frequency inversion were performed. Phase encoding is regenerated
at each inversion iteration. The RPE significantly improved the final FWI model, although
some artifacts remain in the low velocity layer at 1 km depth in the right hand side of the
model. Figure 8.8(a) shows the FWI model after 50 iterations of the 7th (final) frequency
and after 200 iterations in 8.8(b). Comparison between the FWI models after 50 and 200
iterations of the 7th frequency shows how the FWI iterations, each of them is performed
with a new random phase encoding, help to reduce the cross-talk terms, in addition to the
stack of the encoded cross-talk terms performed during each inversion iteration.
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Figure 8.7: 2-D overthrust model application. FWI velocity model with source assembling
and without PE (100 iterations per frequency).

Then, we applied FWI to groups of frequencies ([3.54,4.76] , [7.20,9.64] , [13.30,16.97] ,
20.63 Hz), where a group defines a group of frequencies that are simultaneously inverted.
There is no overlap between successive groups. Only one super-shot with RPE was
considered and the random phase encoding was regenerated at each iteration and applied
to all the frequencies in the group. The final FWI model is illustrated in (Figure 8.9).
Figure 8.9(a) shows the FWI model after 50 iterations of the 7th (final) frequency and after
200 iterations in 8.9(b). The final model is similar to the FWI model obtained without
source assembling (Figure 8.2(c)) and closely matches the true model (Figure 8.2(a)).

The comparison between the FWI models of Figures 8.8(b) and 8.9(b) highlights the
significant effect of the simultaneous inversion of frequencies. Table 8.2 shows that the
model error is very close to that computed for the reference result obtained with single
source strategy, i.e without simultaneous-shot technique, and proves the good quality of
the obtained model.

In this application, we obtained a speed up of 10, where the speed up is the ratio
between the elapsed times required to perform FWI without and with source assembling
(Equation 8.4). Ideally, we should have reached a speed up of 15 according to the number of
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Figure 8.8: 2-D overthrust model application. FWI velocity model with source assembling
and RPE for the last-frequency inversion. The seven frequencies were inverted successively.
a) 50 iterations per frequency. b) 200 iterations per frequency.
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Figure 8.9: 2-D overthrust model application. FWI velocity model with source assembling
and RPE for the last-frequency-group inversion. Four frequency groups were inverted. a)
50 iterations per frequency. b) 200 iterations per frequency.

wavefield solutions to be computed (15 iterations and 199 sources versus 200 iterations and
1 super-shot) (Table 8.2). However, a significant amount of computations in our frequency
domain modeling method based on a hybrid direct-iterative solver (Sourbier et al., 2008a)
are independent of the number of shots. A better speed up should be obtained for modeling
methods, the computational cost of which linearly increases with the number of shots, such
as time domain methods or frequency domain methods based on iterative solver methods.

8.2.2 Noisy data in space

In this section, we introduce noise. The noise is randomly distributed. In the following
part, signal-to-noise (S/N) ratio is defined as

S/N =
PS

PN

(8.8)
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where PS is the signal power and PN is the noise power. The noise is added separately to
each frequency, thus it is a colored random noise since its power depends on the power of
frequency signal component. To illustrate the footprint of noise on the data, Figure 8.10
shows monochromatic data with or without noise. Three S/N ratios were respectively
considered: 10, 5 and 3.33. The different models obtained without source assembling
techniques when four groups of frequencies ([3.54,4.76] , [7.20,9.64] , [13.30,16.97] , 20.63
Hz) are shown in Figure 8.11 and considered as the reference results.
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Figure 8.10: 2-D overthrust model application. Frequency data maps. a) without noise. b)
S/N ratio=10. c) S/N ratio=5. d) S/N ratio=3.33.

8.2.2.1 Noise impact on full source assembling

The same configuration in terms of acquisition and models than that of the previous
application is considered. First, we examine the highest S/N ratio equal to 10. Figure 8.12(a)
shows the final inversion result. Compared to the result of the application without noise
(Figure 8.9(b)), noise significantly altered the final model. The main geological structures
are still well imaged, but channels at about 0.5 km and 2.5 km depth are strongly affected.
Since artifacts have mostly high frequency content, we apply the Gaussian smoothing,
with horizontal and vertical correlation lengths of 50 m obtained by trial and error, to the
gradient. The result is shown in Figure 8.13(a). We notice a slight improvement. The
channels at 0.5 km are better imaged.

We perform the same tests with S/N values equals to 5 and 3.33 in order to study the
evolution of the results with regards to the noise. At the intermediate S/N ratio equal to 5,
the final model is dramatically altered by the noise if gradient smoothing is not applied
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Figure 8.11: 2-D overthrust model application. FWI velocity model without source
assembling for the last-frequency-group inversion. Four frequency groups were inverted (15
iterations per frequency). a) S/N ratio=10. b) S/N ratio=5. c) S/N ratio=3.33.

(Figure 8.12(b)) and strong artifacts appear at the subsurface. On the other hand, the
result with gradient smoothing can be considered acceptable (Figure 8.13(b)). At the lowest
S/N ratio, the obtained model is dramatically altered by noise (Figure 8.12(c)), even if
regularization is applied (Figure 8.12(c)). It is clear from these examples that full source
assembling strategy is very sensitive to noise. The gradient smoothing is necessary to lead
to acceptable inversion results when data are noisy.

To further mitigate the footprint of the noise in the inversion, we now investigate two
additional parameters:
- the number of sources in the super-shot: if more sources are added into the super-shot,
data are densified and redundancy is strengthened but more cross-talks are introduced;
- the number of inverted frequencies: if frequencies are densified, the redundancy is
strengthened.

Impact of the number of sources in the super-shot For this sensitivity study, we
consider the intermediate S/N ratio. We compare the reference result obtained with
199 sources in the super-shot (Figure 8.14(b)) with those obtained with either 399 (Fig-
ure 8.14(a)) or 99 sources (Figure 8.14(c)). Figure 8.14 shows unambiguously that increasing
the number of the sources in the super-shot altered considerably the final model. More
sources in the super-shot add more cross-talks. The coupling between these cross-terms
and noise can be more important. On the other hand, decreasing the number of the sources
has lead to a result slightly worse than the reference one. Based on this study, we need to
be aware of the sensitivity in the presence of noise of full source assembling with regards to
the number of sources in the super-shot. Many sources in the super-shot may alter results.

126



8.2. Numerical Examples

0

1

2

3

4

D
ep

th
 (

km
)

0 2 4 6 8 10 12 14 16 18 20
Inline (km)

2000

3000

4000

5000

6000

m
/s

0

1

2

3

4

D
ep

th
 (

km
)

0 2 4 6 8 10 12 14 16 18 20
Inline (km)

2000

3000

4000

5000

6000

m
/s

0

1

2

3

4

D
ep

th
 (

km
)

0 2 4 6 8 10 12 14 16 18 20
Inline (km)

2000

3000

4000

5000

6000

m
/s

Figure 8.12: 2-D overthrust model application. FWI velocity model with full source
assembling and RPE for the last-frequency-group inversion. Four frequency groups were
inverted (200 iterations per frequency). a) S/N ratio=10. b) S/N ratio=5. c) S/N
ratio=3.33.
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Figure 8.13: 2-D overthrust model application. FWI velocity model with full source
assembling and RPE for the last-frequency-group inversion. Four frequency groups were
inverted (200 iterations per frequency). Smoothing is applied to the gradient. a) S/N
ratio=10. b) S/N ratio=5. c) S/N ratio=3.33.

Impact of the number of inverted frequencies We progressively add frequencies
in order to assess the behavior of the inversion (Figure 8.15). The number of inverted
frequencies ranges from 7 to 29 frequencies distributed in 4 groups. Nevertheless, the
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Figure 8.14: 2-D overthrust model application. FWI velocity model with full source
assembling and RPE for the last-frequency-group inversion. Four frequency groups were
inverted (200 iterations per frequency). S/N ratio=5. Smoothing is applied to the gradient.
a) 399 sources. a) 199 sources (Figure 10-b)). a) 99 sources.

bandwidths of the different groups of frequencies are approximately the same. The set of
simulations proves that the inversion results get better when we inject additional frequencies.
The model error shows that the quality of the obtained model is good (Table 8.2).

Nevertheless, the simulations are more computationally demanding since their cost is
proportional to the number of inverted frequencies. We have reached a speed up of 2.4
while theoretically we should have got a speed up of 3.6 (Table 8.2).

8.2.2.2 Noise impact on partial source assembling

Once the impact of noise was studied on full source assembling in the previous section, we
now assess the behavior of the partial source assembling. The three S/N ratios previously
considered are used. We apply FWI to groups of frequencies: [3.54,4.76] , [7.20,9.64] ,
[13.30,16.97] and 20.63 Hz. We invert 15 iterations for each group of frequencies. The
results are shown in Figure 8.16. It clearly illustrates the weak sensitivity of the partial
source assembling to noise. These results are compared to those obtained when source
assembling technique is not considered, i.e. single sources (Figure 8.11). The obtained
models in the two configurations are very close to each other. This highlights the partial
source assembling robustness with regards to noise.
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Figure 8.15: 2-D overthrust model application. FWI velocity model with full source
assembling and RPE for the last-frequency-group inversion (200 iterations per frequency).
Smoothing is applied to the gradient (S/N ratio=5 & 199 sources). a) 7 frequencies. b) 11
frequencies. c) 15 frequencies. d) 18 frequencies. e) 21 frequencies. f) 29 frequencies.
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Figure 8.16: 2-D overthrust model application. FWI velocity model with partial source
assembling and RPE for the last-frequency-group inversion. Four frequency groups were
inverted (15 iterations per frequency). a) S/N ratio=10. b) S/N ratio=5. c) S/N ratio=3.33.
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Table 8.2: Summary of the different 2-D overthrust model applications.

Figure S.A NS NS−S S/N Model Error % Nits Speed Up (Theo.)

2-c) reference 199 199 - 3.76 15 1. (1.)

5 cluster 199 25 - 4.47 15 7.9 (8.)
6 coarse 199 25 - 4.45 15 8.1 (8.)

8 full 199 1 - 4.92 200 10. (15.)
9 full 199 1 - 3.72 200 10.5 (15.)

11-a) reference 199 199 10 4.88 15 1. (1.)
16-a) cluster 199 25 10 5.39 15 8.2 (8.)
13-a) full 199 1 10 4.73 200 10.5 (15.)

11-b) reference 199 199 5 5.07 15 1. (1.)
16-b) cluster 199 25 5 5.50 15 8.5 (8.)

14-a) full 399 1 5 25.1 200 9.2 (15.)
14-b full 199 1 5 6.31 200 10.2 (15.)
14-c) full 99 1 5 6.72 200 10. (15.)

15-f) full 199 1 5 3.82 200 2.4 (3.6)

11-c) reference 199 199 3.33 5.18 15 1. (1.)
16-c) cluster 199 25 3.33 5.60 15 8.8 (8.)

S.A – source assembling strategy
NS – number of sources
NS−S – number of super-shots
S/N – signal-to-noise ratio
Model Error % – model error percentage
Nits – number of iterations
Speed Up (Theo.) – evaluated speed up (theoretical speed up)
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8.2.3 2-D Marmousi velocity model

The aim of the second 2-D application on Marmousi velocity model is to validate the
different conclusions obtained in the previous application and demonstrate that these latter
do not depend on the considered model.

The true velocity model is illustrated in Figure 8.17-a). The water zone on the surface
has been removed. The computational FD grid is 681× 3× 116 and the spacing interval is
25 m. PML absorbing boundary conditions are set on the 4 edges of the 2-D model while
periodic conditions are implemented in the y direction to mimic an infinite medium. The
initial model (Figure 8.17-b)) for FWI is obtained by 500m-Gaussian smoothing. Either
ten single frequencies ot five frequency groups, each group containing two frequencies, were
successively inverted. Frequencies range from 3 to 18 Hz. The same S/N ratios as in the
previous application have been considered.

The noise-free data FWI final model (considered as reference result) obtained at the
last frequency is shown in Figure 8.17-c) while the noisy data FWI models are shown in
Figure 8.18.
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Figure 8.17: 2-D Marmousi model application. a) True velocity model. b) Starting velocity
model. c) Reference (considering separate sources) FWI velocity model (15 iterations per
frequency).

The joint full simultaneous-shot and random phase encoding leads to a good final
result if data are noise free (Figure 8.19-a)). If the data are noisy, the results become
not acceptable for the S/N ratios 5 and 3.33 unless a gradient smoothing is applied and
frequency groups inversion is adopted (Figure 8.19(b-d) and 8.20(a-c)). If the sources in the
single super-shot are densified (in this case doubled), the inversion diverges (Figure 8.21).
This proves our conclusion in the previous overthrust application. Too many sources in the
super-shot can alter the results.

If partial source assembling with random phase encoding strategy is considered, coarse
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Figure 8.18: 2-D Marmousi model application. FWI velocity model without source as-
sembling for the last frequency group inversion. Five frequency groups were inverted (15
iterations per frequency). a) S/N ratio=10. b) S/N ratio=5. c) S/N ratio=3.33.

or cluster respectively, the results are globally acceptable except near and below the gas
charged sand channel at 500 m depth and 3 km offset (Figure 8.22 and 8.23 respectively).
This set of tests also proves that this strategy is less sensitive to noise than full super-shot
strategy.
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Figure 8.19: 2-D Marmousi model application. FWI velocity model with full source
assembling and RPE for the last frequency inversion. Ten frequencies were inverted (100
iterations per frequency). Smoothing is applied to the gradient. a) No noise. b) S/N
ratio=10. c) S/N ratio=5. d) S/N ratio=3.33.
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Figure 8.20: 2-D Marmousi model application. FWI velocity model with full source
assembling and RPE for the last frequency group inversion. Five frequency groups were
inverted (100 iterations per frequency). Smoothing is applied to the gradient. a) S/N
ratio=10. b) S/N ratio=5. c) S/N ratio=3.33.
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Figure 8.21: 2-D Marmousi model application. FWI velocity model with full source
assembling and RPE for the last frequency group inversion. Four frequency groups were
inverted (100 iterations per frequency). S/N ratio=5. Smoothing is applied to the gradient.
a) 169 sources. b) 337 sources.

135



Chapter 8. Simultaneous-shot & Phase Encoding strategy

0

1

2

D
ep

th
 (

km
)

0 2 4 6 8 10 12 14 16
Inline (km)

1500

2500

3500

4500

m
/s

0

1

2

D
ep

th
 (

km
)

0 2 4 6 8 10 12 14 16
Inline (km)

1500

2500

3500

4500

m
/s

0

1

2

D
ep

th
 (

km
)

0 2 4 6 8 10 12 14 16
Inline (km)

1500

2500

3500

4500

m
/s

Figure 8.22: 2-D Marmousi model application. FWI velocity model with partial coarse
source assembling and RPE for the last frequency group inversion. Five frequency groups
were inverted (15 iterations per frequency). a) S/N ratio=10. b) S/N ratio=5. c) S/N
ratio=3.33.
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Figure 8.23: 2-D Marmousi model application. FWI velocity model with partial cluster
source assembling and RPE for the last frequency group inversion. Five frequency groups
were inverted (15 iterations per frequency). a) S/N ratio=10. b) S/N ratio=5. c) S/N
ratio=3.33.
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8.2.4 3-D overthrust model study case

We now consider 3-D applications on the SEG/EAGE overthrust velocity model. The FD
grid is 61× 265× 265 with grid spacing 75 m and 6 grid nodes PML layers all around. The
domain was divided into 3× 11× 11 subdomains. The acquisition is composed of 65× 65
(4225) sources and 260× 260 (67600) receivers. Full source assembling with RPE is used
and the 4225 sources form one super-shot. True and initial velocity models are shown in
Figures 8.24 and 8.25 respectively. Three single frequencies are inverted: 3.5, 5 and 7 Hz.

In the first application, data are noise free. At each frequency, at least 150 iterations
(250 iterations for the first frequency) were necessary since the chosen simultaneous-shot
strategy was the full source assembling. Results at 3.5, 5 and 7 Hz are shown respectively
in Figure 8.26, 8.27 and 8.28. The three figures show the cross-talks footprint on the
obtained models. Nevertheless, these cross-talks attenuate with increasing frequencies. The
final result is in agreement with the true model and proves that the full source assembling
joint to RPE can lead to acceptable inversion results.

In the second application, we added random noise. S/N ratio is equal to 10. At each
frequency, 150 iterations were inverted. Results are in Figure 8.29, 8.30 and 8.31. Figures
show coupled effects of noise and cross-talks. Nevertheless, the final model shows most of
the geological macro-structures of the true model, especially in the shallow part. Profiles in
Figure 8.32 show a comparison between initial, true and final inversion results with and
without noise. Comparison shows an acceptable agreement between inversion results and
true model, with a better fit for the result without noise.

Even if results are globally acceptable, we note that some strong artifacts (high velocities)
appear, particularly at the subsurface (Inline ≈ 10 km). Regularization can be the solution
to this type of artifacts.

The objective function history for the two applications are plotted in Figure 8.33
and 8.34. The curve has a common shape that exhibits the decrease of the objective
function. Nevertheless, if we zoom on, we see that the objective function varies locally and
do not decrease monotonically. This is due to the use of PE that changes the objective
function expression at each iteration. This also explains the big jump in the 7-Hz curve of
the application without noise (Figure 8.33).

The two 3-D applications have been simulated on the Blue Gene/P IDRIS machine
BABEL. The simulation needed 363 cores with 1 Gbytes of memory each. The average
time for one inversion iteration is about 1500 s (nearly 4 days per frequency).
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Figure 8.24: 3-D overthrust model application. True velocity model. a) Cross-section at
Y=11.4 km. b) Horizontal slice at Z=1.5 km.
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Figure 8.25: 3-D overthrust model application. Initial velocity model. a) Cross-section at
Y=11.4 km. b) Horizontal slice at Z=1.5 km.
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Figure 8.26: 3-D overthrust model application without noise. FWI velocity model at f=3.5
Hz. a) Cross-section at Y=11.4 km. b) Horizontal slice at Z=1.5 km.
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Figure 8.27: 3-D overthrust model application without noise. FWI velocity model at f=5
Hz. a) Cross-section at Y=11.4 km. b) Horizontal slice at Z=1.5 km.
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Figure 8.28: 3-D overthrust model application without noise. FWI velocity model at f=7
Hz. a) Cross-section at Y=11.4 km. b) Horizontal slice at Z=1.5 km.
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Figure 8.29: 3-D overthrust model application with noise. FWI velocity model at f=3.5
Hz. a) Cross-section at Y=11.4 km. b) Horizontal slice at Z=1.5 km.
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Figure 8.30: 3-D overthrust model application with noise. FWI velocity model at f=5 Hz.
a) Cross-section at Y=11.4 km. b) Horizontal slice at Z=1.5 km.
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Figure 8.31: 3-D overthrust model application with noise. FWI velocity model at f=7 Hz.
a) Cross-section at Y=11.4 km. b) Horizontal slice at Z=1.5 km.
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Figure 8.32: 3-D overthrust model application. Horizontal profiles extracted at: a) X=11.25
km, Y=7.35 km. b) X=7.5 km, Y=7.35 km. True model is in solid line, starting model
in coarse dashed line, free-noise data model in fine dashed line and noisy data model in
dotted line.
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Figure 8.33: 3-D overthrust model application without noise. Objective function history.
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Figure 8.34: 3-D overthrust model application with noise. Objective function history.
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8.3 Discussion

We have shown through the 2-D overthrust model application that the joint simultaneous-
shot and phase encoding strategy applied to frequency domain FWI is able to produce
good results comparing to those obtained with the single source approach and to notably
decrease the computational cost of the simulation. We have reached a speed up equal to
ten, which means that the simultaneous-shot simulation have lasted ten times less than the
reference simulation.

An analysis to compare different phase encodings has been performed and have shown
that the random phase encoding lead to the best results (Figure 8.5, 8.6 and 8.9). The
analysis have also shown that it is necessary to regenerate the phase codes at each inversion
iteration in order to appropriately mitigate the cross-talks introduced by simultaneous-shot
approach (Figure 8.4).

Following the previously discussed choice and regeneration of encodings, both the partial
and the full source assembling strategy have been efficient. Nevertheless, since all the
sources are assembled in one super-shot if the full source assembling strategy is considered,
the inversion requires much more iterations in order to mitigate the interference cross-talks.
In addition, this strategy requires to use frequency-grouping approach which is more robust
than the sequential frequency approach (Figure 8.8 and 8.9).

The noisy data applications suggest that the partial source assembling is robust with
regards to noise. The comparison between the obtained results and the reference results
obtained with a single source strategy depicts similarity and proves the insensitivity of
partial source assembling strategy to noise (Figure 8.11 and 8.16). Nevertheless, some
regularization has been necessary to get acceptable results. A Gaussian smoothing was
applied to the gradient in order to filter the high frequency model perturbation content
(Figure 8.12 and 8.13).

On the other hand, the full source assembling lead to relatively poor results (Figure 8.13).
However, results may be improved through densifying the inverted frequencies (Figure 8.15).
The speed up decreases to about 2.5 instead of 10 in the case where 29 frequencies instead of
7 are inverted. Therefore, this may favor a time domain waveform inversion if the number of
frequencies become too big. In fact, the efficiency of frequency domain waveform inversion
is closely related to the inversion of only a small group of discrete frequencies (Sirgue and
Pratt, 2004).

We have analyzed the impact of increasing the number of the sources in the super-shot
and concluded that this may alter the results (Figure 8.15). This can be explained by the
increase of cross-talks generated by simultaneous-shot strategy.

First 3-D results obtained with noise-free data and full source assembling strategy are
encouraging. The iteration computational cost is dramatically decreased and lasts few
minutes instead of few hours. The reduced iteration computational cost obtained thanks
to the full source assembling confers interactivity to FWI since the user can supervise the
iterative process. When noise is involved, the results become relatively poor and noisy, as
for the 2-D overthrust application.
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8.4 Conclusion

Data reduction using super-shots or shot assemblages is an efficient way for a significant
reduction of computational cost of 3-D full waveform inversion. Cross-talk noise associated
with interference components could be attenuated using phase encoding techniques. Many
encodings are relevant and lead to good results. We found that a random phase encoding
is the most appropriate one either for the cluster, coarse or full super-shot techniques.
Partial source assembling is robust with regards to noise and lead to similar models obtained
with reference strategy using single sources. However, full source assembling is very sensitive
to noise. It is necessary to apply some regularization and densify the inverted frequencies
in order to improve results. Increasing the number of sources in the unique super-shot can
alter the noisy data inversion result as shown in the 2-D overthrust study case.
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Chapter 9

Conclusions & Perspectives

The objective of the thesis has been to investigate the feasibility of 3-D visco-acoustic
frequency domain full waveform inversion and to analyze the expected imaging results
that FWI would provide. A 3-D massively parallel FWI software has been developed
in the frequency domain. FWI is formulated as a linearized least squares optimization
problem which aims to minimize the differences between recorded and predicted data. The
full seismic wave propagation modeling is also performed in the frequency domain and
relies either on a direct or hybrid direct/iterative solver. The FWI software is written in
Fortran90 and the parallel implementation is based on the Message Passing Interface (MPI)
communication standard.

9.1 Seismic wave propagation modeling

The first part was devoted to the 3-D visco-acoustic wave propagation modeling. First, I
was interested in the finite differences discretization of the Helmholtz wave equation. The
discretization of the differential operators is performed with second-order-accurate stencils
in order to minimize the numerical bandwidth of the sparse impedance matrix. This feature
is very important in the prospect of using the direct solver, based on LU decomposition, to
solve the discrete time-harmonic wave equation. Nevertheless, second-order finite differences
stencils are poorly accurate. To overcome this limitation, a linear combination of different
O(∆x2) stencils discretized on several coordinate systems (the so-called mixed-grid strategy)
and a mass-term distribution allow to design both compact and accurate stencils. The
O(∆x2) stencils are designed on staggered grids for the first-order velocity-stress system,
and a parsimonious approach, the aim of which is to eliminate the auxillary velocity
wavefields, is finally used to derive the discretized second-order wave equation in pressure
(Operto et al., 2007). The differentiation procedure leads to a 27-node stencil which requires
four grid nodes per wavelength to reach a good numerical accuracy.

The resulting linear system is solved with either a direct or a hybrid direct/iterative
solver, and both solvers are implemented in the FWI software. The direct solver is very
efficient for small-scale problems (involving less than 10 millions of unknowns) and for
multi-RHS resolution problems such as in FWI where thousands of seismic sources are
involved in 3-D. However, the LU decomposition time and memory complexities prevent the
use of direct solver for large problems and limit its applicability to small problems of about
ten million unknowns. In order to overcome the direct solver limitations, a hybrid (direct-
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iterative) solver based on the domain decomposition method and the Schur complement
has been developed. The hybrid solver allows to reduce the memory requirements of
the simulation. Nevertheless, this approach is less efficient with regards to multi-RHS
resolution because the time complexity of the iterative component of the hybrid solver
linearly increases with the number of RHSs.

The direct and the hybrid solvers have been implemented consistently in the FWI
software since both rely on a domain decomposition performed by MUMPS for the direct
solver approach and predefined by the user for hybrid solver approach. A similar domain
decomposition strategy was implemented in an explicit time marching solver, that will be
also implemented in the FWI software as a third modeling engine. The required frequency
components can be efficiently retrieved by a discrete Fourier transform (DFT) (Sirgue et al.,
2007b). Note, however, that the low memory requirements of time-marching algorithms
allows for a coarse-grain parallelism over RHS (i.e., one processor can be assigned to
one RHS, and sequential modeling is performed on each processor to perform multi-RHS
modeling in parallel). However, if the number of processors significantly exceeds the number
of RHSs, then, a second level of parallelism based on domain decomposition can be combined
with that over RHSs.

Only 1− level parallelism has been implemented in the hybrid approach as modeling
engine in the FWI software. This classical parallel implementation of domain decomposition
assigns one subdomain per MPI process. Haidar (2008, chapter 4) has developed an
alternative 2 − level parallelism, where one subdomain is assigned to a group of MPI
processes and each local problem in a subdomain, such as LU factorization, is computed
in parallel on the group of MPI processes. The 2 − level parallelism has shown to be
more efficient than the classical 1− level one, because less subdomains are used leading to
more accurate preconditioner. Performances of the 2− level parallelism strategy on the
Helmholtz equation can be found in Haidar (2008, chapter 8). In the future, this 2− level
parallelism approach can be implemented in the FWI software.

9.2 Inverse problem

In the second part of the manuscript, I was interested in the settlement of the fundamentals
of an optimization problem and the presentation of the line search methods. I have
introduced the different line search algorithms: Newton, quasi-Newton, steepest descent
and conjugate gradient. In instance, FWI is formulated as a least squares minimization
problem which tries to minimize the misfit between the recorded and predicted seismic data.
In order to solve this inverse problem, the problem is linearized (quadratic approximation
of the misfit function) and only small model perturbations handle (Born approximation).
The model is updated in an iterative process.

The resolution of the linearized inverse problem is based on a preconditioned gradient
method. The gradient is computed through the adjoint-state method and preconditioned
by the inverse of the diagonal of either the approximate or pseudo Hessian. The optimal
step length is estimated through a parabola fitting.

The conjugate gradient method is also implemented, but was not intensively validated.
Conjugate gradient should speed up the convergence. L-BFGS would be implemented in
the near future. In this approach, the approximation of the Hessian is more accurate since
not only diagonal terms are involved but also extra diagonal terms. The benefits of the
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L-BFGS method have been highlighted in Brossier et al. (2009b).

Several synthetic FWI applications on realistic models (SEG/EAGE overthrust velocity
model) have been performed. The applications have been restricted to low frequencies
(≈ 7 Hz) and the numerical problem size does not exceed six million unknowns. In fact,
I have proven the direct solver efficiency (multi-RHS resolution) for such problem sizes.
Nevertheless, the high computational cost of the full seismic wave modeling involved in 3-D
FWI prevents to deal with large problem sizes.

During the last three years, several synthetic and real data set visco-acoustic frequency
domain FWI applications have been presented (Warner et al., 2008; Sirgue et al., 2008, 2009;
Plessix and Perkins, 2009). The respective softwares are based on the time domain and
iterative solvers while my software is based on the direct and hybrid solvers. The different
FWI experiences have highlighted the significant spatial resolution improvements that FWI
would provide. However, due to the computational limitations previously mentioned, the
applications were limited to low frequencies (≈ 7 Hz). Therefore, these computational
limitations question the position of FWI in the imaging procedure flowchart. FWI has been
historically proposed to replace the two-step “velocity model building/migration” imaging
procedure. In 3-D, FWI is still investigated as an alternative approach to improve the
velocity macro-model which would be used for migration.

In the near future, a real OBC data set (Valhall (Kommedal et al., 2004)) will be
processed by frequency-domain FWI using the software developed during my PhD. This
work will be the topic of a thesis of the SEISCOPE consortium, starting end of 2009.

9.3 Joint simultaneous-shot and phase encoding

As mentioned in the first section, the hybrid solver allows to overcome memory limitations
related to the use of the direct solver but is less efficient for the multi-RHS resolution
phase. An alternative approach to bypass the problem consists in reducing the number of
sources involved in imaging through a simultaneous-shot strategy. The technique consists
in assembling several sources in one super-shot and applying the forward problem and
imaging condition to super-shots rather than to the individual shots. The simultaneous-shot
approach can be applied using two main strategies based on full or partial source assembling.
In the former case, all the shots are assembled to form one super-shot, whereas in the
latter case, only a limited number of shots are assembled. In partial source assembling,
closely-spaced sources (the so-called cluster assembling) or distant sources (the so-called
coarse assembling) can be viewed to build super-shots. The computation cost theoretically
decreases proportionally to the ratio between the number of shots and super-shots. However,
the application of simultaneous-shot technique introduces cross-talks, generated by the
interferences between the different sources in each super-shot, which results in artifacts in
the final image. Although these artifacts can be mitigated by phase encoding techniques, an
increasing number of FWI iterations and an increasing number of inverted frequencies can
be required when source assemblage is used to bring down the footprint of the cross-talk
artifacts to an acceptable level.

The phase encoding approach has been originally developed for prestack depth migration
to mitigate the cross-talk artifacts through encoding the different sources in the super-shot.
The phase codes have to be appropriately defined. Among the different choices of encoding,
the random phase encoding has shown to be the most efficient for frequency domain FWI.
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However, codes should be regenerated at each iteration of the inversion process in order to
efficiently mitigate the cross-talk artifacts.

The joint simultaneous-shot and phase encoding strategies have shown to be very
efficient to mitigate the computation cost of FWI. This imaging strategy has been validated
with 2-D applications involving the SEG/EAGE overthrust and the Marmousi velocity
models and with a 3-D application with overthrust model. Both full and partial source
assembling strategies have been considered during this validation. Nonetheless, if randomly
distributed noise is introduced, the full source assembling have shown to be very sensitive
with regards to noise, unless the inverted frequencies are densified, while the partial source
assembling remains sufficiently robust.

The joint simultaneous-shot and phase encoding strategy has been investigated for the
time domain FWI on 2-D synthetic data (Krebs et al., 2009), but still not on real data set
applications. An application on the 3-D Valhall data set can be viewed and results can be
compared with that presented in Sirgue et al. (2009).

9.4 Other perspectives

Abubakar et al. (2009) have proposed an alternative FWI approach, called contrast source
inversion (CSI). The contrast-source inversion is computationnally efficient in the frame
of frequency-domain FWI based on a direct solver, because the LU factorization of the
impedance matrix is performed only at the first iteration of one frequency inversion. The
LU factors are stored in the core memory and used at each non linear iteration of the
inversion process. The governing idea is to define a background model and to compute the
scattered wavefield through an iterative process from the contrast source, which depends
on the model perturbations, and a forward problem operator that depends only on the
background model (i.e., the LU decomposition of the impedance matrix assembled from
the background model). Multi-RHS solutions can be therefore efficiently computed during
the non linear FWI iterations by substitutions without recomputing the LU decomposition
of the impedance matrix at each iteration. The contrast source inversion was validated on
2D synthetic examples by Abubakar et al. (2009). My 3D FWI code could be adapted to
implement the contrast source inversion method and test the method for 3D configurations.
A natural application of the contrast source inversion is time-lapse inversion where the
baseline model can be used as background model.

The second point concerns the FWI least squares formulation. The L2-norm criterion
have shown some limitations, in instance with regards to noise. Other criteria, such as the
L1-norm, have been proposed in order to bypass some specific limitations (Crase et al.,
1990; Shin et al., 2007).

Dealing with real data set applications have raised questions about the relevance of
the recorded amplitudes. A phase-only inversion strategy has been promoted. The phase-
only inversion can be easily implemented in the FWI software by using the Logarithmic
criterion instead of the L2-norm criterion and taking only the imaginary part (Shin and
Min, 2006). Alternatively, reconstruction of density and attenuation in addition to that of
P-wave velocity can be viewed to model more accurately seismic wave amplitudes. Both
heterogeneous density and attenuation can be taken into account in the modeling engine I
developed. The reliability of the reconstruction of these two parameters when wide-aperture
and wide-azimuth geometries are available should be investigated in the future.
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The phase-only inversion can also perform first arrival traveltime tomography (FATT),
following the approach described in Shin et al. (2002).

The last point is related to the Laplace domain inversion (Shin and Cha, 2008). This
approach has been promoted for initial velocity model building necessary for waveform
inversion. The Laplace domain inversion would be easily implemented in the frequency
domain software by considering pure imaginary frequencies.
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Velocity model-building by 3D frequency-domain,
full-waveform inversion of wide-aperture seismic data

Hafedh Ben-Hadj-Ali1, Stéphane Operto1, and Jean Virieux2

ABSTRACT

We assessed 3D frequency-domain �FD� acoustic full-
waveform inversion �FWI� data as a tool to develop high-res-
olution velocity models from low-frequency global-offset
data. The inverse problem was posed as a classic least-
squares optimization problem solved with a steepest-descent
method. Inversion was applied to a few discrete frequencies,
allowing management of a limited subset of the 3D data vol-
ume. The forward problem was solved with a finite-differ-
ence frequency-domain method based on a massively paral-
lel direct solver, allowing efficient multiple-shot simulations.
The inversion code was fully parallelized for distributed-
memory platforms, taking advantage of a domain decompo-
sition of the modeled wavefields performed by the direct
solver. After validation on simple synthetic tests, FWI was
applied to two targets �channel and thrust system� of the 3D
SEG/EAGE overthrust model, corresponding to 3D domains
of 7�8.75�2.25 km and 13.5�13.5�4.65 km, respec-
tively. The maximum inverted frequencies are 15 and 7 Hz
for the two applications. A maximum of 30 dual-core bipro-
cessor nodes with 8 GB of shared memory per node were
used for the second target. The main structures were imaged
successfully at a resolution scale consistent with the inverted
frequencies. Our study confirms the feasibility of 3D fre-
quency-domain FWI of global-offset data on large distribut-
ed-memory platforms to develop high-resolution velocity
models. These high-velocity models may provide accurate
macromodels for wave-equation prestack depth migration.

INTRODUCTION

Three-dimensional quantitative seismic imaging in complex en-
vironments �e.g., deep water, thrust belts, subsalt and subbasalt
structures� is a primary challenge of seismic exploration for hydro-

carbon exploitation. In the depth domain, the imaging flowchart for
multichannel seismic reflection data is subdivided into two main
steps: velocity macromodel estimation and prestack depth migration
�PSDM�. These steps typically are performed iteratively until flat-
tening of reflectors in common image gathers �CIGs� is optimized.
The human interactions during several tasks related to velocity mod-
el-building, such as CIG flattening, layer interpretation, and quality
control of picking, makes the PSDM workflow time consuming and
potentially subjective. Therefore, any approach that helps to auto-
mate and optimize velocity model-building will speed up the output
of the final PSDM image.

Estimating the velocity macromodel is critical because it has a
strong impact on the accuracy of the migrated images in terms of fo-
cusing and positioning in depth of the reflectors. The criteria that the
velocity macromodel must verify to provide accurate migrated im-
ages are still unclear �for illustrations of the sensitivity of 2D and 3D
true-amplitude PSDM to the accuracy of the velocity macromodel,
see Operto et al., 2000, 2003�. Estimating a reliable velocity macro-
model for PSDM from conventional multichannel seismic reflection
data is a difficult task — one that becomes even more dramatic in
complex environments because of the velocity-depth ambiguity at
significant depths �Bickel, 1990; Pon and Lines, 2005�.

The most common approaches for building a PSDM velocity
model rely on reflection traveltime tomography �e.g., Bishop et al.,
1985; Stork, 1992� or migration velocity analysis �e.g., Biondi and
Symes, 2004; Sava and Biondi, 2005�. Both approaches result in ap-
proximations for modeling wave propagation, such as the high-fre-
quency approximation or the one-way approximation of the wave
equation. This incomplete modeling of wave propagation, together
with the limitations imposed by narrow-aperture acquisition geome-
tries, can prevent imaging of steeply dipping reflectors. For exam-
ple, Zhang et al. �2006� illustrate that turning waves and multire-
flected arrivals can improve images of the flank of salt bodies. As a
result, research has been dedicated to extending the one-way propa-
gator to exploit these arrivals in PSDM �e.g., Zhang et al., 2007�.

In this paper, we investigate frequency-domain �FD� full-wave-
form inversion �FWI� of wide-aperture data as a tool to build 3D
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high-resolution velocity models in complex environments �Pratt,
2004�. By a wide-aperture acquisition survey, referred to as global-
offset acquisition, we mean any acquisition geometry with suffi-
ciently long offset coverage to record diving waves whose refraction
depths cover the zone of interest. Wide-aperture arrivals such as div-
ing waves and supercritical reflections are sensitive to the large and
intermediate wavelengths of a medium �Pratt and Worthington,
1990; Sirgue and Pratt, 2004�, which are difficult to image from mul-
tichannel seismic reflection acquisition and limited-bandwidth
sources. Moreover, multifold wide-aperture surveys lead to a redun-
dant control of frequency and aperture angle on the wavenumber il-
lumination in the model space. This redundancy can be decimated to
design efficient numerical approaches for seismic imaging in the fre-
quency domain �Pratt and Worthington, 1990; Pratt, 1999�. Global-
offset acquisition surveys can be conducted at sea or on land with a
network of stations �see Clarke et al. �2007� for a recent 3D wide-az-
imuth node survey�.

FWI refers to a quantitative imaging method based on a complete
solution of the full �two-way� wave equation for the forward prob-
lem and on inverse problem theory for the imaging problem �Taran-
tola, 1987�.An improved model is built by minimizing the misfit be-
tween the recorded data and the data computed in the model. FWI
shares some similarities with generalized diffraction tomography
�Wu and Töksoz, 1987; Pratt et al., 1998�. The partial-derivative and
misfit wavefields can be interpreted as the wavefields emitted by the
shots and scattered by secondary sources �virtual sources in Pratt et
al. �1998, their equation 16��, triggered at the position of the hetero-
geneities lacking in the starting model. Zero-lag correlation between
the misfit and the partial-derivative wavefields at the receiver loca-
tions provides an unscaled image of the missing heterogeneities �the
so-called perturbation model� in the opposite direction of the gradi-
ent of the least-squares objective function.

The heterogeneities can be represented by a series of closely
spaced diffractors. By virtue of the Huygens’ principle, an image of
the perturbation model is built by summing the elementary images of
each diffractor. The gradient of the objective function can be com-
puted more efficiently by zero-lag convolution of the incident wave-
fields with the backpropagated residual wavefields, thanks to the
spatial reciprocity of the Green’s function. The zero-lag convolution
between the incident wavefields and the backpropagated residuals is
similar to the imaging principle of reverse time migration originally
proposed by Claerbout �1971� and recast in the framework of inverse
problem theory by Lailly �1984� and Tarantola �1984�.

There are two main drawbacks of FWIs. First, they are very ex-
pensive computationally because of the complete resolution of the
wave equation for a large number of sources. Second, they lack ro-
bustness as a result of the complexity of the global-offset wavefields
and their sensitivity to noise and to the inaccuracies of the starting
model. In the 2D case, the FD formulation of FWI applied to global-
offset acquisition provides a promising approach to mitigate these
difficulties �Pratt, 1999; Sirgue and Pratt, 2004; Brenders and Pratt,
2007a�. The extension of this approach to three dimensions is inves-
tigated in this paper.

The FD formulation of FWI was developed originally for 2D
crosshole acquisition surveys, which involve wide-aperture record-
ing �Song et al., 1995; Pratt, 1999�. Because of the wavenumber re-
dundancy provided by multifold wide-aperture geometries, only a
few discrete frequencies are required to develop a reliable image of
the medium. Some guidelines to define the optimal frequency inter-
val for FWI are given in Sirgue and Pratt �2004�. This FD decimation

leads to a very compact volume of data to be managed, which may be
critical for 3D applications.

The presence of many local minima in the least-squares objective
function can prevent convergence of FWI based on local optimiza-
tion toward the global minimum of the objective function. This orig-
inally motivated development of multiscale strategies in the time do-
main through successive inversions of subdata sets of increasing fre-
quency bandwidth �Bunks et al., 1995�. The FD formulation of FWI
provides a more natural and flexible framework with which to design
a hierarchical multiresolution imaging strategy, helping to manage
the inherent nonlinearity of the inverse problem.

The multiscale approach in the frequency domain is generally im-
plemented by successive inversions of single frequencies of increas-
ing value �Pratt and Worthington, 1990; Pratt, 1999�. This strategy
differs from that of Bunks et al. �1995�, which does not take advan-
tage of the redundant control of frequency and aperture on wave-
number coverage. Indeed, in the approach of Bunks et al. �1995�,
higher frequencies are injected at a given step of the multiscale ap-
proach while keeping the frequencies from the previous steps in-
volved in the inversion.Although this approach may be more robust
in the sense that redundant information is involved simultaneously
in the inversion during the last stages of the multiscale approach, it
may also be prohibitively expensive for 3D FWI. When global-off-
set recording is available, a starting model for FWI typically is built
by first-arrival traveltime tomography �for recent applications at
subsurface and crustal scales, see Ravaut et al., 2004; Operto et al.,
2006; Brenders and Pratt, 2007a, 2007b�, which provides large-scale
velocity models whose resolution limit is on the order of the first
Fresnel zone width �Williamson, 1991; Williamson and Worthing-
ton, 1993�.

Application of FWI to 2D real data case studies has been limited
to frequencies less than 20 Hz �Hicks and Pratt, 2001; Shipp and
Singh, 2002; Ravaut et al., 2004; Operto et al., 2006�. In three di-
mensions, the computational cost of the forward problem suggests
that it is difficult to handle frequencies greater than 10 Hz for repre-
sentative problems �Operto et al., 2007�. At this scale, the resulting
velocity models might be used as macromodels for PSDM. Howev-
er, the relevance of FWI velocity models as reference models for
PSDM requires further demonstration. An illustration with a real
data case study is provided in Operto et al. �2004, 2005� in the frame
of imaging a thrust belt in the southernApennines by combined first-
arrival traveltime tomography, FWI, and true-amplitude ray-based
PSDM.

Full-wave-propagation modeling is a critical issue in FWI meth-
ods because it is the most computationally expensive task in the pro-
cess. In the frequency domain, the forward problem reduces to re-
solving a large, sparse system of linear equations for each frequency
considered. In two dimensions, the few frequencies involved in the
inversion can be modeled efficiently for multiple shots using a direct
solver �Marfurt, 1984�. Since the original work of Pratt and Wor-
thington �1990�, optimal finite-difference stencils have been de-
signed for the FD method based on direct solvers �Jo et al., 1996;
Stekl and Pratt, 1998; Hustedt et al., 2004�. The extension to three di-
mensions of this modeling approach is addressed in Operto et al.
�2007�, who show that problems of representative size �e.g., the 3D
SEG/EAGE overthrust model� can be addressed at low frequencies
��10 Hz� on currently available distributed-memory platforms.

However, it remains unclear which approach �time versus FD
based on direct or iterative solvers� is the most efficient for 3D FWI
�Nihei and Li, 2007; Plessix, 2007�. This may depend on several pa-
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rameters related to the experimental setup, such as dimensions of the
model, frequency bandwidth, number of traces in the acquisition,
and acquisition geometry. Three-dimensional FD modeling meth-
ods based on iterative solvers are presented by Plessix �2007�, Riy-
anti et al. �2007�, and Warner et al. �2007�. These approaches de-
mand far less memory and have better scalability than approaches
based on direct solvers, but their run time depends linearly on the
number of sources, which may be a significant drawback with 3D
surveys involving several thousands of shots or receivers. Alterna-
tively, time-domain modeling methods were proposed to extract the
frequency response of the wavefields by discrete Fourier transform
�Sirgue et al., 2007b� or phase-sensitive detection �Nihei and Li,
2007� and subsequently invert in the frequency domain. The time-
domain approach shares with the iterative FD approach similar ad-
vantages and drawbacks with respect to memory complexity, scal-
ability, and computational burden for multishot simulations.

A few applications of 3D frequency-domain FWI to synthetic
models are presented by Stekl et al. �2007� and Sirgue et al. �2007a�.
Sirgue et al. �2007a� apply frequency-domain FWI at low frequen-
cies �3–5 Hz� to the 3D SEG/EAGE overthrust model.Their scheme
is based on a finite-difference time-domain approach �Sirgue et al.,
2007b�. They illustrate the footprint of narrow- and wide-azimuth
multichannel seismic-reflection acquisitions on the reconstructed
velocity models and compare the convergence rate of 2D and 3D
FWI. Stekl et al. �2007� apply 3D frequency-domain FWI to a chan-
nel model. Their scheme is based on an iterative solver �Warner et
al., 2007�. To overcome the computational burden of multishot sim-
ulations, several shots are triggered simultaneously, following an
approach proposed by Capdeville �2005�.

Our paper presents a massively parallel algorithm for a distribut-
ed-memory platform that performs 3D frequency-domain FWI us-
ing FD modeling based on a direct solver.We provide insight into the
relevance of 3D frequency-domain FWI for building high-resolu-
tion velocity models of isotropic acoustic media and quantify the as-
sociated computational requirement thanks to realistic synthetic
case studies. Numerical examples focus on surface wide-aperture/
wide-azimuth surveys conducted with networks of sources and re-
ceivers on the surface. The most representative example, performed
in a 12-�12-�4.5-km target of the overthrust model, uses a receiv-
er spacing of 300 m, like the order used during a node survey in the
Gulf of Mexico �426 m� �Clarke et al., 2007�. The source-receiver
patch was deployed above the 12-�12-km area of the target. There-
fore, the maximum far-inline and far-crossline offsets are 12 km for
receivers located near the ends of the target area and 6 km for receiv-
ers located in the middle.

We do not address building a reliable starting model for FWI that
is carried out conventionally by first-arrival traveltime tomography
when global-offset acquisitions are considered. The maximum off-
set and the coarsest source and receiver spacings required to build a
reliable large-scale model of the FWI target by first-arrival travel-
time tomography must be clarified to assess the feasibility of this to-
mographic approach. We assume that a starting model describing the
long wavelengths of the true medium is available. The second issue
is to verify that the velocity models inferred from FWI can be used as
a macromodel for 3D wave-equation PSDM.

First, we briefly review the theory of FD full-waveform modeling
and inversion. Second, we discuss the parallel implementation of
frequency-domain FWI for distributed-memory platforms. Third,
we present several numerical examples of increasing complexity
whose aim is to validate the algorithm, to illustrate the sensitivity of

the imaging resolution to the acquisition geometry, and to provide
some insight on the computational complexity of the approach for
representative studies.

THEORY

Frequency-domain full-waveform modeling and inversion is a
well-established method for imaging 2D media. Extension to the 3D
case closely follows 2D strategies. Therefore, only a brief review of
FD modeling and inversion is given here. The reader is referred to
Operto et al. �2007� for the method used in this paper for FD wave-
propagation modeling, to Pratt et al. �1998� for theoretical aspects of
frequency-domain FWI, and to Pratt �1999� for practical aspects
such as waveform-inversion data preprocessing and source estima-
tion.

3D acoustic finite-difference FD modeling

The 3D viscoacoustic wave equation in the frequency domain is
given by
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where ��x,y,z� is density, ��x,y,z� is the complex bulk modulus, � is
frequency, P�x,y,z,�� is the pressure field, and S�x,y,z,�� is the
source. Various attenuation models can be implemented easily in
equation 1 using complex velocities in the expression of the bulk
modulus �Toksöz and Johnston, 1981�. Sponge-like perfectly
matched layer �PML� boundary conditions can be implemented eas-
ily in the frequency domain to absorb outgoing energy �Berenger,
1994; Operto et al., 2007�.

The relationship between the pressure wavefield and the source is
linear, so the discrete acoustic wave equation 1 can be recast in a ma-
trix form as

Ap � s , �2�
where the complex-valued impedance matrix A depends on the fre-
quency and the medium’s properties. System equation 1 can be dis-
cretized with the so-called parsimonious mixed-grid finite-differ-
ence method �Jo et al., 1996; Hustedt et al., 2004; Operto et al.,
2007�. The mixed-grid discretization, which uses multiple rotated
coordinate systems, is complemented by a mass-term distribution
�an antilumped mass� that significantly improves the accuracy of the
stencil �Marfurt, 1984�. The combined use of the mixed coordinate
systems and mass distribution allows one to design both accurate
and spatially compact stencils.

Dispersion analysis demonstrates that only four grid points per
wavelength are needed to obtain accurate simulations in homoge-
neous media. This discretization rule is optimal for FWI, whose res-
olution limit is �/2, where � is the wavelength. A compact stencil is
critical if a direct method is used to solve the system resulting from
discretizing the Helmholtz equation because compact stencils limit
the numerical bandwidth of the matrix and hence its fill-in during LU
factorization. The use of a direct solver is interesting in the case of
multishot simulations as required by tomographic applications be-
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cause LU factorization is independent of the right-hand side terms in
equation 2. To solve system 2, we use the MUMPS massively paral-
lel direct solver, developed for distributed-memory platforms
�Amestoy et al., 2007�. A detailed complexity analysis of this ap-
proach is provided in Operto et al. �2007�.

FD full-waveform inversion

The inverse problem is posed as a classic weighted least-squares
optimization problem and is solved by the steepest-descent method
�Tarantola, 1987�. Newton and quasi-Newton �Gauss-Newton�
methods were rejected because of the computer cost of calculating
either the Hessian or approximate Hessian �Pratt et al., 1998�.

The weighted least-squares objective function is given by

C�m� � �d†Wd�d , �3�

where �d is the misfit �the difference between the observed data and
the data computed with model m� and the superscript † indicates the
adjoint �transpose conjugate�. The value Wd is a weighting operator
applied to the data; it scales the relative contribution of each compo-
nent of the vector �d in the inversion. Minimizing the objective
function leads to the following solution for the model perturbation
�m after scaling and smoothing the gradient �Pratt et al., 1998;
Ravaut et al., 2004; Operto et al., 2006�:

�mi � ���diag Ha � 	��1

� Gm Re�pt� �At

�mi
�A�1Wd�d*� , �4�

where diag Ha � diag Re	JtWdJ*
 denotes the diagonal elements
of the weighted approximate Hessian Ha, J denotes the sensitivity
matrix, and Gm is a smoothing regularization operator.

One element of the sensitivity matrix is given by

Jk�m,n�,i � pm
t � �At

�mi
�A�1
 n, �5�

where k�m,n� denotes a source-receiver couple of the acquisition ge-
ometry; m and n denote a shot and a receiver position, respectively;
and 
 n is an impulse source located at receiver position n.

The diagonal of the approximate Hessian provides a precondi-
tioner of the gradient that properly scales the perturbation model
�Shin et al., 2001�. The damping parameter 	 is used to avoid numer-
ical instabilities �i.e., division by zero�. The matrix Gm is implement-
ed in the form of a 3D Gaussian spatial filter whose correlation
lengths are adapted to the inverted frequency component �Ravaut et
al., 2004�.Amplitude gain with offset can be applied to each seismic
trace within the operator Wd:

wd�oSR� � �oSR�g, �6�

where the scalar g controls the amplitude of the gain with respect to
the source-receiver offset oSR. Originally, this operator was intro-
duced to mitigate the contribution of the high-amplitude direct water
wave when inverting long-offset ocean-bottom-seismic data �Op-
erto et al., 2006�. In our algorithm, the gradient scaling could be esti-
mated once per frequency before the first iteration and kept constant
over iterations or recomputed at each iteration. The term ��A/�mi� is
the radiation pattern of the diffraction by the model parameter mi.

For P-wave velocity, the pattern is an explosion. In other words,
the matrix whose number of rows corresponds to the number of dif-

fractor points in the 3D finite-difference grid has only one nonzero
element located on the diagonal of the ith row. This can be checked
easily by noting that the P-wave velocity only appears in the coeffi-
cient ��2/��x,y,z�� of acoustic wave equation 1. The finite-differ-
ence discretization without antilumped mass of this term leads to one
nonzero coefficient per row on the diagonal of A. Differentiating
these diagonal coefficients with respect to the ith model parameter
reduces to one nonzero coefficient on the ith row. The same conclu-
sion would apply to the attenuation embedded in the expression of
the complex velocity. On the other hand, a more complex radiation
pattern would be observed for density whose expression appears in
the stiffness matrix of the discrete wave equation �Forgues and Lam-
baré, 1997�.

The source term in the FWI algorithm can be estimated by solving
a linear inverse problem �Pratt, 1999�. The inversion code can be ap-
plied to vertical geophone or hydrophone data generated by explo-
sive sources. Indeed, vertical geophone data can be processed as
pressure data thanks to the reciprocity principle �Operto et al., 2006�.
The inversion is applied in cascade to several groups of discrete fre-
quencies. All frequencies of one group are inverted simultaneously.
The final model obtained close to inversion of one group of frequen-
cies is used as a starting model for the next group of frequencies. For
each frequency group, several iterations can be computed.

PARALLEL NUMERICAL IMPLEMENTATION

We use the MUMPS massively parallel direct solver �Amestoy et
al., 2006, 2007� based on a multifrontal method �Duff and Reid,
1983� to solve the forward problem �system 2�. Before LU decom-
position, the matrix coefficients are ordered to minimize dependen-
cies in the graph of the matrix. Using nested dissection ordering, the
theoretical memory complexity of the factorization for a 3D finite-
difference problem is O�n4� and the number of floating-point opera-
tions is O�n6�, where n is the number of grid points along one dimen-
sion of the 3D square finite-difference grid �Ashcraft and Liu, 1998�.
The source vectors for the resolution phase are provided in sparse
format on the host processor.After resolution, the multiple solutions
are distributed over processors following a domain decomposition
driven by the distribution of the LU factors. This means that each
processor stores a spatial subdomain of all the solutions. We take ad-
vantage of this distributed in-core storage of the forward-problem
solutions �FPS� to solve the inverse problem in parallel.

The central component of the FWI algorithm is computing the
gradient of the objective function. This operator is computed basi-
cally by a weighted summation of the FPS, namely, the incident and
the backpropagated residual wavefields computed in the starting
model �equation 4�. The weights in the summation account for the
radiation pattern of the diffraction tomography reconstruction �the
operator �A/�mi in equation 5� and for the data residuals. This
weighted summation is computed in parallel straightforwardly by
taking advantage of the distribution of the FPS: each processor com-
putes the subdomain of the gradient corresponding to the subdomain
of the FPS stored on this processor.At the end of the summation, the
distributed gradient is gathered on the master processor with a col-
lective communication.

When only the P-wave velocity parameter is involved in the inver-
sion, the matrix �A/�mi reduces to a scalar located on the ith diago-
nal. This implies that the gradient at position of mi depends only on
the values of the FPS at this same position. In that case, the parallel
computation of the gradient does not require any point-to-point
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communication, leading to a parallelism efficiency close to one for
this task. Also, all FPS remain in core in the algorithm without disk
swapping. If not enough memory is available to store in core all FPS
values in addition to the LU factors, the FPS, the gradient, and the di-
agonal Hessian are computed in a sequential loop over partitions of
the right-hand-side terms. Each partition loads in core the maximum
number of solutions fitting the available memory. The efficiency of
the parallel inversion algorithm is controlled mainly by that of the
LU factorization. We obtain a maximum speed-up of 13 with
MUMPS on our applications �Operto et al., 2007�.

The parallel FWI algorithm is summarized in Figure 1. More de-
tails on the 2D version of the parallel FWI algorithm can be found in
Sourbier et al. �2007�.

SYNTHETIC EXAMPLES

In this section, we present several numerical examples of 3D FWI
of increasing complexity to validate the algorithm and to give some
insight on the computing cost of the approach on realistic cases. All
examples were computed on an HPDL145G2 Beowulf cluster at the
SIGAMM computer center, located in the Observatoire de la Côte
d’Azur �France�. This parallel-distributed computer is a 48-node
cluster, each node comprising two dual-core 2.4-GHz processors,
giving 19.2 Gflops peak performance per node. The computer has a
distributed-memory architecture, wherein each node has 8 GB of
RAM. The interconnection network between processors is Infini-
band 4X. Data are shared among processors using the MPIHP mes-
sage-passing library. For the examples presented here, the PML lay-
ers spread along five grid points on each side and each direction.

Therefore, no free-surface multiples are considered in the examples.
These PML grid points are not taken into account in the description
of the finite-difference grids.

In the following examples, we use the inverse crime, which con-
sists of computing the data with the modeling tool implemented in
the FWI code. The whole wavefield, including refractions, turning
waves, and reflections, is involved simultaneously in the inversion.
All of the inversions were performed with unweighted data, i.e., us-
ing g � 0 in equation 6.

3D FWI in 2D configuration

In the first step, we validate the 3D FWI algorithm by comparing
the results obtained using a 2D FWI code and the 3D code applied in
a 2D configuration. Two-dimensional experiments can be designed
considering 2.5D velocity models �laterally invariant in the
y-direction� and an infinite line source in the y-direction. The infinite
line source in the y-direction was implemented on a limited compu-
tational domain in the y-direction using periodic boundary condi-
tions on the two faces of the model corresponding to y � 0 and y
� ymax. The periodic boundary conditions are

� � P

� y
�

y��h/2,ymax�h/2
� 0. �7�

They are applied on two virtual ghost faces located outside the com-
putational domain at positions y � �h/2 and y � ymax � �h/2�,
where h stands for the grid interval.

We applied 3D and 2D FWI to a dip section of the overthrust mod-
el �Aminzadeh et al., 1997� �Figure 2�, discretized on an 801�187
grid with a grid spacing h � 25 m. For the 3D application, the dip
section of the overthrust model was duplicated three times in the
y-direction, leading to a 3D 801�3�187 finite-difference grid. A
2D wavefield computed in this 2.5D model with the above-men-

Loop over groups of frequencies [ifreqgroup/Nfreqgroup]

Loop over iterations [it/nitermax]
Initialization of gradient, diagonal Hessian and cost function
Read starting model

Loop over frequencies in one group [ifreq/nfreq]
Build impedance matrix
Parallel factorization with MUMPS

Diagonal Hessian computation (if it = 1)
Build Nshot + Nreceiver RHSs on P0
Parallel multi-RHS resolution with MUMPS
Compute subdomains of diagonal Hessian on P[i],i = 1,Nproc

Gradient computation
Build Nshot RHS for shot positions on P0
Parallel multi-RHS resolution with MUMPS
Extract wavefields at receiver positions on Pi,i = 1,Nproc
Compute data residuals and partial RMS on Pi,i = 1,Nproc
Estimate source
Build Nshot RHS for residual positions on P0
Parallel multi-RHS resolution with MUMPS
Compute subdomains of gradient on P[i],i = 1,Nproc

End of loop over frequencies

Reduce objective function on P0
Centralize the gradient and the diagonal Hessian on P0
Scale the gradient by the diagonal Hessian on P0

Compute step length α
Updated the velocity model on P0

End of loop over iterations

End of loop over groups of frequencies

Figure 1. Outline of the FWI algorithm. Parallel tasks are written in
gray. RHS — right-hand-side terms �i.e., sources in wave modeling�;
Nproc — number of MPI processes in the parallel run; nitermax —
maximum number of iterations of one frequency-group inversion; Pi

— processor i, where P0 is the master processor. An arbitrary num-
ber of frequencies N can be inverted simultaneously �set
Nfreqgroup � 1 and nfreq � N� or successively �set Nfreqgroup
� N and nfreq � 1�.
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Figure 2. Imaging a dip section of the overthrust model. �a� True ve-
locity model. �b� Starting velocity model.
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tioned boundary conditions is shown in Figure 3. PML absorbing
boundary conditions are set on the four edges of the 2D model.

The 2D acquisition geometry consists of a line of 200 sources and
receivers, equally spaced on the surface. The corresponding 2.5D
acquisition geometry consists of duplicating three times the source
and receiver lines in the y-direction. The true model was augmented
with a 250-m-thick layer on top of it; the sources and receivers were
deepened accordingly to avoid having sources and receivers just be-
low the PML-model interface. Velocities in this layer are vertically
homogeneous and are equal to that on the surface of the original
model. We observed strong instabilities during FWI in the near-sur-
face velocities when this layer was not added to the model �Figure 1c
in Ravaut et al., 2004�. These instabilities can be removed by setting
the true velocities in the first 100 m of the starting model without
augmenting the model with an artificial layer �Operto et al., 2008�.

The starting model for inversion is obtained by smoothing the true
velocity model with a Gaussian function of horizontal and vertical
correlation lengths of 500 m �Figure 2�.

We inverted sequentially seven frequencies ranging from
5 to 20 Hz. For each frequency, we computed 40 iterations. The fi-
nal velocity models inferred from 2D and 3D FWI are shown in Fig-
ure 4. Some vertical profiles extracted from these models are com-
pared in Figure 5. They are very similar, providing a first validation
of the 3D FWI algorithm. The agreement between the final FWI
models and the true model is also quite good, although some discrep-
ancies exist between the true and reconstructed velocities around a
low-velocity layer located from 0.7 to 1 km deep �Figure 5b�. This
discrepancy is not observed when the first 100 m of the true model
are set in the starting model �Operto et al., 2008�. Some high-ampli-
tude perturbations are still slightly underestimated, mainly because
of an insufficient number of iterations. �The profiles in Figure 5 can
be compared with those obtained from 2D FWI using 80 iterations
per frequency in Operto et al. �2008�.�

These results also give some insight on the high spatial resolution
that can be achieved in the velocity models at relatively low frequen-
cies �i.e., �15 Hz� by FWI of global-offset data thanks to continu-
ously sampling the wavenumber spectrum up to a maximum wave-
number of 2/�15 Hz m�1. �We define the wavenumber as the inverse
of the wavelength �. The value �15 Hz is the wavelength correspond-
ing to a frequency of 15 Hz.�

Inclusion models

In this section, we apply 3D FWI for simple velocity models com-
posed of a homogeneous background with one and two inclusions.
The models are discretized on a small 31�31�31 grid with 50-m
cubic cells. The velocity in the background medium is 4000 m/s.
The inverted frequencies are 3.72, 6.07, 10.00, and 16.27 Hz for the
one- and two-inclusion models. To select the inverted frequencies,
we chose to remove the wavenumber redundancy in the model space
�Sirgue and Pratt, 2004�. The frequencies were inferred from the re-
lationship between wavenumber, frequency, and aperture angle pro-
vided by the theory of diffraction tomography �Wu and Töksoz,
1987�. The linear relation between wavenumber and frequency al-
lows us to increase the frequency interval when the frequency in-
creases �Sirgue and Pratt, 2004�. One hundred sources �10�10� and
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Figure 3. Example of a 2D wavefield computed in a 3D FD grid.
Note the limited dimension of the grid in the y-dimension. Five grid
points are used in the y-direction.
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Figure 4. Imaging a dip section of the overthrust model where f
� 20.63 Hz. �a� Final velocity model from 2D FWI. �b� Final veloc-
ity model from 3D FWI.
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Figure 5. Imaging a dip section of the overthrust model: Comparison
between vertical profiles extracted from the true �black solid line�,
the starting �gray dashed line�, and the 2D and 3D FWI models �light
and dark gray dotted lines, respectively�. The two profile series are
located at �a� 4.5 and �b� 13.5 km distance. The 2D and 3D FWI pro-
files are almost identical.
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36 receivers �6�6� were distributed uniformly on the top and bot-
tom of the 3D model, respectively. Source and receiver spacings
were 150 and 250 m, respectively.

We first consider a velocity model with one inclusion in the homo-
geneous background. The velocity in the inclusion is 3500 m/s �Fig-
ure 6�. The inclusion is centered on the 3D grid. The four frequencies
were inverted successively. Some horizontal and vertical sections of
the inclusion are shown in Figure 6. Note the vertically elongated
shape of the inclusion in the vertical cross section and the symmetric

shape of the inclusion in the horizontal slice. The vertical elongation
results because the top and bottom of the inclusion are sampled
mainly by downgoing transmitted wavepaths �i.e., forward-scat-
tered wavepaths� that have limited resolution power, but the shape of
the inclusion in a horizontal plane is mainly controlled by reflections
�i.e., backward-scattered wavepaths� associated with shots and re-
ceivers located near the same face of the 3D model.

This relationship between aperture illumination and image reso-
lution is also illustrated on the two profiles extracted from a vertical
and horizontal section running through the inclusion. The vertical
profile exhibits a clear deficit of high wavenumbers as a result of
transmission-like reconstruction, but the horizontal profile exhibits
only a slight deficit of small wavenumbers as a result of reflection-
like reconstruction. The symmetry of the image of the inclusion in
the horizontal plane, which results from the symmetry of the inclu-
sion with respect to the acquisition geometry, is additional validation
of the 3D FWI algorithm.

The second example contains two spherical inclusions �3500 and
4500 m/s� corresponding to positive and negative perturbations in
the homogeneous background �Figure 7a�. The center of the inclu-
sions lies on the same vertical plane in the middle of the grid. The

0

0.5

1.0

1.5

D
ep

th
(k
m
)

0 0.5 1.0 1.5
Inline (km)

0

0.5

1.0

1.5

Cr
os
sl
in
e
(k
m
)

0 0.5 1.0 1.5
Inline (km)

0

0.5

1.0

1.5

D
ep

th
(k
m
)

0 0.5 1.0 1.5
Inline (km)

0

0.5

1.0

1.5

Cr
os
sl
in
e
(k
m
)

0 0.5 1.0 1.5
Inline (km)

0

0.5

1.0

1.5

D
ep

th
(k
m
)

0 0.5 1.0 1.5
Inline (km)

0

0.5

1.0

1.5

Cr
os
sl
in
e
(k
m
)

0 0.5 1.0 1.5
Inline (km)

0

0.2

0.5

0.8

1.0

1.2

1.5

D
ep

th
(k
m
)

3300 3600 3900 4200
Velocity (m/s)

0

0.2

0.5

0.8

1.0

1.2

1.5

In
lin

e
(k
m
)

3300 3600 3900 4200
Velocity (m/s)

a)

b)

c)

d)

3500 3750 4000
m/s

Figure 6. Imaging one inclusion by 3D FWI. Vertical �left� and hori-
zontal �right� sections of �a� the true inclusion, �b� the inclusion after
inverting the 3.72-Hz frequency, and �c� the inclusion after inverting
the four frequencies successively. �d� Vertical �left� and horizontal
�right� profiles extracted from models shown in �a� �dotted lines� and
�c� �solid lines�.
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Figure 7. Imaging two inclusions by 3D FWI. �a� True model. Also
included are vertical cross sections of the FWI velocity models after
successive inversion of frequencies of �b� 3.72, �c� 6.07, �d� 10.00,
and �e� 16.27 Hz. �f� Vertical cross section of the 3D FWI velocity
model after simultaneous inversion of the four frequencies: 3.72,
6.07, 10.00, and 16.27 Hz.
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goal of this test is to verify that the 3D inversion properly handles
multiple scattering occurring between the two inclusions. For this
case study, the four frequencies were inverted successively and si-
multaneously �Figure 7b-f�. In both cases, the inversion successfully
imaged the two inclusions.

Inclusion � interface velocity model

A more realistic example consists of a velocity-gradient layer
above a homogeneous layer. A high-velocity inclusion correspond-
ing to a velocity perturbation of �1 km/s was incorporated into the
velocity-gradient layer �Figure 8�. The minimum and maximum ve-
locities were 3.8 and 6.0 km/s, respectively. It was discretized on a
100�100�40 grid with a grid spacing of h � 62.5 m, which corre-
sponds to a physical domain of 6.25�6.25�2.5 km. The grid spac-
ing h was kept constant over the successive monofrequency inver-
sions and was set according to the maximum inverted frequency.

The starting model for inversion was the velocity-gradient layer
extended down to the bottom of the model �Figure 8�. The acquisi-
tion geometry consisted of two regular grids of 17�17 � 289
sources and receivers deployed on the surface. The receiver grid was
shifted with respect to the shot grid, such that each receiver was mid-
way between four adjacent shots. This source-receiver configuration
was chosen to avoid recording high-amplitude zero-offset data,
which degrade the inversion conditioning. The distance between ei-
ther two sources or receivers was 312.5 m. We sequentially inverted
five frequencies, ranging from 1.76 to 12.15 Hz, and computed 20
iterations per frequency.

The final FWI velocity model is shown in Figure 9a. A vertical
profile across the inclusion extracted from the final FWI perturba-
tion model �i.e., the difference between the final FWI model and the
starting model� is shown in Figure 9b. It is compared with that ex-
tracted from the true perturbation model after low-pass filtering at
the theoretical resolution of FWI at 12 Hz. The bottom layer is well
recovered, thanks to the large offset coverage, allowing it to image a
broad range of the layer wavelengths quantitatively.The shape of the
inclusion is recovered incompletely with respect to the expected res-
olution of the imaging at 12 Hz, although the velocity amplitude in
the inclusion is recovered fully �Figure 9b and c�.

The spectra of the two profiles reveal that the amplitudes of the
low wavenumbers were recovered incompletely. This is probably
from an insufficient number of iterations, as suggested by the plot of
the objective function as a function of iteration number �Figure 10�.
Moreover, some discrepancies in the shape of the two spectra of Fig-
ure 9c for wavenumbers greater than 0.0017 m�1 suggest that the in-
version may have converged toward a local minimum. This may
have been caused by the high amplitudes of the model perturbations
and the related complex interactions between waves multiscattered
between the bottom of the inclusion and the top of the layer, which
make the inverse problem more nonlinear. We speculate that simul-
taneous inversion of multiple frequencies following the multiscale
approach of Bunks et al. �1995� may help to manage this nonlinear-
ity.

Qualitative inspection of the vertical profiles also reveals a slight
deficit of small �vertical� wavenumbers in the image of the inclusion
and of the bottom layer �suggested by the negative velocity perturba-
tions with respect to the true model�. This deficit is again explained
by the surface acquisition geometry, which illuminates the vertical
components of the wavenumber vector with reflections only.
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VE108 Ben-Hadj-Ali et al.



SEG/EAGE overthrust model

The 3D SEG/EAGE overthrust model is a constant-density acous-
tic model dimensions are 20�20�4.65 km �Aminzadeh et al.,
1997�. It is discretized with 25-m3 cells, representing a uniform
mesh of 801�801�187 nodes. The minimum and maximum ve-
locities in the overthrust model are 2.2 and 6.0 km/s, respectively
�Figure 11�.

Overthrust model: Channel target

Because of limited computer resources, our first application was
restricted to a small section of the overthrust model centered on a
channel. The maximum frequency involved in the inversion was
15 Hz. A horizontal slice and a vertical section of the model are
shown in Figure 12. The model dimensions are 7�8.75�2.25 km
and is discretized with a grid spacing h � 50 m, leading to a 141
�176�46 grid. The minimum and maximum velocities are 3.3 and
6.0 km/s, respectively. The acquisition geometry consists of two
regular grids of 44�33 sources and receivers on the surface corre-
sponding to 1452 sources and receivers. The distance between two
sources or two receivers is 200 m. The receiver array is shifted ac-
cording to the source array, following the geometry in the previous
example.

We sequentially inverted five frequencies ranging from
5 to 15 Hz. For each frequency, we computed seven iterations. The
starting velocity model was obtained by smoothing the true model
with a wavenumber filter having a cut-off wavenumber of
1/500 m�1 �Figure 13�. The final FWI model provides a low-pass

version of the true model �Figure 14�. To assess the accuracy of the
FWI, we low-pass-filtered the true model in the time domain with a
cut-off frequency of 15 Hz to mimic the exact velocity model that
would have been inferred by FWI �Figure 15�. Qualitative compari-
son between the final FWI velocity model and the low-pass-filtered
true model shows good agreement between the two models.

Figure 16 compares a vertical profile extracted from the starting
model, the low-pass true velocity model, and the final FWI model.
The agreement is reasonably good with, again, a slight deficit of
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for increasing frequency�. Convergence was not achieved, which
partially explains underestimated velocities.

Figure 11. The 3D SEG/EAGE overthrust model �Aminzadeh et al.,
1997�.
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Figure 12. Imaging a channel in the overthrust model, true velocity
model. �a� Cross-section at x � 4 km. �b� Horizontal slice at z
� 1.5 km.
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small wavenumbers in the FWI profile because of the surface-to-sur-
face illumination. We also note an underestimation of velocities in
the deep part of the model �see the high-velocity layer above 2 km in
depth�. This may result from an insufficient number of iterations. In-
deed, the deep structures are mainly constrained by later-arriving re-

flections of smaller amplitude recorded at larger offsets. Misfit re-
duction may be slower for these arrivals because the value of the ob-
jective function is dominated by the residuals of the high-amplitude
shallow arrivals during the first iterations.

The weighting operator in the data space corresponding to an am-
plitude gain with offset �equation 6� may accelerate the reduction of
the long-offset residuals at the partial expense of the short-offset
ones during late iterations. However, this strategy requires that we
ensure short-offset residuals are reduced enough to avoid propagat-
ing errors associated with inaccurate shallow structures deeper in the
model. This detailed tuning of 3D FWI requires further investiga-
tion.

To perform this application, we used 60 MPI processes distributed
over 15 dual-core biprocessor nodes. Each MPI process used 1.5 GB
of RAM �Table 1�. Seven iterations of the inversion of one frequency

Table 1. Computational cost of imaging the overthrust
model (channel system).

Requirement term Value

MEMFACTO ALL �GB� 67.0

MEMFACTO PROC �GB� 1.5

TIMEFACTO �s� 510.0

TIMESOLVE ALL �s� 1270.0

TIMESOLVE SOURCE �s� 0.9

TIMEGRADIENT �s� 4.0

TIMEdiag HESSIAN a �s� 3093.0

TIMEITERATION �s� 18,865.0

MEMFACTO ALL — Total memory allocated during factorization
MEMFACTO PROC — Average allocated memory per working pro-

cessor during factorization
TIMEFACTO — Elapsed time for factorization
TIMESOLVE ALL — Total elapsed time for multishot resolution
TIMESOLVE SOURCE — Elapsed time for resolution for one source
TIMEGRADIENT — Elapsed time to compute gradient
TIMEdiag HESSIAN a — Elapsed time to compute diagonal Hessian
TIMEITERATION —Average elapsed time to process one iteration
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Figure 14. Imaging a channel in the overthrust model, FWI velocity
model after successive inversion of the five frequencies, f
� 14.9 Hz. �a� Cross section at x � 4 km. �b� Horizontal slice at z
� 1.5 km.
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Figure 15. Imaging a channel in the overthrust model, low-pass fil-
tered true velocity model ��15 Hz�. �a� Cross section at x � 4 km.
�b� Horizontal slice at z � 1.5 km.
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took approximately 45 hours. Table 1 lists information related to run
time and memory requirement for LU factorization, multishot reso-
lutions �both tasks being devoted to the forward problem�, gradient,
and diagonal Hessian computation. Run time for the solution phase
is very small �0.9 s per source� and illustrates the main advantage of
FD modeling methods based on direct solvers for tomographic ap-
plications involving a few thousand sources. Computation of the
gradient is also negligible in the frequency domain �4 s� as a result of
summation without disk swapping over a very compact volume of
data limited to few frequency components. Increasing the number of
cores in the inversion would have reduced computational time sig-
nificantly but would have increased the memory requirement be-
cause of overheads during parallel LU factorization �Operto et al.,
2007�.

Overthrust model: Thrust target

We now consider imaging a significant target of the overthrust
model that incorporates the main thrusts of the model �Figure 17�.
The minimum and maximum velocities are 2.2 and 6.0 km/s, re-
spectively. The model dimensions are 13.425�13.425�4.65 km.

The acquisition geometry consists of two coincident 43�43
� 1849 grids of sources and receivers deployed on the surface. The
distance between two sources or two receivers is 300 m. A receiver
spacing of 300 m is representative of the spacing between two adja-
cent nodes in a dense 3D wide-azimuth node survey �Clarke et al.,
2007�. We used the same spacing between two adjacent shots and re-
ceivers, although a more representative shot survey could have been
designed by using smaller shot and line intervals in the dip-line and
crossline directions, respectively. The increased number of shots
should not dramatically increase the computational time needed to
compute the gradient because the residuals recorded at the shot posi-
tions �by virtue of shot-receiver reciprocity� can be propagated at
one time for each receiver.

The extra computational cost caused by a denser shot survey
would have resulted from building and storing denser residual
sources ��d* in equation 4� and from the more expensive backward/
forward substitutions solving A�1Wd�d*. On the contrary, the CPU
time required to compute the diagonal Hessian would increase dra-
matically because it requires a forward simulation for nonredundant
shot and receiver positions. However, a good approximation of the
diagonal Hessian can be computed on a coarser shot grid with a shot
interval of the same order as the receiver’s �Operto et al., 2006�.

We sequentially inverted three frequencies — 3.5, 5, and 7 Hz —
and computed 10 iterations per frequency. For this application, we
adapted the grid interval to the inverted frequency. Grid intervals
were h � 150, 100, and 75 m for frequencies of 3.5, 5, and 7 Hz, re-
spectively. The source and receiver positions were chosen to coin-
cide with the position of the nodes of the FD grids associated with the
three inverted frequencies. This allowed us to bypass the problem of
accurate implementation of point sources in a coarse FD grid, a criti-
cal issue in 3D frequency-domain FWI when the grid interval is
adapted to the frequency �Hicks, 2002�. These discretizations led to
grids measuring 90�90�32, 135�135�47, and 180�180�63.

The starting velocity model was obtained by smoothing the true
model with a 3D Gaussian function having a correlation length of
1000 m in the three directions �Figure 18�.

a)

b)

Figure 17. Imaging the thrust system in the overthrust model, true
velocity model. �a� Cross section at x � 3.3 km. �b� Horizontal slice
at z � 1.5 km.
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Figure 18. Imaging the thrust system in the overthrust model, start-
ing velocity model. �a� Cross section at x � 3.3 km. �b� Horizontal
slice at z � 1.5 km.
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The FWI velocity models after inversion of the 3.5-, 5-, and 7-Hz
frequencies are shown in Figures 19–21. One can note a square pat-
tern superimposed on the horizontal and vertical slices of the FWI
velocity models obtained after inverting frequencies of 5 and 7 Hz
�Figures 20 and 21�. The size of the square matches the shot and re-
ceiver spacing, suggesting that it corresponds to the footprint of the
coarse acquisition geometry. This footprint increases from 5 to 7
Hz as model resolution increases. The acquisition footprint has no
preferential orientation because both shots and receivers are de-
ployed uniformly all over the surface, with a constant spacing in the
dip and cross directions.

Another illustration of the footprint of acquisition coarseness on
3D frequency-domain FWI is illustrated by Sirgue et al. �2007a�. For
this application, we ran 40 MPI processes distributed over 10 dual-
core biprocessor nodes �four MPI processes/node� for the 150-m
grid �frequency � 3.5 Hz�, 60 processes distributed over 20 dual-
core biprocessor nodes �three MPI processes/node� for the 100-m
grid �frequency � 5 Hz�, and 90 processes distributed over 30 dual-
core biprocessor nodes �three MPI processes/node� for the 75-m grid
�frequency � 7 Hz�. The number of processes per dual-core bipro-
cessor node decreased from four to three as the size of the problem
increased in order to increase the amount of shared memory assigned
to each processor for large problems. This process optimized memo-
ry use at a partial expense of run time because memory overhead de-
creased with number of processes. The 10 iterations took about 24,
72, and 120 hours for the 3.5-, 5-, and 7-Hz frequencies, respective-
ly. More detailed information is shown in Table 2.
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Figure 19. Imaging the thrust system in the overthrust model,
3.5-Hz FWI velocity model. �a� Cross section at x � 3.3 km. �b�
Horizontal slice at z � 1.5 km.
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Figure 20. Imaging the thrust system in the overthrust model, 5-Hz
FWI velocity model. �a� Cross section at x � 3.3 km. �b� Horizontal
slice at z � 1.5 km.
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Figure 21. Imaging the thrust system in the overthrust model, 7-Hz
FWI velocity model. �a� Cross section at x � 3.3 km. �b� Horizontal
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We also performed the simulations using multithreading. We used
20, 40, and 60 processes distributed over 10, 20, and 30 dual-core bi-
processor nodes �i.e., one process per processor� for the 3.5-, 5-, and
7-Hz inversions, respectively, and two threads per processor in each
case �i.e., one thread per core�. Fewer processes were used in the
multithread configuration, so less distributed memory was allocated
during LU factorization as a result of reduced memory overhead �Ta-
ble 3�. Moreover, CPU time was reduced significantly for the LU-
factorization and multiple-shot solution phases �Table 3�. These re-
sults suggest that nodes with a large amount of shared memory and
multiple cores provide the optimal architecture to perform FD wave
modeling based on a direct solver to take advantage of multithread-
ing while mitigating the memory requirement.

Figure 22 shows the convergence rate for each processed frequen-
cy.This convergence rate can be compared with that shown in Figure
7a of Sirgue et al. �2007a� for 3.5-Hz frequency, keeping in mind that
the whole overthrust model is imaged in Sirgue et al. �2007a�.

In Figures 23 and 24, the data fit is illustrated in the frequency do-
main for the 3.5-, 5-, and 7-Hz frequencies. We compare the spectral
amplitude and phase of the monochromatic wavefields at the receiv-

er positions computed in the true velocity model and in the FWI
models at the first and last iterations of the three monofrequency in-
versions. One shot is located at the upper-left corner of the receiver
plane �Figure 23�; the second shot is in the middle of the receiver ar-
ray �Figure 24�. The misfit reduction between the first and last itera-
tions is more obvious at 3.5 Hz, illustrating slower convergence as
frequency increases �Figure 22�. We also note this misfit reduction is
more effective for the shot located in the middle of the receiver array,
again illustrating the difficulty of matching the lower-amplitude ar-
rivals recorded at larger offsets.As for the channel case study, the ob-
jective function is less sensitive to the residuals of these low-ampli-
tude arrivals; more iterations would have been required to cancel
them.

Table 2. Computational cost of imaging the overthrust
model (thrust system). The memory available per MPI
process is 2, 2.7, and 2.7 GB for frequencies of 3.5, 5, and
7 Hz, respectively.

Requirement
term

At 3.5 Hz
frequency

At 5.0 Hz
frequency

At 7.0 Hz
frequency

NP 40 60 90

GRID 90�90�32 135�135�47 180�180�63

MEMFACTO ALL �GB� 11.5 45.0 124.0

MEMFACTO PROC

�GB�
0.3 0.8 1.8

TIMEFACTO �s� 72.0 340.0 1850.0

TIMESOLVE ALL �s� 310.0 990.0 3450.0

TIMESOLVE SOURCE �s� 0.2 0.6 1.8

TIMEGRADIENT �s� 0.7 1.5 35.0

TIMEdiag HESSIAN a �s� 1999.0 3432.0 4000.0

TIMEITERATION �s� 2940.0 13,650.0 44,870.0

NP — Number of MPI processes
GRID — Dimension of the 3D FD grid
MEMFACTO ALL — Total memory allocated during factorization
MEMFACTO PROC — Average allocated memory per working pro-

cessor during factorization
TIMEFACTO — Elapsed time for factorization
TIMESOLVE ALL — Total elapsed time for multi-shot resolution
TIMESOLVE SOURCE — Elapsed time for resolution of one source
TIMEGRADIENT — Elapsed time to compute gradient
TIMEdiag HESSIAN a — Elapsed time to compute diagonal Hessian
TIMEITERATION — Average elapsed time to MPI process one itera-

tion

Table 3. Computational cost of imaging the overthrust
model (thrust system) using a multithread configuration (two
threads per MPI process). The memory available per MPI
process is 4 GB for the three frequencies. Compare these
values with those of Table 2.

Requirement term
At 3.5 Hz
frequency

At 5.0 Hz
frequency

At 7.0 Hz
frequency

NP 20 40 60

MEMFACTO ALL �GB� 9.9 40.0 108.0

MEMFACTO PROC �GB� 0.5 1.0 1.4

TIMEFACTO �s� 56.0 222.0 650.0

TIMESOLVE ALL �s� 290.0 650.0 1375.0

NP — Number of MPI processes
MEMFACTO ALL — Total memory allocated during factorization
MEMFACTO PROC — Average allocated memory per working pro-

cessor during factorization
TIMEFACTO — Elapsed time for factorization
TIMESOLVE ALL — Total elapsed time for multishot resolution
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Figure 22. Imaging the thrust system in the overthrust model: objec-
tive function versus iteration number for the 3.5-, 5-, and 7-Hz fre-
quencies �dark to light gray for increasing frequency�.
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a) b) c)

Figure 23. Imaging the thrust system in the overthrust model.Amplitude �left� and phase �right� of the �a� 3.5-Hz, �b� 5-Hz, and �c� 7-Hz wave-
fields at the receiver positions. The horizontal and vertical axes label the receiver number in the dip-line and crossline directions, respectively.
The source is located in the upper-left corner. From top to bottom, the first and second panels show the wavefield computed in the true and the
starting models, respectively; the third is the difference between the two wavefields. The fourth panel shows the wavefield computed in the final
model of the frequency inversion, and the fifth is the residual between the wavefields computed in the true model and in the final model of the fre-
quency inversion.
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CONCLUSION

We have presented a 3D massively parallel frequency-domain
FWI algorithm based on a direct solver.Advantages of our approach
include the robustness of the forward problem provided by a high-
performance direct solver, its efficiency to perform multishot simu-
lations in relatively small 3D finite-difference grids, and a straight-
forward parallelization of the inverse problem resulting from a do-
main decomposition of the monochromatic wavefields performed
by the direct solver. By robustness, we mean that the time required to
perform a simulation with a direct solver depends less on the com-
plexity of the velocity model than the time required to perform this
simulation with an iterative solver. Its main drawbacks are the mem-
ory and CPU time complexity of the LU factorization phase and its
limited scalability, which restricts the size of the models and the fre-
quency bandwidth that can be addressed on realistic distributed-
memory platforms.

We have presented several applications on synthetic examples of
increasing complexity to validate the algorithm and to give insight
into the feasibility of our approach. Some preliminary applications
to the overthrust model suggest that frequency-domain FWI can be
applied successfully at low frequencies ��7 Hz� on limited-size PC
clusters to develop 3D velocity models with a maximum resolution
on the order of half the wavelength �that is, 285 m for a velocity of
4000 m/s�. This resolution scale should be compared with that pro-
vided by reflection tomography and migration-based velocity analy-
sis to assess whether velocity models developed by 3D FWI can pro-
vide accurate background models for wave-equation PSDM.

Assessment of velocity models developed by 3D FWI as macro-
models for PSDM will be one aim of future work.Asecond aim will
be to assess whether accurate starting models for 3D FWI can be de-
veloped by first-arrival traveltime tomography, provided that global-
offset recording is available.A third objective will be to mitigate the

a) b) c)

Figure 24. Imaging the thrust system in the overthrust model. The same as for Figure 23, but for a source located in the middle of the receiver ar-
ray.
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memory limitations imposed by using a direct solver only.
In addition to time-domain and iterative approaches, a possible di-

rection is to evolve toward hybrid direct-iterative solvers imple-
mented in a domain-decomposition method based on the Schur com-
plement approach, for which the direct solver is applied to subdo-
mains of limited dimension while the iterative solver is applied to the
grid points located at the boundaries between the subdomains. Com-
pared to a purely iterative approach, the expected benefit is that the
iterative solver in the hybrid approach is applied to a system of
smaller dimension �the Schur complement system� that is better pre-
conditioned theoretically. The drawback is that the hybrid approach
remains more memory demanding because of the direct solver. The
relevance of this approach will have to be demonstrated when many
sources are considered.
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