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Abstract

Velocity macro-model building is a crucial step in seismic imaging workflows as it provides
the necessary background model for migration or full waveform inversion. Slope tomography,
as a reliable alternative for conventional tomography, provides a tool to achieve this purpose
where one picks the local coherent events rather than continuous events. These approaches
are based on the slopes and traveltimes of the local coherent events which are tied to a reflect-
ing/diffracting point (scatterer) in the subsurface. The forward modelling in these methods is
based on the ray tracing which may suffer from poor sampling of the medium in presence of
complex subsurface structures and long offset acquisitions. On the other hand, the inverse prob-
lem is mostly solved based on the explicit calculation of Freéchet derivative matrix which for
large data sets can be computationally expensive.

In this thesis, I introduce an anisotropic slope tomographic approach which aim at macro-
model building for subsurface properties in 2D tilted transversely isotropic (TTI) media. In
this method, I reformulate the stereotomography, as an slope tomographic tool, such that I
replace the ray-based forward engine with a TTI eikonal solver and take advantage of the adjoint
state method to calculate the gradients. In result, I can efficiently calculate the traveltimes for
complex media and long offset acquisition on a regular grid of the subsurface and formulate a
matrix-free framework for the inversion.

The eikonal solver is based on the fast sweeping method to solve the elliptic eikonal equation
while through the fixed point iterations a right hand side term updates the elliptic eikonal and
accounts for the anellipticity of TTI eikonal equation. Also, in order to achieve highly accurate
traveltimes, a factorization scheme is considered in the elliptic eikonal solver to remove the
upwind point source singularity. Due to this definition for forward modelling, compared to the
stereotomography, the model and data space is smaller and this may lead to less ill-posed inverse
problem. The inverse problem is solved with the quasi-Newton L-BFGS method in which the
Hessian is estimated with few gradients of the previous iterations. The gradients are achieved
by the adjoint state method mainly through the resolution of two adjoint state equations.

Different synthetic examples including the isotropic Marmousi and 2D TTI BP-salt model
are considered to assess the potential of the method in subsurface parameter estimations. Also,
through a simple example, the footprint of parameter cross-talk is investigated for the Thomsen
parametrization. As a real data application, the proposed method is applied on a 2D marine
BroadSeis data set (provided by CGG) to retrieve the vertical velocity of the subsurface while
during the inversion the Thomsen anisotropy parameters are kept fixed.
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Résumé

La construction du macro-modele de vitesse est une étape cruciale et complexe de la chaine
d’imagerie sismique car de sa capacité a prédire les temps de propagation des ondes sismiques
dépendent la focalisation et le positionnement des réflecteurs dans les images migrées et la
convergence des méthodes d’inversion non linéaires de formes d’onde completes (FWI: Full
Waveform Inversion) vers une solution proche du minimum global de la fonction cofit. Parmi les
approches possibles pour construire ce macro-modele, la tomographie des pentes est fondée sur
le pointé d’évenements localement cohérents caractérisés par leur temps de trajet et leurs pentes
dans les collections de sismogrammes a source et réflecteur communs. Chaque événement dans
les observables est associé a un petit segment de réflecteur dans le sous-sol caractérisé par
sa position et son pendage. Le caractere local du pointé est I’élément déterminant favorisant
I’automatisation de cette tache et une exploitation plus exhaustive de I’information contenue
dans les données sismiques.

Les méthodes existantes de tomographie des pentes sont fondées sur des techniques de tracé
de rai pour le calcul des temps et des pentes. Une limite de ces techniques réside dans la
difficulté de contrdler 1’échantillonnage du sous-sol par les rais particulicrement dans le cas
de milieux géologiques complexes et de dispositifs d’acquisition impliquant de forts déports
source-capteur. Par ailleurs, le probleme inverse repose sur le calcul explicite de la matrice de
sensibilité (ou de Fréchet) dont la construction et la résolution matricielle en découlant peuvent
se révéler cofliteuses lors du traitement de gros volumes de données.

Cette theése propose une reformulation de la tomographie des pentes pour palier aux deux
limitations sus-mentionnées. Les temps de trajet sont calculés a 1’aide d’un solveur eikonal et
la méthode de 1’état adjoint est utilisée pour calculer efficacement le gradient de la fonction
colit dans le contexte de méthodes d’optimisation locale implémentées avec 1’algorithme de
quasi-Newton I-BFGS. Le solveur eikonal est fondé sur une méthode aux différences finies
pour la discrétisation des opérateurs différentiels, la méthode du "fast sweeping" pour propager
les fronts d’onde et d’une approche factorisée pour s’affranchir de la singularité a la source. La
méthode est implémentée pour des milieux 2D transverses isotropes avec un axe de symétrie
dont I’orientation varie spatialement (milieux TTI). Dans ce contexte, I’équation eikonale TTI
est résolue avec la méthode du point fixe apres I’avoir ré-écrite sous forme d’une équation
eikonale "elliptique" dont le terme de droite concentre les effets d’anellipticité. Les pentes a
une source et a un récepteur donnés sont calculées au sens des différences finies en utilisant des
simulations calculées pour les sources et les récepteurs voisins et en exploitant la réciprocité de
la propagation entre un point d’émission et de réception.

La méthode est évaluée avec différents examples synthétiques de complexité croissante.
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Le rdle des pentes pour localiser les segments de réflecteurs est tout d’abord illustré avec un
modele isotrope simple a une couche avant de d’aborder la cas du modele complexe Marmousi
pour lequel un pointé réaliste est utilisé. Cet example permet de démontrer que la tomographie
des pentes fournit un modele de vitesse initial suffisamment précis pour la FWI. Dans le cas
de milieux TTI, les couplages pouvant exister entre les parametres de différente nature (vitesse
verticale et parametres de Thomsen ou toute autre combinatoire et position des segments) sont
analysés avec un cas synthétique canonique avant de présenter une application sur un modele
synthétique plus réaliste (le modele 2D TTI BP-salt) ou la vitesse verticale et le parametre de
Thomsen e sont reconstruits de maniere conjointe.

Cette these se conclut par une application a des données de sismique réflexion multitrace
large bande fournie par la Compagnie Générale de Géophysique (CGG). Le modele de vitesse
vertical reconstruit avec 1’approche développée dans cette these est comparable avec celui
obtenu par la CGG. La pertinence de ce modele est validé par ailleurs en I'utilisant comme
modele de référence pour effectuer une migration par renversement temporel (RTM: Reverse
Time Migration) et vérifier I’horizontalité des réflecteurs dans le volume migré avant somma-
tion.

A titre de conclusion, quelques perspectives de ce travail sont évoquees parmi lesquelles
I’inversion conjointe des temps de trajet des primieres arrivées et des ondes réfléchies ainsi
que I’'implémentation de régularisations ou d’une paramfrisation parsimonieuse de I’espace des
modeles permettant de réduire les ambiguités potentielles entre les vitesses sismiques et la po-
sition des segments de réflecteurs.
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Chapter 1

General Introduction

Chapter overview: In this chapter, I first review the basic principles of seismic methods in
exploration seismology, the geometry of the main seismic acquisitions and the anatomy of the
seismic measurements. Then, I introduce the motivation beyond the concept of scale separa-
tion between the velocity macro-model and the reflectivity, which describe the long and short
wavelength components of the subsurface, respectively. Most of the seismic imaging workflows
based on reflected waves rely on this concept through the alternate application of tomography
(or migration-based velocity analysis) for the velocity macro-model building and migration for
the reflectivity imaging. Then I focus more specifically on the velocity-model building methods
to which this thesis is more closely related. I first introduce the basics of reflection traveltime
tomography before extending the discussion to slope tomography methods, the tomographic
methods that exploit the slope of locally-coherent events in addition to their traveltimes to
update the subsurface. I first review the pioneering ray-based stereotomography method be-
fore extending the discussion to various recent variants of non linear slope tomography. I also
present a short review of anisotropy in the Earth as almost all of the tomographic approaches in
exploration geophysics need to account for anisotropic effects. I conclude this introduction by
the main objectives of this thesis and the outline of the chapters.

1.1 Exploration seismology

1.1.1 History

Seismic imaging triggered by observing the first seismogram near the end of 19th century.
The first application of seismology was dedicated to the localization of earthquake epicentres
and it was in 1884 that Mallet reported the first controlled-source experiment (by opposition
of natural sources provided by earthquakes) to characterize the subsurface. Knott (1899) de-
veloped the theory of wave partitioning at interfaces (estimation of reflection and transmission
coefficients as a function of the incidence angle) and this work was later extended by Wiechert
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and Zoeppritz (1907); Zoeppritz and Geiger (1907). During World War I, the efforts devoted
to locate the heavy artilleries from seismic waves generated by recoil laid the foundations of
seismic exploration. Discovery of a salt dome in Texas by refraction seismology made this
method popular, and it was 1927 that commercial utilization of reflection seismology began
in Oklahoma. The first subsurface maps was generated by recognizing one arrival on a single
seismic record, and it was in 1929 that calculation of dip of events on several seismic records
permitted the successful application of reflection seismology to map laterally-coherent geologi-
cal features. This prompted the pioneers of exploration geophysics to design surveys with more
receivers, leading to the emergence of reflection seismology for subsurface imaging. Digitizing
the seismic records and mathematical developments in early 1960s revolutionised the explo-
ration seismology by defining the "data processing" concept. Meanwhile, there were some
achievements in seismic sources (e.g. in 1953 Vibroseis method developed) and seismic survey
design (e.g. common midpoint method patented in 1956) (Telford et al., 1990). These were the
first steps in developing the modern exploration seismology.

1.1.2 Principles

Seismic acquisition (Fig. 1.1) includes an array of receivers which records the seismic en-
ergy propagated by controlled seismic sources (i.g. dynamite, vibroseis, airgun, etc.). In land
explorations, the receivers are on the surface or at depth along a vertical well in vertical seismic
profiling (VSP). In marine (off-shore) surveys, the receiver array is near the sea surface and is
tied to the source position (towed-streamer acquisition) or stationary on the sea bed in ocean
bottom seismic (OBS), which can be carried out either with multicomponent ocean bottom
cables (OBC) or autonomous ocean bottom nodes or seismometers (OBN) (Fig. 1.1).

Source

Source

laind w ww w

Streamer

Figure 1.1 — Schematic presentation of different seismic acquisitions. Green triangles are the
receivers. In marine acquisition (the blue region is sea), hydrophones are deployed in streamers
and are towed by the shooting vessel, while the stationary receivers are on the sea bottom in
ocean bottom seismic. For land acquisition, the geophones are either on the surface and/or
along a vertical well in VSP.
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The released energy by a source generates both compressional (P) or/and shear (S) waves
in the subsurface. In exploration seismology, the subsurface is often assumed to be a fluid
(acoustic medium), within which only P waves propagate. During their propagation in the
subsurface, the waves interact with the subsurface heterogeneities through refraction, (multi-)
reflection and diffraction before being recorded by receivers near the surface (Fig. 1.2). Waves,
which are sent downward from the surface, are recorded near the surface during their rising path
after reflection or refraction from first-order lithological discontinuities or beyond the grazing
incidence for diving waves.

Source Receiver

Direct waves

Figure 1.2 — Anatomy of wave propagations in a synthetic acoustic model. The main arrivals
are: reflections, namely waves reflected from the first-order velocity contrasts or reflectors;
Direct wave which travels directly from the source to the receivers without any interaction
with subsurface heterogeneities; multiple reflections between the free surface and the internal
reflectors; Refracted waves which travel along the velocity discontinuities. Diffracted waves
which result from the interaction with an obstacle, the size of which is of the order of the
propagated wavelength. Here, the arrows represent the rays, the trajectories perpendicular to
the wavefront.

Each active source (shot) is recorded by several receivers and each of them records a seis-
mogram. Collection of these seismograms builds a common-shot gather. Tracking the lateral
coherency of the recorded energy in common-shot gathers, namely, in the time-offset domain
where the offset is the horizontal distance between the source and the receivers, allows for a first
identification of the main seismic phases and a quality control of the data. Fig. 1.3(a-c) shows
a realistic synthetic subsurface acoustic model with a seismic source at the top left corner, and
Fig. 1.3(e) is the recorded common shot gather with a 1D receiver array on the surface. Differ-
ent phases are labelled on the gather and the associated schematic wave trajectories are plotted
on the subsurface model.

The recorded seismic data can be sorted in different ways by considering another common
attribute of the acquisition. For instance, gathering all the seismograms which are related to
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the same receiver forms a common receiver gather (Sheriff and Geldart, 1995). Among other
widely used gathers are common mid point (CMP) gather which includes several shot-receiver
pairs with common mid point. Fig. 1.4 shows a schematic representation source and receiver
layouts for common shot, CMP, common receiver and common offset gathers.

The seismic arrivals carry two types of information: 1) kinematic information which are
related to the traveltime of arrivals from the source to the receiver, 2) dynamic information
which are related to the amplitude of recorded arrivals. The kinematic information are a function
of the trajectory and propagation velocity of the waves, and dynamic information are influenced
by different factors such as reflection/transmission coefficients of the interfaces, geometrical
spreading and attenuation.

Distance (km)

Offset (km)
6 8 10 12 14

Velocity (km/s)

Time (sec)

————

Low-velocity zone

Deep reflector

Figure 1.3 — Wave propagations and recorded shot gather in a synthetic shallow-water model
representative of the North sea. a-c) The subsurface main structures are: low-velocity gas layers
between 1400 — 2400 m in depth, the reservoir at 2500 m in depth, and a flat reflector at 5000
m in depth. e) The modelled synthetic acoustic seismograms for the subsurface model shown
in the left panels with a source on the top left corner (red %) and the receivers on the surface.
The labels designate different phases on the seismograms and the associated schematic ray-
paths on the model: direct waves (Di) with straight path, diving waves (D1, D2) in the upper
structure, refraction (Rf1, Rf2) from the velocity discontinuities by the top of the reservoir and
deep reflector, reflections (Rs, Rm, Rd) from the reflector at shallow, middle and deep zones,
multi-scattered waves (Ms) due to diffraction from the sharp edges of gas layers and multiple
reflection (Mp) between the surface and reflectors (figure adapted form Zhou (2016)).
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a) b) c) d)

Figure 1.4 — Source and receiver layouts for different gathers. a) common shot gather, b)
common mid point (CMP) gather, ¢) common receiver gather and d) common offset gather.

1.1.3 Seismic imaging workflow

In exploration seismology, seismic imaging relies on the measurement of seismic waves
generated by controlled sources and aims to transform these observables into a well-resolved
image of the subsurface down to several kilometres depth.

In order to achieve the final interpretable seismic image which accurately reflects the geol-
ogy of the targeted area, one need to process the seismic data with an appropriate processing
workflow. But before that, we need to remove some noise from the data. Here, the noise does
not have a general strict definition; it is rather defined based on the key principles of the process-
ing workflow to be performed. For instance, the first-arrivals are the input data in first-arrival
traveltime tomography or early-arrival waveform inversion, while they are considered as noise
in reflection tomography or migration. However, there are always some random background
noises which are needed to be removed as well as other coherent noises such as multiples that
may need to be eliminated. After de-noising, there are different approaches to build the final
image of the subsurface, which can be broadly categorized as follow.

Scale separation based approaches

In reflection seismology, the reflected waves are generated by reflectors corresponding to
the velocity or impedance contrasts between lithological or structural units (Fig. 1.5a). The
attribute which describes these contrasts is generally referred to as the reflectivity (Fig. 1.5¢).
In terms of scale or resolution, these reflectors can be viewed as the short-wavelength com-
ponents of the subsurface. A geometrical picture of these reflectors is useful for interpreters
to identify the main lithological units and the deformation they underwent (faulting, folding,
...). The imaging process that generates such pictures is called migration, this denomination
capturing the idea of moving the waves recorded at the surface to the reflectors that produced
them (see Etgen et al. (2009) and Biondi (2006) for recent reviews of the different kinds of
migration methods and Claerbout (1976), Berkhout (1985) and Yilmaz (2001) for some his-
torical references). On the other hand, the traveltimes of the waves that propagate from the
source or the receiver positions to the reflectors are mostly sensitive to the long wavelengths of
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the wavespeed distribution (Fig. 1.5b), which are generally referred to as the velocity macro-
model. This implies that an accurate velocity macro-model is necessary to correctly position in
depth the reflectors by migration. When the spread of the receiver layout is of insufficient length
to record reflected waves beyond the critical incidence (Fig. 1.6a), it is well acknowledged that
there is spectral gap between the wavenumber component of the velocity macro-model and
that of the reflectivity (Fig. 1.6b), namely, the intermediate wavenumbers belong to the null
space of the imaging process (Claerbout, 1985; Jannane et al., 1989). In other words, with such
acquisition, it is not possible to build a model of the subsurface which embeds a continuous
broadband of wavelengths, from the mean property up to a high-cut wavenumber which would
be controlled by the maximum temporal frequency of the seismic source. This explains why
a conventional reflection seismic imaging workflow alternates two main tasks within an itera-
tive process: the velocity macro-model building by a velocity analysis techniques (traveltime
tomography, migration-based velocity analysis, ...) followed by migration to build the reflec-
tivity. Generally, the output of one of these two tasks is used as an input of the other one.
This two-step approach has been referred to as the sequential approach by Biondi and Almomin
(2013).

!
0l

i

!

b) Velocity macro-model
(Long wavelength components) (Short wavelength components)

Figure 1.5 — Scale separation. The subsurface velocity model can be split into the velocity

macro-model and reflectivity which include the long wavelength and short wavelength compo-
nents of the subsurface velocity model, respectively (figure adapted form Chauris (2000)).

In conventional workflows the velocity analysis relies on maximizing the stacking power
of reflection hyperbolas in common midpoint (CMP) gathers, Fig. 1.7, (Yilmaz, 2001). This
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a) b)

Source Receiver A
Accuracy

100%

~ \Tomogmplm( velocities

Velocity

Figure 1.6 — Scale separation in seismic imaging. a) Relationship between the scattering angle
0 and the local wavenumber at the diffractor point X. The wavenumber component k injected
at the diffractor point is related to the local wavelength A of seismic wave and the scattering
angle 6 through the expression |k|| = [k + k|| = 2 cos(6/2). In the seismic acquisitions
with a short offset range (compared to the depth of target), only small ¢ are sampled if the
background velocity be smooth. Therefore, only the high spatial frequency (short wavelength)
components of the subsurface can be retrieved. In order to retrieve the long wavelength com-
ponents, one needs to consider the propagation paths which involve the large scatterer angles.
This raises the issue of scale separation. b) Schematic presentation of scale separation for a spe-
cific diffractor in (a) where the background velocity macro-model and reflectively include low
and high frequency content of the subsurface model, respectively. In broad-band wide-azimuth
seismic acquisitions, the medium is sampled with lower spatial frequencies (smaller #) which
narrow the gap between two scales (red curve in diagram). Also, high resolution tomographic
approaches push upward the high end of the short wavelength component of the velocity (blue
curve in diagram). Figure is adapted from Claerbout (1985); Biondi and Almomin (2013).

simple time processing generally results in smooth velocity models in time which can be used
for time migration of stacked section (post-stack time migration). But, developments in seis-
mic acquisition, computational power and theoretical aspects of the methods enabled us to
retrieve more details of subsurface. This required a more careful and complicated imaging
workflow. Among different methods for retrieving the velocity macro-model are reflection
traveltime tomography (Aki et al., 1977; Bishop et al., 1985; Farra and Madariaga, 1988) and
migration-based velocity analysis (MVA) (Gardner et al., 1974; Al-Yahya, 1989). Tomographic
approaches seek to minimize the misfit between the picked traveltimes of the recorded reflected
waves and the modelled traveltimes, through the resolution of a numerical optimization prob-
lem.

MVA methods broadly speaking seek to optimize the focusing of the energy in the prestack
migration domain. The governing idea is that a seismic acquisition always generates some kinds
of redundant information (Fig. 1.8), this redundancy being necessary to estimate wavespeeds
and solve the velocity-depth ambiguity. This redundancy implies that the dimension of the data
space (a space allowing a full parametrization of the acquisition) is always higher than of the
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model space (a space allowing a full parametrization of the subsurface). For example, a 2D
towed-streamer acquisition can be described by three attributes: the source position, the offset
and time (Fig. 1.8a), while the subsurface is described by two parameters, depth and distance.
One can build as many images of the reflectivity as available surface offsets to generate a mi-
grated volume in the prestack domain (prestack means that the velocity analysis is performed
before generating the final migrated image by stacking all the offset-dependent partial migrated
images). For one fixed distance, some offset-depth panels, referred to as common-image gath-
ers (CIGs), can be generated (Fig. 1.8b). If the velocity model that has been used to perform the
migration is accurate, the reflectors should be flat in these panels as each class of offsets should
reveal the same subsurface structure. Indeed, if these reflectors are flat in the CIGs, their stack
will optimally focus them in the final migrated image.

Therefore, the aim of the migration-based velocity analysis is to minimize the residual
move-out of the reflectors in the CIGs (Fig. 1.9). Some of MVA methods require picking of
the residual moveouts in prestack migration volume, while others more automatic methods, that
are recast as waveform inversion (Symes (2008) for a review) such as differential semblance
optimization (DSO) (Symes and Carazzone, 1991; Symes, 1998; Chauris and Noble, 2001),
migration-based traveltime inversion (MBTT) (Clément et al., 2001) or reflection waveform in-
version (RWI), Fig. 1.10, (Xuetal., 2012; Brossieret al., 2015; Zhou et al., 2015), do not require
this tedious picking task, although a careful preprocessing of the gathers is always necessary to
filter out coherent noise and other stretching effects.

The RWI technique takes advantage of the reflectivity of subsurface (acquired by migration
with an initial velocity model) to introduce the reflector as the secondary sources in the depth
and inject the low wavenumber components at the diffractor points, Fig. 1.10. This allows up-
dating the velocity macro-model by emphasizing the transmission paths of the reflected waves.
Since the initial velocity is incorrect and consequently the reflectors are not well positioned,
one needs to perform again migration and update the reflectivity. By alternating these steps in
an iterative process, the workflow converges to the final subsurface model.

Scale integration based approaches

Recent developments in broad-band, wide-azimuth and long-offset seismic acquisitions
made the gap between the discussed scales narrower. Broad-band sources push back the limits
of low and high parts of the frequency bandwidth such that reflectivity and the velocity bands
are extended at their low and high ends, respectively (Biondi and Almomin, 2013) (the red line
in Fig. 1.6b). Moreover, long-offset acquisitions make recording of deeply-penetrating div-
ing waves and post-critical reflections possible. These waves are typically transmitted across
the heterogeneities during their propagation, leading to a forward-scattering type interaction
(by opposition to back-scattering generated by reflection). This transmission regime from the
source to the receiver combined with broadband data provides a suitable framework to recon-
struct the intermediate wavelengths of the subsurface by waveform inversion techniques such
as full waveform inversion (FWI) (see Tarantola (1984b), Lailly (1984), Gauthier et al. (1986),
Mora (1987), Mora (1989) Mora (1988), Mora (1988) and Pratt (1999) for original publications
and Virieux and Operto (2009) for a more recent review) and narrow the scale deficit mentioned
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Figure 1.7 — Velocity analysis based on maximizing the stacking power in CMP gathers. a)
A CMP gather for a layering media with four flat layers (no multiple). b) Velocity scan panel
which shows the stack power of hyperbolas for different velocities. ¢) The CMP gather in (a)
after NMO correction (figure from Madagascar development blog).

in the previous section accordingly. In other words, gathering all of the information carried
out by diving waves, pre- and post-critical reflections makes in theory non-sequential or fully-
integrated waveform inversion approaches possible for the simultaneous update all of the wave-
length components of the subsurface up to a cut-off wavenumber controlled by the maximum
frequency of the source. This prompts for example Mora (1989) to define these waveform inver-
sion techniques under the form of the equation: inversion = tomography + migration. The issue
with such waveform inversion techniques, beyond their computational cost which can limit the
maximum frequency injected in the inversion, is their nonlinearity (the classical least-squares
difference-based misfit function to be minimized contains many local minima). There are cur-
rently three main approaches to circumvent this issue: the first ones attempt to design new FWI
misfit functions based on optimal transport ((M¢étivier et al., 2016¢,a,b), matching filter (LLuo
and Sava, 2011; Warner and Guasch, 2016; Zhu and Fomel, 2016), correlation (van Leeuwen
and Mulder, 2008) or instantaneous phase and envelope (Bozdag et al., 2011; Luo and Wu,
2015) which exhibit better convexity properties. These approaches generally provide velocity
model with a more limited resolution than classical FWI. However, these velocity models can
be used as improved starting velocity models for classical FWI. The second one tend to add an
extra dimension in the model space to expend the search space beyond the local-minima valleys
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Figure 1.8 — A 2D dataset cube a) before migration b) after depth migration. Seismic acqui-
sitions generate redundant data. For instance in (a) the recorded data in a 2D acquisition is
presented with three attributes: source position, offset, time. In the migrated cube (b) the CIGs
are the offset-depth panels extracted for a fixed position on the surface. If the migration velocity
be a close estimation of the subsurface velocity, the CIGs includes flat reflectors (figure adapted
form Chauris (2000)).

(Symes, 2008; van Leeuwen and Herrmann, 2013). The third one aims to improve the starting
model for FWI through the development of new traveltime tomography methods, which are
amenable to exploit a dense picking of high-frequency data (e.g. Lambaré, 2008; Woodward
et al., 2008). The work carried out in this PhD thesis falls into the third category and seeks
to develop a novel tomographic approach based on traveltimes and slopes of locally-coherent
events.

To conclude this review of the different categories of techniques for subsurface imaging, it
is worth mentioning that even the most modern long-offset acquisition devices do not allow one
to record those diving waves which penetrate down to the deepest targeted structure. Therefore,
while a fully integrated FWI approach can be sufficient to build a high-resolution velocity model
in the upper part of the subsurface, one has to come back to the sequential approach to build the
velocity model from reflected waves in the deep part. In the framework of waveform inversion
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Figure 1.9 — Flatness of the reflectors in CIG. A CIG from a realistic data set after depth
migration with a) incorrect velocity model and b) a close approximation of true velocity model.
The red arrow designates the non-zero residual moveout (RMO). The migration-based velocity

analysis aim at minimizing the residual moveouts for the reflectors (figure is adapted form Zhou
(2016)).

techniques, reflection waveform inversion (RWI) mentioned in the previous section (Xu et al.,
2012; Brossier et al., 2015) should be viewed as an adaptation of FWI to perform velocity model
building from reflections only. Consistently with the sequential strategy, the governing idea is
to use a reflectivity image as a prior information that is used as secondary sources to emphasize
the transmission paths of the reflected waves in the sensitivity kernel of the inversion at the
expense of the interactions of the wave with the reflectors (migration isochrones). Conversely,
the upstream reflectivity (or impedance) image can be built by a least-squares reverse time mi-
gration which turns out to be equivalent to a waveform inversion of the short-spread reflections.
Again, these two processes (impedance imaging followed by macro-velocity mode building)
are alternated with an iterative workflow. An extension of RWI was recently proposed by Zhou
et al. (2015) such that the diving waves can be included consistently with the reflected waves
in the velocity-model building. The governing idea is that the diving waves will contribute to
improve the reconstruction of the shallow part where they propagate, this improvement allow-
ing for a more accurate reconstruction of the deep structure by reflection waveform inversion.
It is important to stress that, in the upper part where both diving waves and reflected waves
propagate, the long-wavelength information carried out by these two kinds of waves (diving
and reflected waves) are complementary and not redundant because diving waves mostly prop-
agate sub-horizontally while reflections propagate sub-vertically. Therefore, they do not see the
same spectral components of the subsurface (see Mora (1989) for an illustration of the spectral
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Receiver Source

Reflector

Figure 1.10 — Background velocity updating in the reflection waveform inversion. The reflec-
tivity model acquired by migration with an initial velocity model, plays the role of secondary
sources in the depth and provides a large scattering angle for the sampling of diffractor "X".
Therefore, the wavenumber component |[k|| = ||ks + k.|| = % cos(6/2) injected at the diffrac-
tor point includes the low spatial frequencies which allows updating the velocity macro-model
in the background. This emphasizes the transmission path of the reflected wave. This comple-
ments the discussion of Fig. 1.6 where only the reflectivity was updated through narrow-azimuth
seismic data (see more details in Brossier et al. (2015)).

coverage achieved by different wavepaths).

In this thesis, I develop the traveltime and slope tomographic method for reflected waves.
However, I will discuss in the perspective section the extension of the method to the joint in-
version of first-arrival and reflection traveltimes and slopes, hence defining the tomographic
counterpart of the waveform inversion approach of Zhou et al. (2015).

1.2 Velocity macro model building

The challenge of velocity macro-model building has motivated development of an impres-
sive number of techniques. These methods can be classified according to different criteria such
as the domain in which inversion is performed (unmigrated domain, migrated domain, extended
migrated domain), the need or not of picking times or extracting attributes, the kinds of ob-
servables that feed the inversion (traveltimes, slopes, waveforms), the kinds of acquisition and
related arrivals used by the inversion (towed-streamer versus stationary-receiver acquisitions,
reflected waves versus diving waves) and the optimization criterion that drives the inversion
toward the subsurface model (semblance, differential semblance, correlation, difference, dou-
ble difference, optimal transport, matching filter) with many possible bridges between these
different approaches.

In the following we review the bases of reflection traveltime tomography, classic stereoto-
mography, and non-linear slope tomography. Through these reviews we try to cover the main
principles of the approach developed in this thesis for velocity macro-model building.
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1.2.1 Reflection traveltime tomography

Refection traveltime tomography as a tool to estimate the kinematic attributes of the sub-
surface (wavespeeds or related anisotropic dimensionless parameters such as the Thomsen’s
parameters (Thomsen, 1986)) was introduced as an alternative to stacking velocity analysis to
improve the resolution of the velocity models. Resolution of the stacking velocity analysis is
in the order of receiver array spread while traveltime tomography resolution is of the order of
Fresnel zone width (Williamson, 1991). The stacking velocity analysis relies to a large ex-
tent on the assumption of laterally-homogeneous media. Moreover, stacking velocity analysis
performs the velocity estimation in the time domain and, hence, requires some time-to-depth
conversion trough for example the Dix formula for depth imaging. This approach can mainly
recognize anomalies when their seismic response can be followed along the receiver spread,
while each reflection time can separately influence the velocity update in reflection tomogra-
phy. Therefore, dipping reflectors and the local anomalies do not violate any assumption in
reflection tomography.

However, reflection tomography relies on the picking of primary reflections which can be
a tedious task. On the other hand, the primary reflections generally might not always provide
enough illumination of the full subsurface target. For example, multiple reflections from a deep
reflector and the flanks of a salt body can be helpful to image them. These intrinsic limitations
promote two ways out: 1) applying other methods which take into account the full waveform (no
need to pick the observables) and both kinematic and dynamic information, 2) try to improve
the basis of reflection tomography and overcome some of the limitations by reformulating the
method.

Although some limitations of reflection traveltime tomography such as relying on the pri-
mary reflections seem unavoidable, there have been many successful developments of this tech-
nology, such as pre-stack depth migration (PreSDM) velocity analysis and slope tomographic
approaches with possible connections with these two categories of methods. Since the central
aim of this PhD is to develop a slope tomographic method, I review now in more details the
principles of ray-based traveltime reflection tomography before introducing the main concepts
of slope tomography.

Classic reflection traveltime tomography

Here, picking a collection of reflection traveltimes following laterally-coherent events is
the first step. Picking is conventionally performed in the unmigrated pre-stack time domain
(e.g. CMP gathers) (Bishop et al., 1985; Farra and Madariaga, 1988). These traveltimes are
related to laterally-coherent or continuous events on seismic gathers, which can be interpreted
as reflections from subsurface reflectors.

After picking, one can subdivide the subsurface into rectangular cells as in Fig. 1.11. Classic
reflection tomography uses the observed traveltimes of the picked reflections for each offset to
retrieve the velocity in each cell through solving a system of linear equations. For the simple
example in Fig. 1.11 for which straight rays are assumed, the travel path from the source to
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the receiver is formed by linear segments crossing the cells. Under this crude assumption, the
observed traveltime for a given receiver is given by

dy ds dy dy dy d
do  ds  du dy  da  d5

V2 Ug V14 Vg V4 Us

T = (1.1)
Here, d; is the travelled distance by the ray in the jth cell which can be inferred by performing
ray tracing from the associated source and receiver to the reflector (or vice versa), and v; is the
velocity of the jth cell. Reflection tomography seeks to find the velocity model that best fits the
observed traveltimes. A similar equation can be written for all the picked events and offsets and
the relationship between traveltimes

ﬂ = Zdij/vj = Zdiij, (12)
J J

where T is the observed traveltime along the ¢th ray path (which is associated to a specific
CMP and offset), d;; is the travelled distance by sth ray in jth cell with velocity v; or slowness
s; (inverse of velocity v;). This equation can be recast in matrix form as

T = DS. (1.3)

Here, vectors Ty« and Sy, include the observed traveltimes for N rays and M slowness
cells, respectively, and matrix Dy, (sensitivity matrix) consists of the associated travel dis-
tance by rays in each cell. In real applications since each ray is not crossing all the cells, the
matrix D is sparse (i.e. many of its coefficients are zero). The solution of this equation in a
least-square sense is given by

S = (D'D) 'D'T. (1.4)

For small problems the slowness in each cell can be calculated with direct solver (namely,
Gaussian-elimination techniques). However, for large scale problems, iterative solvers such as
those based on LSQR (Paige and Saunders, 1982) are classically used to tackle realistic case
studies.

In realistic settings, the depth of the reflectors are unknown and the relationship between
traveltime and slowness is non linear because the ray paths depend on the velocity model. This
leads to development of non-linear tomographic algorithms (Bishop et al., 1985; Farra and
Madariaga, 1988) in which one solves the following optimization problem in a least-squares
sense

min|[to,s — tee(m)|[3. (1.5)

Here, the unknown slownesses and the reflector depths are gathered in vector m, and t,;,s and
t.. are the observed and the calculated traveltimes by ray tracing, respectively. Note that, the
calculated traveltime is a function of the subsurface slowness and the reflector depths. Zeroing
the gradient of the misfit function (which is the necessary condition for the minimizer of the
misfit function), leads to

Jt(tobs - tclc<m)) = 07 (16)

where J = 0Ot./0Om is the so-called sensitivity or Fréchet derivative matrix. Through an
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Figure 1.11 - Classic ray-based tomography. The subsurface is described by several velocity
cells. The blue lines represent schematically the ray which samples the reflector at depth. Red
arrows are the travelled distance by ray within each velocity cell. In real application the rays
should respect the Snell’s law where crossing the border of each velocity cell (figure adapted
from Jones (2010)).

iterative algorithm starting from an initial guess for the subsurface slowness and the reflector
depths, one can find the solution of this equation which fits the observed traveltimes.

In order to clarify this procedure, consider iteration % in which my, is known and the desired
my 1 is unknown. If Am = my; —my, by applying the first-order Taylor’s expansion around
my, one can write

tclc(mk -+ Am) = tclc(mk) + J.Am, (L.7)

where the Fréchet derivative matrix Jj, is defined as J|m—m, . Condition (1.6) implies J Z(tobs —
tae(mgi1)) = 0. Inserting the expression (1.7) in this condition leads to

Am = [J13,] 7 J'At. (1.8)
Therefore, with the calculated perturbation Am, the updated my,; can be achieved through

my | = mg + Am. (1.9)

The Fréchet derivative matrix in each iteration is calculated based on the Fermat’s prin-
ciple ! of least time for rays which shows the derivative of the traveltime with respect to the

1. According to the modern Fermat’s principle in optic (Ghatak, 2005, section 2.1), "the actual ray-path be-
tween two points is the one for which the optical path length is stationary with respect to variations of the path".
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slowness in a velocity cell (Fig.1.11) is approximately the travelled distance by the ray in that
cell. Derivative of the traveltimes with respect to the depth of reflectors can be obtained in a
close form directly form ray tracing (Bishop et al., 1985, their appendix B).

PreSDM tomography

In real applications, reflection tomography can be performed in a more reliable way in
the (prestack) depth migrated domain because the picking is generally easier in the migrated
domain; energy in migrated images are more focused and signal to noise ratio is higher. In the
following, I briefly introduce the main principles of PreSDM tomography, Fig. 1.12.

In Fig. 1.12(a) the subsurface is discretized in a comparable manner to the classic approach
in Fig. 1.11 but there are many sophisticated interpretative discretization schemes in which the
subsurface can be divided into layers (by considering the geology of the area under exploration)
and within each layer consider a fine grid.

After PreSDM with an initial guess for the subsurface velocity and calculation of CIGs 2, an
automatic volumetric picking in the CIGs and common-offset migrated sections is performed in
order to picks the continuous events and the geological dip for common imaging points (CIPs),
respectively. For an accurate enough velocity model, the depth of a CIP should be same for
all of the offsets (i.e. a flat continuous event in the associated CIG)(Fig. 1.12c). Therefore,
the PreSDM tomography consider the flatness of the events in CIGs as a criterion to measure
the accuracy of the velocity model. In case of performing the migration with wrong velocity
model, there is no alignment for the picked events in CIGs (Fig. 1.12b). This deviation of the
CIP depth for different offsets is called the residual moveout (RMO). Therefore, the flatness of
the events in CIGs is equivalent to the zero RMOs (Fig. 1.12b-c). Considering the zero RMO
as the criterion for accuracy of velocity models, the PreSDM tomography formulation reads as
follow.

If the true subsurface slowness s be the perturbed version of initial slowness sg, one can
write
S = sg + As, As < s. (1.10)

Therefore, the true depth of a picked RMO at offset & in a CIG can be defined as
Zh<S) = Zh(S(] + AS), (111)

where through the first order Taylor’s series expansion of relation (1.11) around the initial slow-

ness one can conclude 9
() = 2(s0) + %As. (1.12)

Stork (1992) derived the relation between the changes in source-receiver traveltime ¢;, for offset

A less accurate but original statement is: "the actual path between two points taken by a beam of light is the one
which is traversed in the least time."

2. CIGs can be calculated in both offset and angle domains (i.e. offset and reflection angle of rays which
sample a CIP, respectively). For sake of brevity here we only consider the offset domain.
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Figure 1.12 — Pre-SDM tomography. a) Subsurface is divided into several cells and a CIP is
sampled with different rays. 6 is the incident angle for the short-offset ray sampling the CIP and
¢ is the dip of the reflector at the CIP. The associated offset domain CIGs after migration with
b) a wrong velocity model and c) the true velocity model. Migration with wrong velocity model
results in the different CIP depths at different offset. RMO for each offset in (b) is defined as
the CIP depth deviation respect to a datum. Migration with true velocity model results in zero
RMO for all the offsets (figure adapted from Jones (2010)).

h and the changes of picked RMO depth as

Oz, Uy
ot,  2cosfcosé’

(1.13)
where v, is the local slowness above the reflector at the CIP. By applying the chain rule of

17



General Introduction

derivative, eq. (1.12) can be written as

v,

zn(8) = zn(s0) — Z(a—SjAsj)—2 5050, GO E’ (1.14)
J

where 0t;,/0s; is the change in traveltime (associated to the rays which sample the reflector
at offset h) with respect to the change in slowness at cell j. 0t;,/0s; is the linear tomography
equation (eq. (1.2)) and can be calculated through ray tracing and the assumption that a pertur-
bation of the subsurface properties does not change the ray path. ), is the incidence angle of the
associated rays with offset i and £ is the reflector dip at the corresponding CIP (Fig. (1.12)a).
In eq. (1.14), perturbation As is the unknown which PreSDM tomography aims to retrieve by
minimizing the RMOs.

By considering a floating datum such as the picked RMO depths at near-offset (zo(sg)) of
migration by slowness sg, one can define the minimization of the RMOs as the minimization
of relative depth error Az, = zj,(sg) — 20(So) rather than a static depth error (Woodward et al.,
2008). By applying this criterion, the relative depth error for all the picked RMOs in CIGs is
acquired. Considering eq. (1.14), this results in the following linear equation

LAs = Az. (1.15)

Here the coefficients of the sensitivity matrix L. depend on the ray incidence angles, local dips
at CIPs and the velocities. The PreSDM tomography is formulated as a minimization problem,

rréinHLAs — Az||. (1.16)

In section 3.1 I shall review some methods which can be used to solve such a minimization
problem. After solving this minimization problem the slowness sy can be updated. Though a
PreSDM with updated slowness one can check the flatness of the events in CIGs. If they are not
flat, a new picking is required to repeat the PreSDM tomography. This loop continues to flatten
the CIGs event. Fig.1.13 illustrates this PreSDM tomography workflow.

Generally, it is needed to apply some regularizations or smoothing on PreSDM tomography
inversion to mitigate the ill-posedness of the problem. During the iterations the smoothing
window length can be shorten to increase the resolution of the updated velocity model.

Resolution of the reflection tomography depends on the seismic wavelength, acquisition ge-
ometry, and the complexity of the subsurface. Generally, when no multi-pathing * and caustics
are generated during ray tracing and the picked RMOs are noise free, increasing the pick den-
sities increases the vertical resolution until the velocity layers stop generating pick-able RMO
(Woodward et al., 2008). The horizontal resolution depends on the distance between the CIGs.
However, CIG distances smaller than the Fresnel zone of dominant frequency wave-path can
not increase the horizontal resolution. In shallow part of the subsurface, where the velocity is
slower, the Fresnel zone is narrower and this increases the resolution. While, in deep parts of
the subsurface, higher velocities result in wider Fresnel zones and consequently a lower resolu-
tion (Woodward et al., 2008). If the size of velocity anomaly is smaller than the Fresnel zone

3. Multi-pathing occurs when more than one ray-path connect one source and a subsurface point.
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Figure 1.13 — PreSDM tomography workflow. Perform a Pre-SDM on data with an initial
velocity. Through an automatic picking tool pick the RMOs on CIGs and reflector dips on
the stacked section. Perform ray tracing to find the associated source-receivers for the picked
RMO at each offset. Then, calculate linear equations relating the perturbations in RMO to the
velocity perturbations (eq. 1.15 or 1.16). With acquired velocity perturbations, update the initial
velocity. Repeat the loop to flat the CIP gathers. In each iteration the smoothing window length
can be reduced to insert higher frequency (shorter wavelength) of the subsurface in the inversion
(figure from Woodward et al. (2008)).

size, the seismic waves generates diffraction. In this case traveltime tomography can not resolve
the anomaly and waveform tomographic approaches (such as FWI and diffraction tomography),
which consider the amplitude information, become necessary (Jones, 2010).

Although there are numerous successful applications of reflection traveltime tomography,
still the picking step is challenging in the sense that it requires to follow some continuous
events. In the following, I review the bases of slope tomography, which is a remedy to this
issue.

1.2.2 Two-dimensional classic stereotomography

Stereotomography is a slope tomographic tool for velocity macro-model building (Billette,
1998; Billette and Lambaré, 1998). This tool is based on the controlled directional reception
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(CDR) method (Riabinkin, 1957; Riabinkin et al., 1962; Sword, 1986, 1987; Biondi, 1992),
and it has been introduced as an alternative to reflection traveltime tomography. The key idea
behind slope tomography is that, instead of tracking continuous events, we pick locally-coherent
events, regardless of any coherency between them, associated to reflections or diffractions.
Each local event is described by its two-way traveltime and its slopes in the common-shot
and common-receiver gathers. Note that here we have some information about velocity just by
considering the characteristics of one local coherent event. In this section, I review the CDR and
stereotomography which is the basis of our current research. In the following all the discussions
are based on the primary reflections.

In order to explain the slope tomographic approaches, I first define the concept of slope.
Slowness vectors (gradient of traveltime) are perpendicular to the wavefronts and their norm
are equal to the inverse of wave propagation velocity. This vector can be interpreted in the
seismic gathers. Footprint of a reflection or diffraction on recorder seismic gathers is a series of
coherent events. These events show the variation of traveltime of the arrival wavefronts in the
acquisition direction. This means, for a horizontal receiver array, the slope of a local coherent
event (in shot gathers) is the horizontal component of the slowness vector of the arrival wave
at receiver position. If r be the central receiver of the local coherent, the associated slope is
called p,. Considering the reciprocity rule between source and receiver, one can define ps on a
common receiver gather which is the slope of a local coherent event at source s (Fig. 1.14).

A reflecting or diffracting point in the subsurface * generates a pair of local coherent events
in shot and receiver gathers. The kinematic behavior of these local events can be parameter-
ized by five quantities (T, ps, pr, S, T): the two-way traveltime of the event, the slopes of the
event in the shot and receiver gathers and the associated central source and receiver coordinates,

respectively. These information can be also extracted uniquely from common offset and com-
pS + pT

mon midpoint gathers. The corresponding slopes in these domains are and p, — ps,

respectively.

In order to illustrate how slopes constrain the velocity updates, let’s consider a scatterer in
a medium of unknown velocity which generates local coherent events recorded in the shot and
receiver gathers with (7,, ps, p, S, ). One performs ray tracing from the source and receiver
toward the scatterer (or vice versa) for an initial guess of the subsurface velocity. The velocity
in the background is true if the calculated traveltime and the slopes at the source and receiver
be equal to (T, ps, pr) (Fig. 1.15a). Without considering the slope information, there is no
control on the slowness vector. In other words, there are many scatterers along the isochrone
(iso-traveltime surface) which satisfy the observed T, (Fig. 1.15a). From a different point of
view, the velocity in the background is not correct if two descending rays from the source and
receiver positions with the horizontal components of slowness ps and p,, respectively, do not
intersect at the scatterer position after total traveltime T}, (Fig. 1.15b). This forms the basics
idea behind the CDR method.

In the context of the CDR method, the picked traveltime and slopes of locally-coherent
events in the shot and receiver gathers form the observables. In this method, for each locally-
coherent event, two rays are propagated in the velocity model from the source and receiver (de-

4. Here and in the following I call this point a scatterer or scattering point.
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Figure 1.14 — Local coherent events in stereotomography. Definition of horizontal compo-
nent of the slowness vector at the source and receiver positions in ray theory, right panel, and
recorded shot and receiver gathers, left panels. Each local coherent event which is generated
by a primary reflection/diffraction can be associated to a reflection/diffraction point (scatterer).
The local coherent events are fully characterized with the related central source and receiver po-
sitions (s, r), slopes (ps, p-) and two-way traveltime Ty, (figure adapted from Billette (1998)).

scending rays, Fig. 1.15b). The take-off angles of the rays are given by the observed slopes. The
sum of the two ray traveltimes is calculated at different depths, and, the ray tracing is stopped
when this sum equals to the observed traveltime. If the velocity is the true one, the end-point of
the two rays coincide (i.e. Z...or = 0). Otherwise, the velocity is updated to reduce the misfit
function S-7**||z% . ||. This can be achieved by linking the velocity perturbation to @y,
and solving a non-linear optimization problem. Billette (1998) recast the CDR method into a
more general formulation of slope tomography in which he took advantage of the Hamiltonian
formulation of the ray theory (Farra and Madariaga, 1987; Lambaré et al., 1996), paraxial ray
theory (Cerveny et al., 1977; Farra and Madariaga, 1987) and general inverse problem theory

(Tarantola, 1987).

Model and data space in stereotomography

Stereotomography as an inverse problem consists of a data and model spaces. A semi-
automatic volumetric picking in shot and receiver gathers generates the stereotomographic data
setd as

d = [(s,7, Tsr,Pss Pr)n)s, (1.17)

where N is the total number of the picked values and s and r are the position of the associated
source s and receiver r for the picked traveltime and slopes values.
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Figure 1.15 — The role of slopes in tomography. a) For a give scatterer at depth the velocity is
correct if the slopes at the source and receiver and the traveltime be equal to the observed values.
Here the black and blue rays (generated by different velocities in the background) satisfy the
observed traveltime but only the blue one satisfies the slopes. b) Two rays are propagated from
the source and receiver with the observed slopes. They cross each other (i.e. z¢ = 0) at
the scatterer true position if the velocity in the background be true (this is the basis of CDR
method). At this position the summation of traveltime for each ray should be the observed
traveltime.

Billette (1998) performed ray tracing from the scatterers in depth toward the sources and
receivers in a given velocity model to model the data. The two rays are traced with a prior guess
of the take-off angles 6, and 6, and are stopped when their traveltimes equal to the prior guess
of the one-way traveltimes 7 and 7,.. Since there is no guarantee that these two rays end at the
source and receiver positions, respectively, as they should, the source and receiver coordinates
need to be incorporated in the data space. Alternatively, one may use a more computationally-
demanding two-point ray tracing to remove on the one hand the one-way traveltimes and the
take-off angles from the model space and on the other hand the shot and receiver coordinates
from the data space.

By parametrizing the background velocity on M cardinal cubic B-spline nodes with coef-
ficients [c,,]*’_,, the above implementation of the stereotomography forward problem leads to

the following model space
m = {(x,0s,0r, Ts, T )nln_1: [Cm]m—1 }- (1.18)

Here the calculated data can be formulated as d,. = g(m) where the non-linear operator g
stands for the modelling operator. This definition of the model and data spaces provides the
most general definition for the inverse problem in slope tomography.

Resolution of the inverse problem relies on the minimization of least-squares misfit between
picked (d,;s) and modelled data (d.;.) as

: 1 _ _
mnlln é(dobs - g<m>>tcd 1(dobs - Q(m)) + (m - mprior)tcml (I'Il - mpm’or)7 (119)

where m,,.;,, is the a priory model, and C; and C,, are the a priori covariance matrix in the
data and model space, respectively. The superscript ¢ stands for transpose operator. This non-
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linear minimization problem can be solved with local optimization methods such as the Newton
method, where the parameters are iteratively updated along the Newton descent direction until
convergence. The update model at iteration k + 1 is given by

0°C -19C

= — (= — 1.20

myp = my — (5 (m)) S (m). (1.20)
where the descent direction is the product of the inverse of the Hessian (the second derivative
of the misfit function) and the steepest descent direction (the opposite of the gradient of the
misfit function). By introducing G as the Fréchet derivative (sensitivity matrix) of the data

with respect to the model parameters at iteration k&,

dg(m)

om ]mmk

(1.21)

Gi = |
the updates in eq. (1.20) can be written as

-1
it = my— (GLC; (Ao —9(mi))Git C1 ) GLC (dans—g(mi)) + .t (m =My

(1.22)
Here the Fréchet derivative matrix is a sparse matrix (Billette, 1998) and the non-zero elements
can be calculated by paraxial ray tracing (Cerveny et al., 1977).

Resolution of this multi-parameter inverse problem requires coping with its non-linearity
and ill-posedness. Among the different approaches that address this issue are: Billette et al.
(2003) proposed a multi-scale approach in which they initialize the velocity model on a coarse
grid of cardinal B-spline nodes and increase the node numbers during the iterations to insert
progressively shorter wavelengths in the updated velocity model. Alerini et al. (2007) proposed
a hierarchical approach to insert the picked values in the optimization process according to their
traveltimes. Gosselet and Bégat (2009) combined the borehole and stereotomographic picks to
overcome the velocity-depth ambiguity in the inversion.

Beside the improvements in handling the inversion, there are different approaches which
try to improve the quality of the picking procedure. A stereotomographic data set with less
noisy picks that are well distributed in depth, facilitates convergence of inversion toward a
reliable solution. Chauris et al. (2002a); Nguyen et al. (2008) proposed to perform picking
in the depth-migrated domain, Lavaud et al. (2004); Neckludov et al. (2006) in the post-stack
time domain, and Lambaré et al. (2007) in the pre-stack time migrated domain. These domains
provide more focused local coherent events (higher signal to noise ratio) and this results in less
erroneous picks by automatic picking tools. Picking in depth-migrated domain greatly improves
the control on depth distribution of the picks and makes their interpretation and QC easier.

Chauris et al. (2002a,b) established the link between the local coherent events in the pre-
stack depth migrated domain and their counterpart in the pre-stack unmigrated time domain.
In other words, they established a link between MVA methods and stereotomography. This
relation allows development of new non-linear slope tomographic methods such as Guillaume
et al. (2008) where picking is performed in the migrated domain while the inverse problem is
performed with data-domain observables (two-way traveltimes and source and receiver slopes).
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This approach does not require to perform migration at each iteration. In the following I discuss
the principles of these approaches.

1.2.3 Non-linear slope tomography through kinematic invariants

I first review the link between local coherent events in the pre-stack depth migrated domain
and the unmigrated (or data) domain. Then I introduce some recent approaches of non-linear
slope tomography.

Local coherent events in pre-stack migrated depth vs. pre-stack unmigrated time domain

In the context of MVA methods, Chauris et al. (2002a) replaced the criterion of flattening
the continuous events in CIGs with zeroing the RMO of local coherent events in CIGs. A local
coherent event in 2D pre-stack migrated domain is described by five parameters (Fig. 1.16): the
position and offset of the central trace in the common offset gather (COG) and CIG, x and h
respectively, the depth of the local event (z), the apparent geological migrated dip £ (measured
in the COG), and the residual slope ¢ (measured in the CIG). Since we seek to minimize the
residual slope ¢ in the migrated domain, a natural definition of the cost function is given by

C(s) = % Z(w tan ©)?, (1.23)

picks

where w stands for an appropriate weighting factor to be determined and s is the slowness.

An equivalent definition in the data domain would be

1
Cls) =5 D> (i —ps)*, (124)

picks

where p? and p; stand for the observed and calculated slopes in the receiver gather at the source
s position, respectively (note that from the picking in depth domain there is no direct access to
the slope values). This misfit function involves only one observable (p}) because the two focus-
ing equations, Chauris et al. (2002a, their equations 10 and 11)° resulting from the migration
imaging principle constrain the two-way traveltime and the receiver slope during the inverse
problem. From the two focusing equations, Chauris et al. (2002a) found the relationship

p: — Ps

s s 1.2
25 cosf cos &’ (1.25)

tanp =

5. In the framework of migration of common shot gathers, focusing equations imply that the summation of the
one-way traveltimes of the rays which sample a scatterer should be equal to the picked traveltime and horizontal
component of the slowness vector at receiver should be equal to the observed slope at the receiver position. The ray
traced from the receiver position with the observed slope intersects the isochrone defined by the picked two-way
traveltime at the scatterer position. The ray connecting this scatterer position and the shot position reaches this
later with a slope that does not match the picked slope if the velocity model is not correct, justifying the misfit
function given in eq. (1.24).
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Figure 1.16 — Local coherent event in pre-stack depth migrated domain. Here each local coher-
ent event is characterized by (z, z, h, £, ): position of the central trace in the COG, depth of the

local event, offset of the central trace, apparent geological dip and residual slope, respectively
(figure adapted from Chauris et al. (2002a))

where @ is the incidence angle for the ray connecting the source to the local coherent event at

depth. Therefore, the weighting factor in the cost function (1.23) is w = 2s cos 6 cos €, and the
cost function is finally given by

1 1
Cls) =5 ) _(wtanp)? = = > (p} = p)°. (1.26)
picks picks

In this equality expression, the last term makes it physically meaningful to derive the gradient
of cost function through the paraxial ray tracing.

It is important to note that, compared to stereotomography, the data space has been re-
duced to one observable class (the source slope) and the model space has been reduced to only
one parameter class, namely, velocity (or slowness), which can contribute to mitigate the ill-
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posedness of the inverse problem. Here, the optimization involves a loop over these three steps:
1) performing PreSDM and compute the CIGs and COGs, 2) picking local coherent events for
measuring ¢ and &, respectively, 3) calculation of the gradients and the velocity update.

Slope tomography based on kinematic invariants

Guillaume et al. (2008) took advantage of the described relation between the depth and time
picks to introduce a more efficient velocity model building tool. They used kinematic migra-
tion/demigration of local coherent events and the concept of kinematic invariants to estimate
RMOs after the velocity update performed in each inversion iteration. This means there is no
need to perform PreSDM in each iteration.

They first perform a PreSDM with an initial velocity model to build the migrated cube and
pick the local RMOs in CIGs and apparent geological dips in the COGs. Then they perform
specular offset ray tracing upwards from the picked event positions (this is kinematic demigra-
tion) while the background velocity is same as the one for the performed PreSDM. This leads
to the associated kinematic invariants for each pick, i.e. source and receiver position, slopes at
the source and receiver positions and two-way traveltime. These are called invariants because
they do not depend on the velocity model as long as migration and demigration are performed
in the same velocity model.

Here the cost function is defined as the /;norm of the weighted residual slopes  in Fig. 1.16
(such as eq. 1.23) and its gradient with respect to the velocity can be calculated by paraxial ray
tracing (similar to Chauris et al. (2002a)). The gradient provides the necessary information to
update the velocity model. In order to compute the cost function, calculation of ¢ is required.
This can be achieved by performing kinematic migration for the kinematic invariants traveltime,
source and receiver position and slope at the receiver position are fitted (no fit for the slope at
the source) (Montel et al., 2010). In practice this can be done also in the offset and CMP
gathers. Then by measuring the difference between the calculated (by kinematic migration) and
observed (by kinematic demigration) slopes at the source position one can retrieve  through
eq. (1.25) and calculate the cost function through the relation (1.23). Therefore, the local RMOs
are achieved without performing PreSDM. This procedure is repeated to satisfy the convergence
criterion. A similar approach can be applied for the picks from pre-stack time migrated domain
with performing demigration in time (Lambaré et al., 2007). In chapter 3 and 4 I shall mention
some other applications regarding this technique.

All the discussed methods in this introduction, are introduced for isotropic assumption for
the medium. In the following I introduce the anisotropic definition in exploration seismology
and its footprint on the recorded seismic data.

1.3 Seismic anisotropy

The seismic anisotropy in a elastic media can be defined as the dependency of seismic wave
velocity to the propagation direction. Here, the seismic waves include all types of seismic
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waves (e.g. S-waves) with arbitrary frequencies. Seismic anisotropy implies existence of a cer-
tain structure on the scale of seismic wavelength (Tsvankin, 2001a). In other words, seismic
anisotropy, similar to seismic heterogeneity, is scale-dependent; a medium can be heteroge-
neous and anisotropic for a short wavelength while it is homogeneous and isotropic for larger
wavelength (Helbig, 1994).

Since mostly the intrinsic anisotropy of the material in microscopic and submicroscopic
scales rarely persist over distances comparable with seismic wavelength, the observed anisotropy
effect on seismic record should be due to other elements. For the sedimentary sequences the
anisotropy cause mainly relates to the following issues (Thomsen, 1986; Tsvankin, 2001a)

— intrinsic anisotropy due to preferred orientation of anisotropic mineral grains or the shapes
of isotropic minerals;

— preferred orientation of the shape of isotropic minerals (such as flat layering platelets);
— thin bedding of isotropic or anisotropic layers (the layers may be horizontal or tilted);

— preferred orientation of the fractures or micro-cracks.

Each of these ordering arrangements has axial symmetry and the subsurface anisotropy
formation can be a combination of these factors. Each anisotropic symmetry is characterized
by a specific structure of the stiffness matrix ¢, with the number of independent elements de-
creasing for higher-symmetry systems (Tsvankin, 2001a). The least symmetric system is the
triclinic system with 21 independent elements in the stiffness tensor. The most symmetry is
for the transversely isotropic (TI) media (hexagonal symmetry) with only 5 independent ele-
ments in the stiffness tensor. The TI media are the result of thin (compared to the dominant
wavelength) layering in which the symmetry axis can be vertical (VTI), tilted (TTI) (Fig. 1.17a-
b) or horizontal (HTI). For instance, VTI and TTI media can adequately describe the elastic
properties of the shale in sedimentary basins and flanks of the salt domes (Tsvankin, 1997),
respectively. HTI is the simplest representation for cracked media where an isotropic medium
contains a single system of parallel vertical circular cracks (small fractures and micro-cracks).
In case of non-circular cracks, existence of the second crack system, and presence of anisotropy
or layering in the background media reduce the symmetry to orthorhombic or less (Tsvankin,
1997)(Fig. 1.17c¢).

Anisotropy has different effects on the seismic wave propagations such as: velocity of wave
propagation is not same in all the directions, wavefronts are non-spherical, rays are not perpen-
dicular to the wavefronts, displacement vectors are not parallel (in P-waves) and perpendicular
(in S-waves) to the wavefronts (Helbig, 1994). These influence the recorded data in different
ways. For instance, due to anisotropy the two shear waves with different polarizations arrive
at the receiver with different times (shear wave splitting), conflict between depth estimation
for a reflector with different waves and non-hyperbolic reflections events in CMP gathers (Hel-
big, 1994). Due to these differences between body waves in isotropic and anisotropic media,
the three body-waves in anisotropic media are called quasi P-wave (qP) and quasi sheer waves
(gS1, gS2) where quasi indicates that these waves only have a resemblance to the isotropic P
and S-waves (Crampin, 1981).

6. Refer to the section 2.2 for a brief review on the elastic wave equation and the role of stiffness tensor.

27



General Introduction

Figure 1.17 — Three symmetric anisotropic system: a) VTI with a vertical symmetry axis (z3),
b) TTI with a tilted symmetry axis (the blue line), and ¢) an orthorhombic media caused by
parallel vertical cracks in a layering background with three mutually orthogonal planes of mirror
symmetry (blue planes).

Most of studies on anisotropy in exploration seismology are focused on the symmetric
anisotropy such as TI and orthorhombic media. This choice can be because of two reasons,
first, the formulation, parametrization and analysis of the wave propagation in these media are
far simpler than in general anisotropic one, second, in many applications these assumptions
about the subsurface properties are close enough to the reality and satisfy the exploration ex-
pectations. Moreover, the intrinsic limitations of surface seismic data (e.g. limited resolution
specially at depth) prevent recognition of the different sources of anisotropy (e.g. cracks, lay-
ering, lithology, etc) for a general anisotropic media. Since in this study we deal with 2D TTI
media, in the following I describe the parameters which describe such a medium.

In the context of depth imaging techniques, the most used parameterization for a 2D TTI
medium is presented by Thomsen (1986) in which the medium is parametrized by vertical ve-
locity (v,) (velocity along the symmetry axis), two dimensionless anisotropic parameters € and
0 and the tilted angle 6 of the symmetry axis (Fig. 1.17b). On the other hand, for time process-
ing the introduced parametrization by Alkhalifah and Tsvankin (1995) is more interesting. They
parametrized the medium with the NMO velocity and the dimensionless n parameter which give
the expression controls the non-hyperbolic residuals of the reflection curves.

In order to visualize the effect of the anisotropy on the wave propagation, Fig. 1.18 shows the
modelled wave propagation in elastic homogeneous isotropic (panel a) and VTI media (panel b).
Here, the velocity in the isotropic medium is equal to the vertical wave speed of the VTI medium
and for the VTI medium ¢ = 0.2 and 6 = 0.1. In the isotropic case, the wave propagation
velocity in all the directions is same (circular wavefronts), while in the VTI medium the non-
circular wavefront implies different velocity in different directions. Here, § has the leading
role in the near-vertical directions and ¢ has dominant role for the horizontal propagations. By
deviating from the principle axes the combination of both parameters controls the propagation
speed and trajectory. Fig. 1.18(c-d) shows the calculated seismograms recorded at the surface.
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The footprint of anisotropy on longer offsets are more visible. The difference between the first
arrival times for the isotropic and VTI media in zero offset seismograms is negligible while for
larger offsets the foot print of anisotropy is more evident (compare the first-arrival times at B
and B’). This simple example shows that an accurate subsurface imaging in anisotropic media
requires the anisotropic properties of the subsurface.

In the context of PreSDM tomography, this difference in arrival time, due to the anisotropy,
affects the RMOs measurements. This means even with true vertical velocity in the back-
ground one can not flat the events in CIGs unless with a wrong depth. This non-flatness or
mis-positioning of the events in CIGs result in less focused migrated section or wrong depth for
the reflectors, respectively. In order to solve this problem, one needs to define the anisotropic
properties among the tomographic model parameters. For instance, if one assumes that the
subsurface is a 2D VTI medium, the model parameters for PreSDM tomography are (v, €,0).
Adding these parameters increase the ill-posedness of the inverse problem and intrinsic lim-
itations of the reflection data leads to ambiguity between these parameters. There are differ-
ent methods to overcome these problems which I shall mention some of them in section 3.3.
Also, in this section I shall discuss in detail the extension of slope tomographic approaches to
anisotropic medium.
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Figure 1.18 — Footprint of anisotropy on wave propagation. The pressure wavefield in elastic
homogeneous a) isotropic and b) VTI media (¢ = 0.2, 6 = 0.1). The source is located at the
center. The calculated pressure seismograms on the surface for c) elastic isotropic media (a) and
d) elastic VTI media (b). At zero offset the anisotropy footprint is negligible (compare A and

A’) while for longer offsets (B and B’) the difference between the first-arrival times is 10msec
(figure from Gholami (2012)).
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1.4 Motivation

In sequential seismic imaging workflows based on the scale separation between the long and
short wavelength components of the subsurface, the velocity macro-model plays a major role
in depth imaging by migration techniques or FWI. Among the widely used approaches to build
this velocity macro-model are reflection traveltime tomography and MVA methods. Repetitive
picking of continuous events in traveltime reflection tomography and the high computational
cost of the MVA methods make implementation of these techniques for some applications chal-
lenging.

Slope tomography, as an alternative approach for velocity macro-model building, is attrac-
tive since it avoids the repetitive picking of continuous events and simultaneously takes ad-
vantage of the efficiency of the traveltime reflection tomography. The key idea is to use the
traveltime of local coherent events in shot and receiver gathers and use their slopes to constrain
the velocity update. Stereotomography, as the most general formulation of slope tomography,
proposes to update jointly all the ray attributes associated with each local coherent event as well
as the velocity in the background. This extends the search space during the inversion, the goal
of which is to fit a set of observables (position of the associated source-receiver pair, two-way
traveltime, slopes at the source and receiver positions). This extended search space can be help-
ful to absorb experimental errors or bypass some local minima but also generate a significant
null space. A semi-automatic picking tool provides the stereotomographic data set, but low
signal to noise ratio for the coherent events in the shot and receiver gathers can contaminate the
stereotomographic data set with noise.

There are different remedies for the problem of picking in shot and receiver gathers which
among them is picking in pre-stack depth migrated domain. This led to emergence of slope to-
mographic approaches based on the kinematic invariant calculations by demigration. Compared
to the classic stereotomography ’, these methods eliminate the ray parameters from the model
space which may mitigate the inversion ill-posedness and non-uniqueness of the solutions and
reduces the computational cost of optimization.

The classic stereotomography and other slope tomographic approaches rely on ray tracing
to perform the forward problem. Although ray tracing gives an access to the ray attributes
(one-way traveltimes and slowness vectors), they can suffer from some limitations in complex
media (shadow zones, strong velocity gradients) resulting from non uniform ray-field sampling.
The inversion is based on the explicit building of the Fréchet derivative matrix, which can be
expensive and tedious to manipulate for large scale problems. Moreover, extension of these
approaches to anisotropic media makes the formulation complicated in both the forward and
inverse problems. The motivation of this thesis is to overcome these issues by reformulating
the classic stereotomography in anisotropic media with eikonal solvers for the forward problem
and the adjoint state method for the inverse problem. My approach will be referred to as the
anisotropic adjoint slope tomography. Eikonal solvers are referred to numerical techniques to
compute first arrival traveltime maps in computational mesh such as Cartesian grid in the case
of this thesis (e.g. Vidale, 1988b; Podvin and Lecomte, 1991; Hole and Zelt, 1995; Noble et al.,

7. Here and in the following chapters, "classic stereotomography" refers to the slope tomographic approaches
which are based on Billette (1998); Billette et al. (2003) formulation for the inverse and forward problems.
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2014). Therefore, the sampling of the traveltimes is fully controlled although the accuracy
and the relevance of the solution may need some quality control depending on the level of
heterogeneity of the velocity model. The adjoint state method provides a matrix-free framework
to compute the gradient of a functional (Plessix, 2006; Chavent, 2009). In this thesis, I fully
develop this approach for 2D TTI media, implement it on massively-parallel computers and
assess it with various synthetic experiments and a real data case study.

1.5 Thesis context

This manuscript is organized based on the published or under-publishing materials, and this
led to some repetitive discussions about the bases of the methods.

Chapter 2; Adjoint slope tomography: Forward problem. In our approach the forward
modelling engine relies on eikonal solvers. In chapter 2, I introduce an eikonal solver for 2D
TTI media (Tavakoli F. et al., 2015). This solver is based on the fast sweeping method taking
advantage of the fixed-point iteration technique to take into account the anelliptic terms in the
TTI eikonal equation. We remove the point source singularity error by factorization technique.
This results in an accurate and efficient approach for traveltime calculation. Through different
examples such as BP TTI salt model I assess the accuracy of the proposed method.

Chapter 3; Adjoint slope tomography: Inverse problem. This chapter mainly consists
of two parts: isotropic adjoint slope tomography and the extension to TTI media. In the first
part (which is published in Tavakoli F. et al. (2016, 2017b)) I develop the reformulation of
the isotropic classic stereotomography through the implementation of an eikonal solver for the
forward modelling and the adjoint state method for the gradient calculation. Use of these nu-
merical tools required to define new slope tomographic model and data spaces and derive the
expression of the adjoint state equations. I assess the approach with several synthetic examples
including the Marmousi model. In the second part, I extend the isotropic formulation to TTI
media (Tavakoli F. et al., 2017a). This requires modifying the model parameters and solving
the adjoint state equations associated with the TTI eikonal equation. Through two synthetic
examples I evaluate the capability of the method in retrieving the anisotropic properties of the
subsurface.

Chapter 4; Real data application: This chapter is devoted to the real data application.
Processed recorded data and the picks were provided by Compagnie Générale de Géophysique
(CGQG). The picking is performed in the depth migrated domain. Through the proposed method,
I update the vertical velocity while € and ¢ are considered as passive parameters during the
inversion. By performing reverse time migration and computing CIGs I assess the accuracy of
the updated vertical velocity model. This chapter and the second part of the chapter 3 will be
the basis of another paper to be submitted for publication.

Publications:

Tavakoli F., B., Ribodetti, A., Virieux, J., and Operto, S. (2015). An iterative factored
eikonal solver for TTI media. In SEG technical program expanded abstracts 2015, vol-
ume 687, pages 35763581
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Tavakoli F.,, B., Ribodetti, A., Operto, S., and Virieux, J. (2016). Adjoint stereotomogra-
phy. In SEG Technical Program Expanded Abstracts 2016, pages 5269-5273

Tavakoli F., B., Operto, S., Ribodetti, A., and Virieux, J. (2017b). Slope tomography
based on eikonal solvers and the adjoint-state method. Geophysical Journal International,
209(3):1629-1647

Tavakoli F., B., Operto, S., Ribodetti, A., and Virieux, J. (2017a). Anisotropic slope to-
mography based on eikonal solver and adjoint-state method. In 79th EAGE Conference
and Exhibition 2017
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Chapter 2

Adjoint Slope Tomography: Forward
problem

Chapter overview: In this chapter I introduce an efficient finite difference (FD) numerical
algorithm for solving the 2D eikonal equation in a medium with vertical transverse isotropy
(VTI) or tilted transverse isotropy (TTI). This solver will be used as the forward modelling
engine for adjoint slope tomography. First, I review some basic concepts about wave equation
and its ansatz solution in the frame of the high frequency approximation. I briefly discuss the
resolution of the high frequency wave equation with ray tracing methods, and then I derive
the eikonal equation for VTT and TTI acoustic media. In the last section I introduce our TTI
eikonal finite-difference solver. In this solver, the fast sweeping method (FSM) is considered for
solving non-linear partial differential equations alongside the fixed-point iterations for including
the anelliptic term of VTI/TTI eikonal equation in an iterative scheme. Moreover, I mitigate the
propagated errors due to point source implementation by using a factorization method removing
the point source upwind singularity. Different numerical examples on TTI models show that
incorporation of the iterative fixed-point scheme and the factorization method yields enough
accurate solutions for long offsets and complex subsurface models. This chapter in a shorter
format is published in SEG annual conference 2015 (Tavakoli F. et al., 2015). Coincidently, this
method is also covered by Waheed et al. (2015) for 3D media.

2.1 Introduction

Some geological structures such as layered sediments and shale overlying salt flanks lead
to mechanical anisotropy which strongly affects seismic wave propagation. Such media can be
described as vertical transversely isotropic (VTI) and tilted transversely isotropic (TTI) models.
Considering the crucial role of first-arrival traveltimes computation in seismic modelling and
imaging, there is a strong need for accurate and efficient methods for computing first-arrival
traveltimes in VTI and TTI media.
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There are many methods dealing with computing the seismic wave first-arrival traveltimes,
the two categories of the most popular methods being based on ray tracing and eikonal solvers.
Some defects of ray tracing based methods, such as a complex formulation and numerical im-
plementation, in blocky and anisotropic media, and presence of shadow zones in the ray fields
in rapidly-varying structures, make the eikonal solvers a reliable alternative. However, because
eikonal solvers naturally do not provide explicit information about the wave trajectories !, still
ray tracing remains the method of choice for many applications.

The idea of computing first-arrival traveltimes by solving the eikonal partial differential
equation through a finite difference method, which estimates first-arrival traveltimes at fixed
positions through an Eulerian formalism rather than by integration along ray paths through a
Lagrangian counterpart, was first proposed by Vidale (1988a, 1990). The limitation of the Vi-
dale’s method in presence of sharp velocity contrast (Fig.2.1a) was overcame by Podvin and
Lecomte (1991) through a new FD operator. They took advantage of Huygens’ principles to
consider different wave propagation modes, like transmitted, diffracted and head waves, in to
FD discretization. Hole and Zelt (1995) overcame the Vidale’s approach limitation and the
costly calculation of Podvin and Lecomte (1991) through modifying the Vidale’s finite differ-
ence scheme by incorporating the head wave operators and considering reverse propagations
(Fig.2.1b). Then Afnimar and Koketsu (2000) defined a new 3D operators to cope with head
waves multi-pathing problem arising by waves travelling along an irregular interface. Tracking
wavefronts, rather than rays, allows for a better control on the sampling of the medium and may
fill also shadow zones with diffracted wavefronts when considering first-arrival times.

To cite few contributions among many trying to acquire more accurate first-arrival travel-
time solutions with Eulerian approaches, I can mention using the celerity domain (Pica, 1997;
Zhang et al., 2005) or using an implementation of Lax-Friedrichs numerical Hamiltonian (Kao
etal., 2004). Aside the Fast Marching Method (FMM) (Lelievre et al., 2011), the Fast Sweeping
Method (FSM) has gained popularity thanks to its highly efficient computational performance
(Zhao, 2005; Noble et al., 2014; Belayouni, 2013) especially in heterogeneous media we en-
counter in the Earth.

In an Eulerian frame, the eikonal equation is a non-linear partial differential equation (PDE)
with boundary conditions such as a source term which is often considered as a point singularity.
As a result, the upwind source singularity introduces initial errors impacting the computation
of traveltimes. A constant velocity zone around the source point could be considered (Zhang
et al., 2006; Benamou et al., 2010) which may be a problem if the source is nearby an hetero-
geneity. A local refinement around the source point may mitigate this intrinsic problem (Kim
and Cook, 1999) with subtle mesh structure for numerical implementation. Fomel et al. (2009)
has proposed a rather simple and efficient method using a factorization of the traveltime as the
product of an analytical known solution in a given reference medium and an unknown function
introducing a new PDE to be solved.

Inserting anisotropic rheology in the eikonal equation leads to a rather complicated non-
linear PDE. Many anisotropic eikonal solvers are restricted to simple anisotropic types such as
elliptic anisotropy (Qian and Symes, 2001; Luo and Qian, 2012) or may suffer from drawbacks

1. In some applications the higher computational cost of eikonal solvers compared to ray tracing is another
barrier.
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Figure 2.1 — First-arrival traveltime contours for a 2D velocity model with a sharp velocity
contrast (a low velocity layer on a high velocity half-space). The labelled phases are direct
waves (D), refracted waves (R) and critically refracted head waves (H). The red boxes show the
expanding square used in finite difference scheme of Vidale (1988a). Calculated first-arrival
traveltime contours with a) Vidale’s original approach where the refracted waves are distorted,
and b) modified Vidales’s approach by Hole and Zelt (1995) where the head waves are calcu-
lated correctly (figure from Hole and Zelt (1995)).

such as heavy computational cost (Eaton, 1993) with a strong possible decrease in accuracy
especially at the source (Qian et al., 2007). Therefore, a fixed-point iterative technique has been
proposed for improving the solution accuracy when considering complex anisotropic rheology
while mitigating the computational cost (Alkhalifah, 2011; Ma and Alkhalifah, 2013; Waheed
et al.,, 2014). Alternative approach to the fixed-point strategy has been proposed recently by
Han et al. (2015, 2017). They define a local stencil which requires solving a quartic equation.
Further comparisons should be performed for efficiency comparison. Also, Le Bouteiller et al.
(2017) propose a novel approach using time-dependent Hamilton-Jacobi equation. Their solver
is based on discontinuous Galerkin scheme which takes advantage of the factorization technique
to calculate accurately first-arrival traveltimes in 2D TTI media.

In this study, I combine the factorized eikonal equation presented in [Luo and Qian (2012)
and the fixed-point iteration method designed by Waheed et al. (2014) in order to deal with
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high powers of spatial derivatives existing in the TTI eikonal equation. I propose a new 2D
TTI eikonal solver that removes source singularity and computes accurately the first-arrival
traveltimes in complex TTI media.

In the following, I first briefly review the elastodynamic wave equation, and then I introduce
the high frequency approximation for the anisotropic acoustic wave equation, from which I de-
rive the eikonal equation. Finally, I present my proposed eikonal solver and assess its efficiency
and accuracy for long-offset simulation in homogeneous VTI/TTI media and the heterogeneous
TTI and BP TTI salt models.

2.2 Wave propagation

Seismic records are the result of the interaction between the seismic waves and the Earth
structures, and brings to the surface some indirect information about the subsurface geology.
Numerical solution of the seismic wave equation simulates this interaction, from which seismic
imaging techniques seek to reconstruct the subsurface properties. Therefore, efficient numerical
tools for seismic wave modelling form the cornerstone of many seismic imaging algorithms.

If we consider the Earth as a 3D elastic solid medium, the propagated seismic waves from
an external source f(x,t) can be formulated as (Cerveny, 2001; Chapman, 2004)

pil(x,t) — V.r(x,t) = f(x,1), x€R} t€[tg,t1] €R, (2.1)

where the symbol ” "7 denotes the second order time derivative and p is the mass density model.
Here, u(x,t) and 7(x,t) stand for the displacement vector and the stress tensor at position x
and elapsed time ¢, respectively. Based on the second Newton’s law, this expression presents
the balance between the momentum, internal forces and external forces.

The Hooke’s law establishes a linear relation between the stress tensor 7 and strain tensor ¢
as

Tij = Cijki€kl, (2.2)

where ¢, j,k,1 € {1,2,3} and the Einstein convention is used for the summations. c;jj; stands
for the stiffness tensor and definition of the strain tensor € reads

1
5ij = 5(’&1‘7]' + uj,i)- (23)

Here and in the following, spatial derivatives are compactly described by a comma in front of
an indices, and for the sake of brevity I omit the coordinate dependency of ¢;;x;. Because of the
symmetric structure for stress and strain tensor (i.e. 7;; = 7;; and €j; = £;,), the stiffness tensor
is symmetric such that ¢;ji; = ¢jiry = cijie = crij. Accordingly, I can rewrite eq. (2.2) as

Tij = CijkiUk,l- 2.4)

By inserting this relation into eq. (2.1) I derive a more common form of the linear elastodynamic
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wave equation as
(Cijr uki(%,1)) 5 + fi(x,t) = pits(x, t). (2.5)

The analytical or semi-analytical solutions of the elastodynamic wave equation can be found
only for some canonical problems (e.g. wave propagation in isotropic homogeneous or laterally-
homogeneous media (Aki and Richards, 1980)), and, hence the solution of this equation in re-
alistic anisotropic heterogeneous media relies on some approximations. The main difficulty of
solving this elastodynamic wave equation is that the wavefield cannot, in general, be described
with a few identified P or S-wave arrivals in realistic heterogeneous media because of the wave-
field complexity (Cerveny, 2001). However, one can compute the solution of the elastic wave
propagation, eq. (2.5), with numerical methods. Here, I only discuss the resolution of this equa-
tion in the frame of the high frequency (HF) approximation of the wave propagation, but before
that I review some assumption that one can consider on the Earth properties.

From a pragmatic point of view, the elastic assumption for the medium is not mandatory
in many seismic imaging applications in exploration geophysics, where the subsurface can be
assumed to be acoustic (Alkhalifah, 2000, 2003). In acoustic media, there is no S-wave excita-
tion from the source and the acousto-dynamic equation can be derived from the elastodynamic
counterpart, simply by setting the S-wave velocity to zero. This simplifies and speeds up the
resolution of the wave equation by providing a simpler structure for the stiffness tensor and
removing the effect of the S-wave propagation.

On the other hand, one can approximate the Earth interior by an isotropic medium or an
anisotropic one with particular symmetry. This leads to a considerable simplification in the
stiffness tensor structure and makes the resolution of the elastic wave equation less challenging.
The stiffness tensor for a general heterogeneous anisotropic medium includes 21 coefficients
(triclinic symmetry) while this number reduces to 2 and 5 for elastic isotropic and transversely
isotropic (TI) media (section 1.3), respectively. Therefore, these assumptions on the Earth
anisotropy alongside considering the acoustic wave propagations can greatly facilitate the prob-
lem of investigating the seismic wave propagation in the Earth.

Despite the fact that anisotropic acoustic wave equation does not express any physical phe-
nomena (Alkhalifah, 2000), it produces accurate traveltimes of quasi-P waves in weak to mod-
erate anisotropic media, even at long offsets (Tsvankin and Thomsen, 1994; Tsvankin, 1995).
However, the full numerical solution of the acoustic wave equation in TTI media generates
artefacts resulting from spurious S waves generated out of the symmetry axis at the source or
by conversion at lithological interfaces (Grechka et al., 2004). These spurious S waves lead
to an unstable mode in VTI media where the Thomsen’s parameters d and € are such that §
> €. The footprint of these spurious S waves can be limited by considering smooth media to
prevent conversion and considering locally elliptic media around the sources (Duveneck and
Bakker, 2011). Alternatively, more sophisticated boundary conditions have been proposed to
filter out them (Métivier et al., 2014c). The TTI acoustic wave equation also accurately predicts
amplitudes of gP waves in weak to moderate anisotropic media (Operto et al., 2009). This has
contributed to popularize the application of waveform inversion based imaging techniques such
as full waveform inversion under the VTI acoustic approximation (e.g., Warner et al., 2013).

A popular approximation that is used to solve the seismic wave equation relies on the high
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frequency assumption, which assumes that the propagated wavelength is small compared to
the wave travelling distance and the dimensions of the subsurface heterogeneities (Virieux and
Lambaré, 2015). This allows to describe the wave as an impulse, itself defined by a traveltime
and amplitude, and calculate them by applying some conditions. Ray theory is the cornerstone
of high-frequency body-wave seismology (Chapman, 2004). The ray methods provide some
invaluable insights on the physics of wave propagation by separating the wavefield into individ-
ual elementary waves and tracking the paths followed by these waves (Cerveny, 2001). In the
following I discuss in more details the high-frequency solution of the wave equation.

2.2.1 High frequency solution of wave equation

As a first consequence of the high frequency assumption for the elastic wave propagation,
P and S-wave propagations can be considered separately even inside heterogeneous media.
Moreover, this assumption simplifies the waves propagation problem such that it includes only
three ingredients: the propagation path described by the ray trajectories perpendicular to the
wavefronts, the traveltime and amplitude along the rays. These closely related concepts can
be calculated through numerous methods and selection of an appropriate procedure to derive
traveltimes and rays depends on many factors such as (Cerveny, 2001, chapter 3): dimension
of the model under consideration (1D, 2D, 3D), discretization and complexity of the model
(e.g. a smooth model without interfaces, blocky models with sharp interfaces, a regular gridded
model), the required accuracy and efficiency for the traveltimes and rays calculation, the type
of the traveltime (e.g. first-arrivals only, diffracted waves), the desired output information (e.g.
only traveltimes, ray trajectories, Green function, synthetic seismograms) and etc. Here I follow
the discussion for a smooth medium without sharp interfaces. The main goal here is deriving
the equations whose unknown are traveltimes.

In the absence of external force term f(x,t) in eq. (2.5), a solution (the ansatz) for the
displacement vector u(x, t) in an anisotropic smoothly inhomogeneous medium is

ui(x,t) = Us(x)F(t — T(x)), (2.6)

where F' is the oscillating term for an analytical high frequency wave. I consider this term as
a simple time harmonic F' = exp(—iw(t — T'(x)) with frequency w. T'(x) is the traveltime of

the wave in the medium and ﬁ(x) stands for the amplitude of this wave. %x) = const. is the

definition of the wavefront. Note that both traveltime 7'(x) and amplitude
independent. Inserting this solution into eq. (2.5) results in

(x) are frequency

N(TYE - My(U)F + Li(T)F =0 2.7)
where, by omitting the coordinate dependency,

Nz(ﬁ) = ¢y LT ;Ui — pUs,
Mz(ﬁ) = ijuT jUry + (CijT 1 Uy) (2.8)
Lz(ﬁ) = (CijklUk,l),j~
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For a high frequency wave propagating in a smooth medium, the dominant terms in eq. (2.7)
(due to the power of w) are the first two terms. I will now make the approximation that the third
term can be neglected in eq. (2.7). The resulting approximate solution of eq. (2.7) is obtained by
solving equations N;(U ) = 0 (which includes traveltime information) and M;(U ) = 0 (which
includes amplitude information). These equations result in the eikonal and transport equations,
respectively 2. Here I only discuss the eikonal equation.

I can rewrite equation Nz(ﬁ) = 0 (Christoffel equation or dispersion relation) as
(Dix — 0 ) Uy = 0, (2.9)
where J;;, denotes the Kronecker delta function and I';, is the Christoffel matrix
Cijkl

Lip = T, =
p

Cii
;"’l pibL. (2.10)

Here, p; = T, and p, = T, are the slowness vector components such that VT'(x) = p(x).
Note that all the elements in the Christoffel matrix are function of the spatial coordinates. The
Christoffel matrix, I';z, in general, has three eigenvalues G1(x,p), G2(x,p), G3(x,p) and
three corresponding eigenvectors gV (x, p), g (x, p), g® (x, p). Each of these eigenvalues
and related eigenvectors describes one of the qS1, gS2 or qP wave propagation modes *. The
eigenvalues include the information about wave traveltimes and the eigenvectors give the wave
polarizations. Considering the Christoffel equation (2.9), the following first order non linear
partial differential equation (PDE) is the eikonal equation

Gm(x,p) =1 m=1,2,3, (2.11)
where, by considering g = (g1, g2, 93),

m m Cijkl m m
G (x,p) = Tirg! )gé ) = %pjngi )gé ), (2.12)

This relation depends both on x and p and, in this phase space, it is expressed under the form
of an Hamiltonian
H(x,p)=(Gn(x,p)—1)=0 m=1,2,3. (2.13)

The solutions of this dispersion relation are the first-arrival (fastest arrival) traveltimes for S1,
S2 and P-waves. As an example to clarify these relations, for an isotropic medium the stiffness
tensor is defined with Lamé elastic moduli A(x) and p(x) such that

Cijkt = N0i0p + p(0indj1 + 0idji). (2.14)

2. There are different approaches which try to take into account the third term in the resolution of eq.(2.7)
(chcny, 2001): This term can be considered as a source term for the wave equation (2.7) which implies some
sort of generalized Born approximation. Also, it is possible to combine this term with the second term which
results in the frequency-dependent transport equation, or one can combine the third term with the first term which
yields frequency-dependent eikonal or frequency-dependent ray equations.

3. In the following I omit the prefix quasi (q).
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Considering this structure for the stiffness tensor, the Christoffel matrix is

A+
Ty = T“pipk + %pkpk, (2.15)

which results in the following eikonal equations for S1, S2 and P-waves, respectively,
Gi = Ga = Bpepr = 1, Gy = o’prpr, = 1, (2.16)

where
o =N+pw/p,  B=ulp. (2.17)

Here o and §3 are the P and S-waves velocities, respectively. The eigenvector g(!) associated
with (G is a unit vector perpendicular to the wavefronts and the eigenvector vectors related to
(G; and G5 are mutually perpendicular unit vectors which are locates in the plane perpendicular
to g,

Conventional ray tracing

Considering the general Hamiltonian (2.13), the characteristics are the trajectories along
which H(x,p) = 0 and traveltimes are computed by numerical integration along these trajec-
tories. This makes the characteristic system of the Hamiltonian (2.13) to be

dz; dH dp; dH dr dH

A dp. dx  dw dx apy

(2.18)

where Y is a real-valued parameter along the ray. Rays are defined as the characteristics of
the eikonal equation and this system of ordinary differential equations defines the ray tracing
system. This system generally results in the coordinates of the points and slowness along the
ray trajectory (z;(7) and p;(7), respectively) as well as traveltime, phase and group velocity and
the angle between wavefront normal and the polarization vector.

Remember, the ray tracing system (2.18) is defined based on the assumption that the medium
is smoothness (no sharp interface) and in order to perform ray tracing in a blocky model, it is
needed to supplement the ray definition with the Snell’s law at the intersection of rays and
interfaces. In this case, one needs to distinguish between the incident rays and those generated
due to interaction of the incident rays and the interface (such as reflected rays).

There are mainly two approaches for ray tracing: 1) initial-value ray tracing and 2) boundary-
value ray tracing. In initial-value ray tracing the direction of the ray is known at some points of
the ray and these can be used as the initial conditions to solve the rays system. In the boundary-
value ray tracing the direction of the ray is unknown. Instead, there are some conditions which
rays should respect. For instance, the ray should connect two specific points. There are numer-
ous methods in these two categories which in the follow I only mention a few of them.

The initial-value ray tracing approach includes different methods such as: a) Numerical so-
lution of the first-order ordinary differential equations of ray system with some initial conditions
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(Cerveny et al., 1988). b) Analytical solution of the ray tracing system for some canonical mod-
els such as an isotropic model with constant gradient slowness. ¢) Semi-analytical approaches
such as cell ray tracing in which the whole model is subdivided to several cells and within each
cell the rays are solved analytically. In the simplest formulation, the velocity within the indi-
vidual cells can be constant and the interfaces coincide with the cell borders (Aki et al., 1977).
A more general formulation can be achieved by imposing the continuity of velocity at the cell
borders (Virieux et al., 1988).

A well-known application of the boundary-value ray tracing is in two-points ray tracing in
which one searches for the ray(s) connecting two points in a medium. The two main methods
for performing two-point ray tracing are the shooting and ray bending method. The shooting
method is an iterative procedure in which through the initial-value ray tracing one solves a
boundary-value ray tracing (see Bulant, 1996, for a 3D algorithm). Fig. 2.2(a) shows application
of shooting method in a smooth medium in which the rays are calculated by initial-valued ray
tracing with take-off angles from the source as the initial conditions. Here, one searches for the
proper ray passing the two target points by changing the take-off angles. b) The next method
for performing two-points ray tracing is the bending method. In this method, one first guesses
an initial hypothetical ray path connecting the two points and then perturbs iteratively this ray
to find the one which respects the boundary conditions (passing two points) and the physics
of ray propagation (Fermat’s principle (in smooth media) and Snell’s law (in layered media))
(Fig. 2.2b). Note that, the initial ray is not required to be an actual ray. In bending approach
the search for the desired ray can be performed with different methods which among them
are bending method based on the paraxial ray approximation (Farra, 1992), minimization of
traveltime (Um and Thurber, 1987) and structural perturbation (Keller and Perozzi, 1983; Farra
and Madariaga, 1987; Farra, 1989; Virieux, 1989, 1991; Virieux and Farra, 1991). Reviewing
the details of these method is out of the scope of this study. I refer the readers to Cerveny (2001,
chapter 3) for an extensive references and review on these methods.

Direct calculation of traveltimes and wavefronts

In some applications, the traveltimes or the wavefronts in the entire model are required. In
this case, the conventional ray tracing may not be efficient and it is difficult to sample all the
model with a bundle of rays from source (Vinje et al., 1993). Two widely used approach to attain
these goals are direct resolution of eikonal equation and wavefront reconstruction (Fig. 2.3).
Eikonal solvers directly solve the eq. (2.13) and result in the first-arrival traveltimes maps, or
equivalently the first-arrival wavefronts, (single-valued maps) in whole the discretized model
(refer to section 2.1 for some key references). In the wavefront reconstruction techniques, the
governing idea is to use ray tracing to reconstruct a new wavefront from the older wavefront.
Here the motivation is to keep under control the sampling of the wavefront. This technique
has been applied successfully for 3D smooth media to build the multi-valued traveltime * and
amplitude maps (Vinje et al., 1992, 1993, 1996; Lambaré et al., 1996; Lucio et al., 1996). Here,
one can have direct access to the all the ray variables (e.g. slowness vectors and ray trajectories)

4. If several rays connect two points of the medium with different traveltimes, the traveltime is multi-valued.
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Figure 2.2 — Tow-points ray tracing between a source (circle) and receiver (triangle). a) Shoot-
ing method: one iteratively updates the initial path from source by changing the initial take-off
angle of the ray such that the final ray connects the source and receiver. b) Bending method:
an initial path is perturbed iteratively to converge to a physically meaningful ray (here, the one
which satisfies the Fermat’s principle) for the medium (figure from Rawlinson et al. (2010)).

(Lambaré et al., 1996; Lucio et al., 1996) while, in general, eikonal solvers do not provide a
direct access to the ray related variables.

The ray traveltimes (the traveltimes which are calculated along the rays) and the first-arrival
traveltime can be equal. For example, in a homogeneous acoustic model in presence of a point
source, the direct wave traveltimes are the first-arrival traveltimes. For a non-smooth acoustic
medium these two quantities describe totally different informations. For instance, beyond the
caustics, where the ray traveltime is multivalued, the first-arrival traveltimes are coincide with
the fastest branches of the P-waves not the most energetic.

Concerning the sampling issue of the medium, eikonal solvers can provide the first-arrival
traveltime maps for a gridded model through a rather simpler formulation (compared to the ray
tracing based approaches) while there is no shadow zone for the calculated map. In the context
of smooth models, the shadow zones are the parts of the model where the rays do not exist or
they have a very small geometric amplitude , i.e. with a small change in the ray take-off angle
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there is a large change in the ray trajectory (Vidale, 1988a). This can be observed mostly in
presence of low velocity zones and application of the conventional ray tracing.

Which approach?

Selecting a suitable approach depends on the application. For instance, in tomographic
applications, ray tracing results in accurate traveltimes but may lack efficiency if a uniform
sampling of the medium is requested. On the other hand, in some applications like migration,
where we back propagate the energy inside the medium, using the first-arrival traveltime may
distorts or change the final migrated section amplitude (éerveny’, 2001; Gray and May, 1994,
Thierry et al., 1999).

In the stereotomography approach, where the final goal is the reconstruction of a smooth
velocity model for subsurface, the one-way ray traveltimes from a source/receiver to a scatterer
(Fig. 1.14) can be equivalent to the first-arrival traveltime. This suggests that in stereotomogra-
phy the ray tracing forward modelling engine can be replaced with an eikonal solver. Our pri-
mary motivations for moving toward a slope tomographic method based on the eikonal solvers
are: avoiding shadow zones in the calculated traveltimes with rays, easier implementation of
eikonal solvers compared to the ray tracing (specially in anisotropic media) and efficient cal-
culation of the first-arrival traveltimes on the subsurface grid (no need for interpolation). How-
ever, calculation of rays (which require resolution of ordinary partial differential equations) is
cheaper than solving eikonal equation (which involves solving a partial differential equation).
I try to compensate this extra computational cost by modifying the framework of stereotomog-
raphy which is based on the ascending rays (rays travel from the scatterers toward the sources
and receivers). In the new framework, I solve the eikonal equations for a descending propaga-
tion regime (propagation from sources and receivers to the scatterer). This allows to scale the
total computational cost to the number of sources and receivers rather than scatterers (details in
chapter 3).

Since I aim at developing a VTI/TTI slope tomographic method based on the eikonal solvers,
in the following I first define the acoustic VTI/TTI eikonal equation and then I shall discuss how
I solve them.

2.3 Eikonal equation for acoustic VTI media

The acoustic TTI/VTI assumption is relevant in many situations to describe subsurface me-
dia at the exploration geophysics scale. The 2D VTI/TTI eikonal equation will be of interest
for the slope tomographic approach I want to promote. Here, I derive the acoustic VTI eikonal
equation from Hamiltonian (2.13) (Alkhalifah, 2000, 2003), that requires to build the stiffness
tensor and solve the dispersion relation (2.9).

The stiffness tensor c;;i; is mostly represented by Voigt notation, C,g, as a square 6 X 6
matrix. According to the Voigt notations outlined in table 2.1, the stiffness tensor for a 3D VTI
elastic medium is
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Figure 2.3 — Direct calculation of traveltimes and wavefronts for a smooth velocity model for a
source on the surface. Solution of a) the wavefront reconstruction method (Lambaré et al., 1996)
and b) an eikonal solver. The Eikonal solver only provides the first arrivals while the wavefront
reconstruction solution includes a multi-valued traveltime map. Note that both methods sample
well the medium.

Tensorindex | ij | kI | 11 | 22 | 33 | 32=23 | 31=13 | 12=21

{
Voigt notation | o« | S| 1 | 2 | 3 4 5 6

Table 2.1 - Voigt notation for stiffness tensor indexes.

Ci Cii1—2Cs Ci3 0 0 0
Ci1 — 2C Cn Cizs 0 0 0
_ Ci3 Cis C33 0 0 0
Cap = 0 0 0 Cu 0 0| .19
0 0 0 0 Cu O
0 0 0 0 Cee
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Therefore, following eq. (2.10) I can write the Christoffel matrix for 3D VTI elastic medium

elements as ) ) )
'y =(Cpy + Cesps + Csp3) / ps

(
Tys =(Cospi + Crups + Cssp3) / ps
s =(Cs5(pi + p3) + Casp3)/ p, (2.20)
[ =(C11 + Ces)p1p2/ p, .
I3 =(Ci3 + Cs5)p1ps/p,
Loz =(Ci3 + Css)paps/p-
For a 2D acoustic medium > Cyy = Cgs = 0 (since these coefficients describe S-wave propaga-
tions) and p, = 0, and consequently the associated Christoffel matrix reduces to

C Ci-
i]ﬁ 0 j}71]93
p p
Ty = 0O 0 0 . (2.21)
C C!
ﬁplp:a 0 % 3

Finally, according to eqs. (2.9) and (2.11), zeroing the determinant of (I';;, — ;) gives the
the eikonal equation in 2D acoustic VTI media as follow

Cll CS3 033011 — 02
R e s =1 (2.22)

where C'; and C33 govern the anisotropy properties in the vertical and horizontal propagation,
respectively.

In order to simplify the interpretation of the eikonal equation (2.22) and, in general, wave
propagation, one can parametrize this equation based on different combinations of the stiff-
ness tensor coefficients (Thomsen, 1986; Tsvankin, 1997; Alkhalifah, 2000). Thomsen (1986)
parameterized the VTI media with one elastic moduli v, (vertical P-wave velocity) and two di-
mensionless anisotropic parameters, € and . For a 2D acoustic medium, these parameters are

given by
Uy = CS3/P> (223)
€= % (2.24)
and 2 o
§ = % (2.25)
33

The effect of e is mostly significant along horizontal propagation paths, while its effect is neg-
ligible along the vertical direction, and ¢, which does not include ', control the near-vertical
anisotropy.

5. In the following, unless otherwise stated, the formulations and discussions are based on acoustic assumption
for the medium.
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By parametrizing eq. (2.22) with Thomsen parameters and considering p; = 0.7 and p3 =
0, T, I rewrite the eikonal equation (2.22) as

v2(1 4 2€)(0,T)* + v2(0.T)* — 2ui(e — 6)(0,T0,T)* = 1. (2.26)

Alkhalifah and Tsvankin (1995) suggested an alternative parametrization based on two elas-
tic moduli, v, and v,,,,,0, and a dimensionless parameter, 7). This parametrization reads

Unmo = Uu V' 1 + 20, (2.27)

and

(2.28)
where vy, is the horizontal velocity
v, = VoV 1+ 2e. (2.29)

They concluded that this parametrization is sufficient for all the time-related processing, like
NMO correction. Considering these parametrizations, I can write a general form of VTI acous-
tic eikonal equation as

A(0,T)* + C(0.T)? + E(0,T)*(0.T)* =1, (2.30)
where
A =02(1+ 2¢) = v},
2 Unmo
C=v, = T+ 25 (2.31)
E=—2vi(e—8) = =022, 0.

® In the next section, I introduce the 2D TTI eikonal equation and the algorithm to solve it.

2.4 Solution of TTI Eikonal equation

A heterogeneous 2D TTI medium can be considered locally as a VTI medium with a tilted
symmetry axis (section 1.3). If these local tilt angles be #(x) (positive for clockwise rotation
and negative for anticlockwise), I can write the 2D heterogeneous TTI eikonal equation as
(Alkhalifah, 2003; Waheed et al., 2014)

A(0T)* + C(0:T)? + E(0;T)*(0:T)* = 1, (2.33)

6. The 2D isotropic eikonal equation can simply be derived by setting ¢ = 0 and § = 0,
5 1
IVT|* = =, (2.32)
v

where v is the velocity in medium.
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where coefficient A, C'and E are defined locally with eq. (2.31), and the symbol ” -7 represents
the local rotated coordinate system such that

0:T = 0,T cosf — 0, T sin 6,

0:T = 0,Tsinf + 0,1 cos 0. (2.34)

Here I omit the coordinate dependency of 6 for the sake of brevity. I set the traveltime 7' to
zero at the source position, which is a Dirichlet boundary condition for PDE (2.33). I propose
an algorithm based on the fast sweeping method (FSM) (Zhao, 2005) in which I approximate
the gradient of the traveltimes with a finite difference operator. Using such a method raises
two difficulties: 1) The eikonal equation for TTI/VTI media embeds some terms which involve
products of first-order spatial derivatives raised to a power greater than two. This leads to nu-
merical difficulties to derive accurate solutions when the first-order derivatives are discretized.
2) The zero traveltime at the source results in singularity at the source position and consequently
erroneous calculated traveltimes. I shall proceed through an iterative procedure (fixed-point it-
erations) and factorization method to overcome these two issues.

2.4.1 Implementation of fixed-point iteration technique

In order to cope with the products of traveltime derivatives raised to power higher than two
in the 2D TTI eikonal equation, I use the fixed point iteration technique which inserts iteratively
the information of high power terms into the main solver.

By inserting eq. (2.34) into eq. (2.33), I can rewrite TTI eikonal equation (2.33) as
a(0,T)? — 26(9,T)(9.T) + b(d.T)* = D(T), (2.35)

where the left and right-hand-side terms are elliptic and anelliptic components of the equation,
respectively. Here

a= Acos?f + Csin? 6,
b= Asin?6 + C cos?#, (2.36)
¢=(A—C)cosfsinb,

and the right-hand-side term D(7") reads
D(T) =1— E (0,T cos 0 — 9,T sin6)” (0,7 sin 0 + 9, T cos 6)”. (2.37)

D(T) includes all the products with a power higher than two of the traveltime derivatives.
For elliptic anisotropy (EA) eikonal equation ¢ = § and this results in £ = 0 and consequently
D(T') = 1. Inspired by the similarity between the left-hand-side term (elliptic term) in eq. (2.35)
and elliptically-anisotropic eikonal equation’, Waheed et al. (2014) proposed an iterative ap-
proach based on fixed-point iteration method (Kelley, 1995) to take into account the anelliptic
term in the resolution of the TTI eikonal equation.

7. Note that the left-hand-side of eq. (2.35) does not represent an elliptically-anisotropic eikonal equation
because € and § can have different values. But, by abuse of language, I refer to this term as elliptic eikonal
equation.
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According to the fixed-point iteration method, in order to solve a non-linear equation like
f(z) = 0, one can consider it as f(z) +x = x = g(x) = x. Therefore, solution of the equation
g(x) = z which is a fixed-point of g can be considered as the solutions of f(x) = 0. Through the
recursive process x,, = g(x,_1) and an initial value for the fixed-point, this algorithm converges
to a fixed-point for g which is solution of f(x) = 0.

This suggests that the eikonal equation (2.35) can be formulated as
a(9,T,)% — 26(0,T,)(8.Ty,) + b(0.T,,)* = D(T_1), (2.38)

where n > 1 indicates the fixed-point iteration number. Considering this iterative method, I
introduce the following quantities

b ¢
b, = ——~,cn —

n N/ Un e 2.39
“ D@y T Ty T D) 2
and rewrite eq. (2.35) for iteration n of the fixed-point technique as

Vn_1(0;T,)% 4 bp_1(9.T,)? — 2¢,_1(0,T},)(0.T,) = 1. (2.40)

Solving this eikonal equation for iteration n yields the first-arrival traveltime map 7, and this
enables us to update the coefficients a,, b,,, ¢, through eq. (2.39). By iterating this procedure
one can update the traveltime maps to satisfy the convergence criterion. I considered D(Tp) = 1
as the initial guess to build the initial coefficients ag, by, co. Fig. 2.4 shows the flowchart of this
approach based on the fixed-point iterations.

Waheed et al. (2014) took advantage of the FSM to solve the elliptic eikonal equation (2.40)
in each iteration of the fixed-point algorithm where the traveltime gradients are approximated
by finite differences. This algorithm handles efficiently the presence of the anelliptic term in the
TTI eikonal equation, but it suffers from source singularity error propagation. In the following,
I discuss an elliptic eikonal solver (Luo and Qian, 2012) in which the source singularity is
removed by a factorization method.

2.4.2 Factorized eikonal solver

According to the factorization method proposed by Fomel et al. (2009); Luo and Qian
(2012), solution of eq. (2.40) can be written as

T =Ty, (2.41)

where 7 is a known analytical solution of an elliptic eikonal equation in a homogeneous
medium, whose properties match those of the real medium at the source position. The 7 map
should be computed at each point of the medium and will correct the traveltimes to account for
the differences between the real and the homogeneous media. In the factorization method, 7
captures the source singularity and 7 is a smooth function around the source. Therefore, the
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Figure 2.4 — Fixed-point iteration flowchart. Initialize the anelliptic term with D(Tp) = 1.
Then update the coefficients of the elliptic eikonal equation and solve it. Iterate this procedure
until the convergence criterion is satisfied. Here ¢ designates a small number (10E-4).

spatial gradient of traveltime can be expressed as

0,T =T, =Ty, 7+ 7T,

,T =T, = Ty.7+n.Tp, (2.42)

with obvious notations for derivatives. By inserting eq. (2.42) into eq. (2.40) and omitting the
subscripts n and n — 1, I obtain the Hamiltonian for the factorized elliptic eikonal equation (L.uo
and Qian, 2012) as

T2 (a1g — 2Ty, Ty, + VIE) + 2To7(aTh, 7y
H(z, 2,70, T) = \/ —c(T,, 7. + To. 1) + bTy, 7)) + T2 (at? — 2c1,7, + b72) =0

(2.43)
Here T} can be analytically calculated from the homogeneous elliptic eikonal equation

FMWQ—MWRR+WM&ﬂ’“QWW’ (2.44)

TO (Xo) = 0,
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where xg = (g, z0) denotes the source position in the computational domain 2 and T is
defined as

(2.45)

_[b(x0)(z — 79)? + 2¢(x0)(x — x0) (2 — 20) + a(x0) (2 — 20)?
Tol,2) = \/ a(x0)0) — o) ‘

This definition of 7} satisfies the required smoothness for 7 around the source, in other words,

. T(x,2)
lim —_—
(z,2)—(x0,20) TO (.1'0, ZO)

~ 1. (2.46)

In order to numerically calculate 7 in eq. (2.43), Luo and Qian (2012) proposed a first-
order FSM on a rectangular mesh. For a grid step size h they discretized eq. (2.43) thorough
four triangles (Fig.2.5). This discretization provides an upwind scheme respecting the causality
condition in the fast sweeping method. For example, a discretization involving the triangle

Characteristic

.
N //
N
S

Figure 2.5 — Discretization scheme. Rectangular mesh (left) and the finite difference stencil
(right). Each grid point is the central vertex for four different stencils (from Luo and Qian,
2012).

AWCN at vertex C' can be performed with a linear Taylor expansion of 7, and 7, through the

expression
Vr(C) = (1,(C), m.(C)) = (T@ ) e Tl )) . (2.47)

Inserting equation (2.47) into the factorized elliptic eikonal equation (2.43) leads to the follow-
ing discretized elliptic eikonal equation

VET2(C) + kot (C) + kg = 1, (2.48)
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where k;|?_, are defined as

T, T2
ki = aTy,? — 2¢Ty, Ty, + bT0.2 4+ 2-2(To, (a — ¢) + To. (b — ¢)) + ~2(a — 2¢ + b),

h h2
b = 22 (W)(ETh, —aTh,) + (S)(eT, — BTh,)) — 235 (ar(W) — c(r(W) +7(5)) + b7(5)).
ks = %(GTZ(W)—20T(W)T(S)+b7’2(8)).

Therefore, for a given 7(W) and 7(S) in triangle AWCN, resolution of the quadratic
equation (2.48) provides the value of 7"*(C) 8. The other triangles of the discretization scheme
(Fig.2.5) lead to similar quadratic equation. The value of 7"(C') inferred from the resolution
of the quadratic equation can be an acceptable candidate if it is real and satisfies the causality
condition. I recall that the causality condition can be stated as follow (L.uo and Qian, 2012): the
characteristic of the function 7" passing through vertex C' of each triangle should be between
the edges of the triangle (Fig. 2.5). For instance, for triangle AW C'N the characteristic vector
passing C'is defined as

(a(C)TH(C) — e(CYTL(C), B(C)TH(C) — e(C)TH(C)), (2.49)
where VI'(C) = (T", Th) = V' (C)To(C) + 7" (C) VT, (C). In order to satisfy the causality
condition, vector (2.49) should be between edges W' and SC. When equation (2.48) yields
no real solution for 7"(C'), one can convey the information about 7 from the neighbours to the
central vertex C' along the edges of the associated triangle, and compute a viscosity solution

for 7"(C') through the method of characteristics. The characteristic system of Hamiltonian
H(z,y,7,,7.) (eq. (2.43)) reads

dr dz OH 0OH

(aa %) = (3_%;’3_72)' (2.50)

These equations can be used to present a viscosity solution for eq. (2.48). For example, in
triangle AW C'N by forcing the characteristics to be along edge W' I can write

dz O0H B

%_(9@_ ’

2.51)

and in result b(C)T(C) = ¢(C)TH(C). Inserting this into the factored eikonal equation (2.43)

T

bh— 2
yields \/ ¢ 2 ¢ (Tyr, + To,7) = 1. Finally, by discretizing through triangle AW C'N T derive
the following viscosity solution for 77(C') (Luo and Qian, 2012)

To(C)T(W) + hy ) =t
(O = O -] 2.52)

To(C) + 1o, (C)(xc — zw)

8. Here and in the following discussions, the superscript h only emphasizes that the values are discretized on a
regular mesh with grid interval h.
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Each of the four triangle stencils can provide at most two candidates for 7"*(C) which satisfy
the causality condition, but only the minimum one will be selected as the final candidate for the
value of 7 at the central vertex. The algorithm (1) associated with the solver of the factorized
elliptic eikonal, equation (2.43), is outlined below.
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Algorithm 1: Factorized elliptic eikonal solver for the FD stencils in Fig. 2.5 (at each grid
point)

1: for AWCN do

2:  Discretize eq. (2.43).

3 Solve the quadratic eq. (2.48) = 7.1, Teo.

4. if71, € IR" and 7., € IR" then

5: if 7.1, 7.9 satisfy casualty then

6: TWN(C) = miH{T()(C>Tcl,T0(C)Tc2}
7: else if 7., satisfies casualty then

8 TWN(C) = T()(C)Tcl

9: else if 7., satisfies casualty then
10: TWN(C) = T()(C)TCQ

11: else if 7.;, 7.2 do not satisfy casualty then

12: Calculate viscosity solution along to edges = Ty ¢, Tne-
13: if To(C)rwe > T(W) and To(C)tye > T(N) then
14: TWN(C) = min{To(C)Twc, T()(C)TNc}

15: else if 7,(C)rye > T (W) then

16: TWN(C) == T()(C)TWC

17: else if 75(C)7ne > T(N) then

18: TWN(C) = TU(C)TNC

19: else

20: TWN(C) =0

21: end if

22: end if

23:  else

24: Calculate viscosity solution along to edges = Ty ¢, Tne-
25: if To(C)TWC > T(W) and To(C>TNC > T(N) then
26: TWN(C) = miH{To(C)Twc, Tg(C)TNc}

27: else if 74,(C) e > T(W) then

28: TWN(C) = To(C)TWC

29: else if 7)(C)tne > T(N) then

30: TWN(C) = TO(C)TNC

31: else

32: TWN(C) = o0

33: end if

34:  end if

35: end for

36: for AECN, AECS, AWCS do

37: Do as above = Ty (C), Trs(C), Tws(C)

38: end for

39: T(C) = mm{TWN(C), TEN(C), TEs(C), Tws(C)}
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FSM implementation

In order to cover all the possible propagation directions (the characteristics) I rely on the
sweeping scheme of FSM. The FSM method includes a Gauss-Seidel iteration with alternating
sweeping ordering which covers all the possible directions for the characteristics:

sweepl : 1 =1:ny, j=1:ngy; sweep2 :i=1:ny, j=mno:1;
. . . , (2.53)
sweepd:i=mn1:1, j=1:ngy; sweepd :i=mny:1, j=no:1,

where ¢ and j are the indexes of each grid point on the regular n; X n, mesh which discretizes
the subsurface model. I sweep repeatedly the computational domain with these four sweeps and
in each sweep I apply the factorized elliptic eikonal solver explained in the Algorithm (1). This
results in four candidates at each grid point and I always pick the minimum value as the final
traveltime value. Algorithm 2 represents this procedure in detail.

Algorithm 2: FSM algorithm for elliptic factored eikonal solver. Here x, designates the
source position. Note that in this algorithm 7(x) is the traveltime map for the whole
computational domain in iteration 0, not the factored term in eq. (2.41).

1: Initialization

2:2n=20

3: if x = x; then

4: To(Xo) =0

5: else

6:  To(x) =00

7: end if

8: while Diff< 10e-4 do

99 n=n-+1

10 fori=1:ny5=1:n9 do

11: T, (x) — Perform Algorithm | = T,eep1 (X)

12:  end for

13: fort=1:ny5=mny:1 do

14 Tsweep1 (x) — Perform Algorithm 1 = Teepa (%)
15:  end for

16: fori=mn;:15=1:ny do

17: Tsweepz(x) — Perform Algorithm 1 = Typeeps(X)
18:  end for

190 fort=n;:1j5=mny:1 do
20: Tsweeps (x) — Perform Algorithm 1 = Tpeeps (%)
21:  end for
22: Th(x) = Tweepa(X)

23:  Diff = || T,(x) — Tp_1(X)||oo
24: end while
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In summary, the proposed algorithm for the resolution of the 2D TTI eikonal equation in-
volves the following steps. I decompose the TTI eikonal equation in to an elliptic eikonal equa-
tion and a right-hand side term that accounts for anellipticity. Through the fixed-point iteration
technique, I update iteratively the solution of the elliptic eikonal equation with the anellipticity-
related correction. In each iteration of the fixed-point method, I solve an elliptic eikonal solver
based on the FSM and factorization method to calculate the traveltime maps. These traveltime
maps are used to compute the corrections required by the anellipticity. This loop continues until
a stopping criterion of iterations is satisfied.

I apply the FSM algorithm (Algorithm 2) on a simple homogeneous isotropic model to
demonstrate the role of the factorization and FSM methods in the traveltime calculation. Here,
since the model is isotropic, there is no fixed-point iteration (the anelliptic term is one). I con-
sider a 5 km x5 km subsurface model with a grid interval of 50 m, a velocity of 1000 m/s in the
background and a point source at the center. Fig. 2.6 shows the difference between the analyti-
cal solution and the calculated traveltimes with the eikonal solver using factorization (Fig. 2.6b)
and without factorization (Fig. 2.6c). Here the factorization method efficiently removes the sin-
gularity at the source and results in 10° times smaller error for calculated traveltimes. Fig. 2.7
shows the calculated traveltimes for each sweep separately. Each sweep includes a specific
range of characteristics or propagation directions.

2.4.3 Source implementation in practice

The zero traveltime at the source position is a Dirichlet boundary condition for the eikonal
equation. This can be extended for situations in which the source is not at any grid point
(Fig. 2.8). In this case, I analytically calculate the traveltime for the four surrounded grid
points and consider their traveltimes as the Dirichlet boundary condition for the eikonal solver.
This requires a careful calculation of the traveltimes from the source to the surrounded grid
points. By considering a homogeneous TTI model inside the associated grid cell, I can use the
analytical phase velocity definition in homogeneous TTI media (Tsvankin, 1997) to calculate
the wave propagation velocity and consequently traveltimes in four different directions (arrows
in Fig. 2.8). This definition reads

VIS0 _ % + esin?(B — 0) + %\/(1 + 2esin®(B8 — 0) — 2(e — 6) sin*(2(5 — 0))), (2.54)

2
Vo

where V' (3, 6) is the phase velocity of the wave, 6 and 3 are tilted angle in the grid cell and the
take-off angle of rays (arrows in Fig. 2.8) toward the neighbour grid points, respectively. As
mentioned by Fomel et al. (2009), compared with source positioning on the grid points, here the
extra boundary conditions for the eikonal solver result in extra iterations for FSM to converge.

2.4.4 Numerical examples

In this section I assess the accuracy of the proposed eikonal solver with different numerical
examples involving long-distance propagation. These tests include a homogeneous isotropic,
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Figure 2.6 — Factorization effect on traveltime calculation for a homogeneous isotropic model.
a) First-arrival traveltime contours for analytical solver (green) and eikonal solver with fac-
torization (blue) and without factorization technique (red). The blue and green contours are
completely matched. Difference between the analytical and eikonal solver solutions b) with fac-
torization and c) without factorization technique. Factorization technique removes the source
singularity error from the eikonal solver solution. The magnitude of the maximum error is 10°
times smaller than the solution of the eikonal solver without factorization.

homogeneous VTI and three TTI models (i.e. homogeneous, constant gradient velocity and
BP salt model (Shah, 2007)). Then, I discuss about the grid interval effect on the algorithm
accuracy. The tests are performed in double precision Fortran 90 code on a PC with Intel
Xeon CPU 3.60GHz. For convergence criterion in the FSM and fixed-point iteration I consider
|77, — Th—1]|« < € Where ¢ is a threshold and n is the iteration count of the FSM or fixed-point
methods. Here, I set ¢ = 1073 and ¢ = 10~ for the fixed-point iterations and the FSM, respec-
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Figure 2.7 — FSM solution for each sweep for the example in Fig. 2.6. Each sweep calculates
traveltimes within a specific propagation direction range.

& O

O Grid point ~ @5Source point
Figure 2.8 — Point source implementation when the source is not on the grid point. I calcu-

late analytically the traveltime for the surrounded grid points and consider them as boundary
conditions for the eikonal solver.

tively. I also use a threshold of 10~ for the fixed-point iterations to assess the computational
overhead generated by this loop. In order to understand this threshold is well chosen or not, I
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calculate the following parameter (as a local convergence rate) in the last iteration of fixed-point

. log((sn — 8n—1)/(8n—1 — 5n—2))

— 2.55
109((5m —5n2)/(5n3 — 5m_5))’ (233)

where s; are the elements of given numerical series (here |7, — T,,_1]|») and « is called the
convergence rate. By this definition the threshold is suitable if « be close to 1.

Homogeneous isotropic and VTI examples

Isotropic model

I consider a 20 km x4 km isotropic homogeneous model with a velocity of 1000 m/s and
grid interval of 1 = 50 m. The point source is located at the upper-left corner of the model,
o = 2o = 0 km. I validate the solution of the eikonal solver against the analytical solution. Fig.
2.9(a) shows the difference map between the two solutions where the eikonal solver accurately
removes the point source singularity. Here the maximum error between numerical and analytical
solution is less than 2 x 1079 second. For the isotropic example there is no fixed-point iteration
because the anelliptic term is zero, and therefore there is no value for convergence rate of fixed-
point iterations.

VTI model

As a second example, I consider a 20 km x4 km homogeneous VTI model with a grid interval of
h = 50 m. The subsurface parameters are v, = 3000 m/s, ¢ = 0.15 and 6 = 0.05, and the source
is located at xy = 2y = 0 km. I compare the analytical solution of Carcione et al. (1988) with
our numerical solutions. Fig. 2.9(b) shows the superimposition of different wavefronts from
the proposed eikonal solver and analytical solver where two solutions are almost identical. For
this model, four iterations of the fixed-point method are sufficient to satisfy the convergence
criterion, Fig. 2.10.

Table 2.2 presents the convergence rate, number of iterations performed by the fixed-point
method and the maximum number of iterations in the FSM for the traveltime calculations in the
homogeneous isotropic and VTI media. The computational cost for a threshold 10~* is around
1.5 times more expensive than the one obtained with a threshold 102, hence highlighting the
linear relation between the computational cost and the number of fixed-point iterations.
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Figure 2.9 — Homogeneous isotropic and VTI examples. (a) Difference between analytical and
numerical solution in second for a homogeneous isotropic model. The difference is increasing
with distance while remaining below 2 microsecond. (b) Superimposition of traveltime contours
at 0.8s, 2.56s and 4.8s, computed analytically (green) and with the eikonal solver (red) for a

homogeneous VTI model. The box on the right corner of (b) shows a zoom on the traveltime
contours.

| Threshold || 1073 I 104
MODEL FPI-(FSM) Run time FPI-(FSM) Run time o
(n1 X 12) iteration # (sec) iteration # (sec)
ISO
(81 x 401) 0-(2) 0.106 0-(2) 0.106 ]
VTI
81 x 401) 42 1.058 6-(2) 1575 | 1.053

Table 2.2 — Homogeneous isotropic and VTI examples. Computational cost and iteration num-
bers for homogeneous isotropic (ISO) and homogeneous VTI examples (VTI) in Fig. 2.9 for two
convergence criteria for the fixed-point iterations. Columns with header FPI-(FSM) show the
number of fixed-point iterations and the maximum number of FSM iterations. Computational
costs are in second (Run time). The convergence rate « is calculated for threshold 1074,

61



Adjoint Slope Tomography: Forward problem

10

o

=
o
©
T

1
w

[ Toi1 — T [l
=
O\
-

FSM iteration

.
L]
L]
L
N

=
o
W
T

107 L L [‘1
Fixed point iteration number

[,
)
e

oe

Figure 2.10 — Homogeneous VTI examples. Convergence diagram for the homogeneous VTI
model of the example in Fig. 2.9(b). Black dots represent the number of FSM iterations in each
fixed-point iteration. In each iteration of the fixed-point there are 2 FSM iterations.
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TTI examples

Here I consider three examples including different TTI models (homogeneous, constant
gradient and BP salt) of dimension 31.25 km x 6.25 km. These examples help to assess the
effect of the structural complexity of the subsurface on the accuracy and computational cost
of the proposed eikonal solver. I validate the solutions of this eikonal solver against the full
wavefield solutions computed with a O(At?, Az*) TTI acoustic finite-difference time-domain
(FDTD) code based on the staggered-grid stencil of Saenger et al. (2000) and the SMART
absorbing boundary conditions of Métivier et al. (2014b). For all three tests, the source is
located at (zo, zo) = (125, 1000) m.

Homogeneous TTI model

For the homogeneous TTI (H-TTI) model I use v, = 3500 m/s, § = 30°,¢ = 0.15,6 =
0.05 and a grid interval of h = 50 m. Fig. 2.11 shows the superimposition of the eikonal
solutions, red curves, on several snapshots of the FDTD wavefields. Parasite reflections from
the boundaries are visible in the snapshots due to aggressive amplitude clipping. Convergence
diagram, Fig. 2.12, shows that the algorithm satisfies a convergence criterion of 10~ after five
iterations of the fixed-point iteration algorithm.

Constant gradient TTI model

For this example I consider a constant gradient velocity TTI model (CG-TTI) where v, increases
with depth, from 2000 to 4000 m/s, and the tilted angle, ¢ and § models are homogeneous
(0 = 30°, ¢ = 0.15,0 = 0.05). Fig. 2.13 presents the kinematic agreement between the eikonal
solution and the FDTD snapshots at for four different traveltimes. The fixed-point iteration
algorithm satisfies the stopping criterion of iteration for a threshold of 10~ after six iterations
(Fig. 2.14).

TTI BP salt model

In this example I calculate the first-arrival traveltimes in the complex TTI BP salt (BP-salt)
model (background of panels in Fig. 2.15). Fig. 2.15 shows the superimposition of the wave-
front computed with the eikonal solver with the FDTD wavefields at four different traveltimes.
The FDTD and eikonal solutions closely coincide even in the complex part of the model and
at long distance from the source. In order to have a more comprehensive assessment of the
traveltime accuracy, I superimposed in Fig. 2.16 the eikonal traveltime curves on two sets of
FDTD seismograms that are recorded by two receiver lines at 200 m and 4000 m depth. The
good match between the two solutions can be also observed here. Here, four iterations of the
fixed-point iteration method have been sufficient to satisfy a convergence criterion of 1073,
However, the complexity of the geological features makes the first iteration of the fixed-point
iteration method to perform more FSM iterations compared to the two previous TTI examples
(Fig. 2.17).

Generally, these three TTI examples suggest that the proposed eikonal solver is accurate
enough at near and far-offsets, regardless of the propagation direction, for imaging applications.
Table 2.3 contains the convergence rates and the number of iterations for traveltime calculation
of the examined TTI models for two convergence threshold of 1072 and 10~%. All the conver-
gence rates are close to one which shows the stability of the fixed-point strategy. Decreasing the
convergence threshold from 1073 to 10~ results in five and four extra fixed-point iterations in
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Figure 2.11 — Homogeneous TTI example. Superimposition of traveltime contours from
eikonal solver, red curves, on the FDTD wavefields at times 1s, 2.5s, 4.5s and 7s. For all
the offsets the eikonal solutions and wavefields coincide.

traveltime calculation for H-TTI and CG-TTI models, respectively, while the fixed-point itera-
tion method performs only one extra iteration for the BP-salt model. In the following, I explain
why the computational overhead resulting from the decrease of the convergence threshold is not
in a same range for different models.
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Figure 2.12 — Homogeneous TTI example. Convergence diagram for the homogeneous TTI
model from the test in Fig. 2.11. Black dots represent the number of FSM iteration in fixed-
point iterations. Algorithm requires 5 iterations to satisfy the convergence criterion 10~ for
fixed-point iteration. In each fixed-point iteration the algorithm performs 3 FSM iterations.

| Threshold || 1073 I 104 | |

MODEL FPI-(FSM) Run time FPI-(FSM) Run time

(n1 X ny) iteration# (sec) iteration# (sec) @
H-TTI

(126x626) >-(3) 1.2 10-(4) 3.8 0.8
CG-TTI

(126x626) 6-(3) 1.7 10-(3) 2.4 121
BP-salt

(126x626) 4-(4) 1.6 5-(4) 22 | 00981

Table 2.3 — TTI examples. Computational cost and iteration numbers of homogeneous TTI (H-
TTI), (CG-TTI) and BP salt TTI (BP-salt) examples in Figs 2.11, 2.13 and 2.15, respectively,
for two convergence criteria for fixed-point loop. Columns with header FPI-(FSM) show the
number of fixed-point iterations and the maximum number of FSM iterations. Computational
costs are in second (Run time). The convergence rate « is calculated for convergence criterion
1074
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Figure 2.13 — Constant gradient TTI example. Superimposition of traveltime contours from
eikonal solver, red curves, on the FDTD wavefields at times 1s, 3s, 5s and 8s. For all the offsets
the contours from eikonal solver are matched with the wavefields.
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Figure 2.14 — Constant gradient TTI example. Convergence diagram for the constant gradient
velocity TTI model from the test in Fig. 2.13. Black dots represent the number of FSM iteration
in fixed-point iterations. With 6 iterations of the fixed-point the algorithm satisfies the conver-
gence criterion 1072, In each fixed-point iteration the algorithm performs 3 FSM iterations.
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Figure 2.15 — TTI BP salt example. Superimposition of traveltime contours from eikonal solver,
red curves, on the FDTD wavefields at times 2s, 3s, 6s and 10s for the TTI BP salt model. Even
in complex parts of the model and large-offsets two solutions are almost identical.
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Figure 2.16 — TTI BP salt example. Traveltimes computed with the eikonal solver (red line)
superimposed on the FDTD seismograms without saturation for BP salt model. The receiver
lines are at depth 200m and depth 4000m. The first-arrival traveltimes calculated by eikonal
coincide with the wavefields at different offsets.
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Figure 2.17 — TTI BP salt example. Convergence diagram for the TTI BP salt model for the
test in Fig. 2.15. Black dots represent the number of FSM iteration in each of the fixed-point
loop. The algorithm performs 4 iterations to satisfies the convergence threshold 10~3 of fixed-
point. In the first fixed-point iteration the algorithm performs 4 FSM iterations and for the
others the number of FSM iteration is 3. Here, compared to the previous TTI examples, the
complex subsurface models result in more iteration for the FSM during the first iteration of the
fixed-point.
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Grid interval effect

In order to investigate the influence of the grid interval on the computational overhead re-
sulting from the decrease in convergence threshold, I perform several simulations in some VTI
and TTI models with different grid intervals. I consider the following models: homogeneous
VTI (H-VTI), constant gradient velocity VTI (CG-VTI) and the three previous TTI models, i.e.,
homogeneous TTI (H-TTI), constant gradient velocity TTI (CG-TTI) and BP salt (BP-salt). The
size of all these models is 31.25 km X 6.25 km and the subsurface parameters for H-VTI and
CG-VTI are same as H-TTI and CG-TTI, respectively, only for VTT models the tilted angle is
zero.

I discretize each of the mentioned models with four different grid intervals: 125, 50, 25 and
12.5 m while for all of them a point source is located at (zp,z9) = (125,1000) m. Then, I
apply the eikonal solver to assess how the grid interval influences the convergence of the solver.
Table 2.4 and 2.5 include the convergence rates and the number of fixed-point iterations and
the maximum number of FSM iterations for different discretization of these VTI models (i.e.
H-VTI and CG-VTI) and TTI models (i.e. H-TTI, CG-TTI and BP-salt), respectively. I used
10~* as the threshold for the fixed-point iteration and 10~ for the FSM.

| MODEL || Mesh size | Grid step size (m) | FPI-(FSM) iteration# | o |

H-VTI 51x251 125 6-(2) 1.093
H-VTI 126626 50 6-(2) 1.040
H-VTI || 2511251 25 6-(2) 0.999
H-VTI || 501x2501 12.5 6-(2) 0.973
CG-VTI 51x251 125 5-(2) 1.012
CG-VTI || 126x626 50 5-(2) 1.013
CG-VTI | 251x1251 25 5-(2) 0.998
CG-VTI | 501x2501 12.5 5-(2) 0.98

Table 2.4 — Grid step size effect. Number of fixed-point iterations and the maximum number
of performed FSM iterations (FPI-(FSM)), and convergence rate o for homogeneous VTI (H-
VTI), constant gradient velocity VTI (CG-VTI) models with four different grid step sizes 125,
50, 25 and 12.5 m. For all the examples « is close to one and the number of fixed-point iterations
is not changed for different discretization step lengths. For all the examples the threshold for
fixed-point and FSM convergence is 1074,
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MODEL H Mesh size \ Grid step size (m) \ FPI-(FSM) iteration# \ « ‘

H-TTI || 51x251 125 7-Q2) 0.70
H-TTI || 126x626 50 10-(4) 0.80
H-TTI || 251x1251 25 5-(3)% 0.80%
H-TTI || 501x2501 125 - -

CG-TTI | 51x251 125 8-(3) 0.56

CG-TTI || 126x626 50 10-(3) 121

CG-TTI || 251x 1251 25 19-2)% 9.3%

CG-TTI || 501x2501 125 _ _
BPsalt || 51x251 125 5-(4) 0.818
BP-salt | 126x626 50 5-(4) 0.981
BP-salt || 251x 1251 25 6-(4) 1.14
BP-salt || 501x2501 12.5 8-(4) 1.036

Table 2.5 — Grid interval effect. Number of fixed-point iterations and the maximum number of
performed FSM iterations (FPI-(FSM)), and convergence rate o for homogeneous TTI (H-TTI),
constant gradient velocity TTI (CG-TTI) and BP salt models with four different grid step sizes
125, 50, 25 and 12.5 m. For all the examples the fixed-point and FSM convergence threshold
is 1074, but for those that are indicated by "*" the final satisfied threshold for the fixed-point
convergence is 1073, Note that for H-TTI and CG-TTI model when the grid step size is 12.5 m
the algorithm can not satisfy even the convergence criterion 10~ for fixed-point.

For the VTI models (H-VTI and CG-VTI), all the grid intervals lead to a convergence rate
close to one, and the number of the fixed-point iterations is the same for all the models (Table
2.4). However, I show a different impact of the discretization when considering the TTI models
instead of the VTI counterparts (Table 2.5). For instance, for H-TTI and CG-TTI models with
a grid interval of h = 12.5 m, the algorithm never satisfied the convergence criterion of the
fixed-point iteration, even for ||}, 41 — Ty ||« < 1073, while different grid intervals for the BP
salt model do not impact upon the convergence of the algorithm with a convergence rate is close
to one for grid step length 12.5 m.

The reasons behind these observations can be attributed to two issues: 1) factorization per-
formance for long-offset configuration for homogeneous models, and 2) the inescapable accu-
mulation of numerical error at far offset due to round-off error. In the following I discuss briefly
these issues.

1) In order to clarify the first issue, I refer to the factorization definition where 7' = Ty7
and the traveltime gradients are defined through equation system (2.42). After estimation
of 7 gradients with the finite difference stencil in Fig. 2.5 (eq. (2.47)), I can rewrite the
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2)

traveltime gradients in eq.(2.42) as

7(C) = 7(W)
h

7(C) = 7(5)
h

T, =Ty, (C)T(C) + To(C),

(2.56)

T, =T, (C)r(C) + To(C).

In these expressions when the given model is homogeneous or the 7 field tends to be very

smooth, I can state that 7(C') ~ 7(W) or 7(C') = 7(.5), and in result the nominators of the

fractions in eq. (2.56) are a small number while the denominators (h) are relatively a big

number. This makes these division operations prone to be contaminated with round-off
9

error.

In order to verify this statement I can perturb the smoothness of 7 and compare the conver-
gence of the algorithm before and after this perturbation. This perturbation increases the
magnitude of the nominators in eq. (2.56) and consequently should decrease the round-
off error. Accordingly, I insert a 100 x 100 m square vertical velocity anomaly in the
H-TTI model which is discretized with h = 12.5 m (Fig. 2.18). With this perturbation
the algorithm satisfies the threshold ||, 1 — T}l < 1072 in five fixed-point iterations,
while the algorithm did not satisfy this convergence criterion for the original unperturbed
model (Table 2.5).

The next issue can be related to the fixed-point strategy. The coefficients of the elliptic
eikonal equation which are updated by the fixed-point iterations, eq. (2.39), are influenced
by round-off error. This is significant when the tilted angle is not zero and the calculation
of the anelliptic term, eq. (2.37), and the coefficients of the elliptic eikonal equation,
eq. (2.36), involve arithmetic operations of cos ¢ and sin §. These errors have a significant
role in the convergence and accuracy of our algorithm to such an extent that I was never
able to satisfy the threshold criterion ||7},+1 — T,||c < 1072 for the VTI and TTI models
with the single precision version of the code.

Although in real applications we never face with such a large homogeneous models like the
H-TTI and CG-TTI model, but it is important for us to be aware of these errors when we are
defining initial models for forward solver in the slope tomography.

2.5

Conclusions

I have presented an iterative factorized eikonal solver for heterogeneous TTI media. The
strategy is based on a fixed-point iterative solver: the simpler elliptic eikonal equation is solved
by a fast sweeping method with updated right-hand-side terms for converging toward the TTI
solution. Adding the factorization procedure removes the singularity at the source and im-
proves dramatically the precision of the solution. Examples of complex geological TTI models

9. As aremedy to this problem one can propose to restrict the factorization scheme to the grid points around
the source. But this affect the final results because of the footprint of different definitions for gradients around the

source.
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Figure 2.18 — Round-off error effect. First arrival traveltimes contours calculated with our
eikonal solver, for homogeneous TTI example in Fig 2.11 in presence of a small velocity
anomaly. The background colors designates the vertical velocity. Without this anomaly the
eikonal solver can not satisfy the convergence criterion 102 for the fixed-point while in pres-
ence of this anomaly it converges. This velocity anomaly reduce the round-off error in the
traveltime gradient calculations.
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point out the ability of this method for a precise estimation of first-arrival times for near and
far-offsets. I have identified the convergence difficulties according to different discretization
scheme and probable sources of error. Nevertheless, the method is enough accurate to consider
it as a forward engine for traveltime tomography and anisotropic slope tomography.
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Chapter 3

Adjoint slope tomography: Inverse
problem

Chapter overview: In this chapter I present the principles of the adjoint slope tomography
in the framework of inverse problem theory and its application to various synthetic examples.
First I review the basics of inverse problem theory with a focus on the main methods which
are applied in this study such as the quasi-Newton L-BFGS optimization algorithm based on
the gradient of the misfit function and the adjoint-state method for computing this gradient. In
the second section, which is the duplicated version of our paper published in the Geophysical
Journal International (Tavakoli F. et al., 2017b), I introduce the isotropic formulation of slope
tomography that is followed, in the last section, by its extension to tilted transversely isotropic
media. Each of these two sections includes a review of the formulation of classic ray-based
stereotomography, our definition of the model and data spaces in the adjoint slope tomography,
and finally an assessment of the method with synthetic examples of increasing complexity.
First, some toy examples based upon simple subsurface models are used to assess the resolution
power of the adjoint slope tomography as well as the relative role of slopes and traveltime in
the inversion. Then, more complex subsurface models such as the Marmousi and BP TTI salt
models are used to assess the potentialities of this method in more realistic settings. Application
on real data is presented in chapter 4.

3.1 Review on inverse problem theory

The forward modelling applies a physical theory on a set of parameters or quantities (model
parameters) to predict the observables (data) of an experiment. Classic physics states that, as
long as the model parameters are not changed, the observables are the same. The inverse prob-
lems arise when we do not know, or we partially know, the model parameters but we have
some observables and we wish to find the related model parameters (Lee et al., 2002). In the
framework of exploration seismology, observables consist of the seismograms, and the physical
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properties of the Earth interior that govern the seismic wave propagation are the model param-
eters we seek to reconstruct. Accordingly, if I consider that the Earth interior properties are
gathered in the model vector m = [my, mg, ms,--- ,my]", where M denotes the number of
model parameters, (the superscript ¢ designates the transpose operator) and the observables from
the recorded seismograms define the elements of the data vector d,ps = [dy, do, d3, - - - ,dN]’, as
N observables, the observed data and model parameters can be related by one or more equations

g1 (dobsa m) = 07

92(dob57 m) - O’
or g(dyps, m) = 0. 3.1

gL(dobsv m) = 07

where L is the number of equations and operator g; governs the physics of seismic wave
propagation within the Earth. Therefore, the inverse problem consists in solving the equation
g(dops, m) = O for the unknown set of model parameters m. Depending whether these equa-
tions are linear or not, the inverse problems can be mainly categorized as linear or non-linear
problems, the resolution of which are discussed in the following sections.

The goal of this section is to review some key features of inverse problem theory which are
of concern in this study rather than providing a detailed review. For the sake of simplicity, I
keep the formulation in the framework of unconstrained optimization problems.

3.1.1 Explicit linear inverse problems

If operator g in eq. (3.1) describes a linear relationship ' between data and model parameters,
I can rewrite eq.(3.1) as
dops = Fm; (32)

where matrix F ., leads to IV equations (N = L). Solution of these linear equations can be
achieved with
m = F~'d,, (3.3)

where the superscript —1 designates the inverse operator. This exact solution is achievable only
and only if F~1 exists. This leads us toward classifying the inverse problems by answering
the question of whether the equation d,;s = Fm provides enough information to determine
uniquely the model parameters.

The problem is called under-determined if the equation d,,s = F'm does not provide enough
information to specify uniquely the model parameters. This typically happens when the number
of unknowns is more than known (i.e. M > N). If the equation d,;s = Fm contains too
much information such that determining an exact solution is not possible, the problem is over-
determined. In such a problem the number of observables is higher than the number of model
parameters; generally this occurs when N > M. The problem is even-determined if there is
enough information to specify the model parameters.

1. Operator g is linear if g(81m; + Soms) = B1g(my) + fog(my).
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However, in many applications, the inverse problem is neither completely over-determined
or under-determined, and it can be considered as a mixed-determined problem (Menke, 2012,
chapter 3). This makes the direct calculation of the exact model parameters with m = F~'d,
impossible, and requires to use numerical optimization methods (e.g., the least-squares method)
to solve the inverse problem.

Least-squares method

I consider a more general linear inverse problem in which the observables are contaminated
with noise. This modifies the relation (3.2) to

d,s = Fm +e, (3.4)

where ”e” designates an unknown error. A widely used method for resolution of this equation
is the least-squares method which aims to minimize the misfit between the observables and the
predicted data Fm. This leads to defining a misfit function as

C(m) = e'e = (dops — Fm)'(dgps — Fm) = ||(dops — Fm)|[3, (3.5)
where || - ||» designates the [y-norm operator. The estimated solution of eq.(3.4) is m =

argmin C(m), i.e. m is the minimizer of the misfit function C'(m). Therefore, zeroing the
m

derivative of misfit function (3.5) with respect to m (VC'(m) = 0) results in m
VCm)=0 — F'Fm-—F'dy, =0, (3.6)

and
m = (F'F)'F'd,. (3.7)

If all the observables do not have the same uncertainty, we need to bias the inversion toward
the observables which are more reliable. Therefore, for such a problem it is necessary to modify
the misfit function (3.5) as follow

C(m) = (dops — Fm)'C; ' (dps — Fm), (3.8)

where C, is the data covariance matrix and includes each observable uncertainty. This N x N
diagonal matrix weights inversely the residual term d,;; — F'm such that, the observables with
large uncertainty have less contribution to the inversion, and those with small uncertainty have
more contribution and steer the inversion.

Moreover, if different classes of observables were recorded with different order of magni-
tudes, it is desirable to define a weighting matrix (W) in the misfit function to balance the
role of each class of observables during the inversion. For this case, I can rewrite the misfit
function (3.5) as

C(m) = (dpps — Fm)"Wy(d,ps — Fm), 3.9)

where W balances the residuals from different observable classes.
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For these modified misfit functions (eqgs (3.8)-(3.9)) the estimated model parameters can
be calculated in a similar way as in eq. (3.7). Estimated solutions with these misfit functions
respectively are

m = (F'C,'F)'F'C; " ds, (3.10)

m = (F'W,F) 'F'Wd,s. (3.11)

The estimated model m depends directly on the observables and generalized inverse matrix
(F'F)~'F!. This arises following important debates about inverse problem solutions (Sen and
Stoffa, 2013): existence and uniqueness of solution, robustness (insensitivity of the solutions to
outliers in the observables) and stability (insensitivity of the solutions to small changes in the
observables).

Non-uniqueness of solutions means there are at least two different models which satisfy
the observables. Some of the reasons for non-unique solutions are: 1) the model discretization
(e.g., seismic tomographic methods discretize the subsurface model to finite elements while the
Earth interior is a continuous function of coordinates), 2) limit in model identification by data or
modelling operator (e.g. in seismic ray based tomography the shadow zones are not identified
by modelling operator. Different values can be considered in the shadow zones while the final
predicted data are same), 3) cross-talk between model parameters (e.g., in the framework of
anisotropic seismic tomography, the leakage between vertical velocity and € and ) can generate
different combinations of these parameter classes which result in the same predicted data), 4)
singularity of the square matrix F'F. A large condition number ? for this matrix can be a reason
for instability of the estimated solutions.

Lack of the uniqueness, robustness and/or stability properties lead to an ill-posed inverse
problem. The ill-posedness of inverse problems, as well as the costly calculation of the gener-
alized inverse matrix for large data sets, make the iterative methods more desirable where the
inversion starts with an initial model and updates the model parameters during the iterations.
As a well known iterative approach, I can mention the steepest descent (for a review refer to
Lines and Treitel (1984)). I shall discuss more about the iterative approaches in the sections
concerning the resolution of non-linear inverse problems. In the following I briefly address the
regularization approach which can reduce the ill-posedness of inverse problems (both linear and
non-linear).

Regularization

The objective of the regularization theory is to penalise the unknown model parameters by
adding a penalty term (or so-called side-constraint (Sen and Stoffa, 2013)) to the minimization
of misfit function (3.5) as

min ||(deps — Fm)|5  subjectto  Lm < d, (3.12)

where L is the regularization operator and d is an unknown threshold. Here, operator L imposes
some specific properties to the estimated model parameters. For instance, a Gaussian filter

2. Condition number measures how much the output of operators are sensitive to the changes in inputs.
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imposes the smoothness, and /5-norm operator controls the energy of the model parameters.
It is important to note that, since the desirable d is unknown, one can not call this problem a
constrained minimization problem, and in fact the term "side-constraint" is not a proper name
for Lm < d.

In the framework of Tikhonov regularization (Tikhonov, 1963) I can penalise the solutions
by modifying the misfit function (3.8) as

C(m) = (dgps — Fm)'C;*(dpps — Fm) + S(m‘Lm), (3.13)

where 5 € IR is the regularization parameter. In the framework of the least-squares method,
the estimated model from regularized misfit function (3.13) is

i = (F'C;'F + SL)'F'C; d . (3.14)

The regularization parameter controls the relative contribution of the misfit term and penalty
term in the model parameter estimation. A relative large [ causes the calculated data (d.. =
Fm) do not fit the observables completely, and a relative small [ results in well data fitting but
poor regularized model parameters. On the other hand, term SL can remove the singularity of
generalized inverse matrix and control the condition number of the inverse operator (F*C;'F +
BL)~!. There are different approaches to set 3 which among them are L-curve, U-curve and
Generalized Cross Validation (CGV) methods (Aster et al., 2004).

3.1.2 Non-linear inverse problems

In many inverse problems the relation between the data and model parameters is not linear.
This leads to the definition of non-linear inverse problems. Considering the relation g(d, m) =
0 of a general inverse problem, this non-linearity can be in data and/or model parameters. Here,
I suppose the inverse problem is only non-linear in data space, in another word,

d = f(m). (3.15)

I define the [o-norm misfit function C'(m) as
1
C(m) = 5 (dops — £(m))"(dops — £(m)), (3.16)

the minimizer of which is the estimated solution of eq.(3.15). This leads to an unconstrained
optimization problem as
min C'(m), (3.17)

where the optimization parameters are gathered in the vector m. There are different algorithms
to solve such an optimization problem and Nocedal and Wright (2006) listed the following
properties for a proper algorithm:

— Robust: applicable on a wide range of problems for all reasonable initial models.

— Efficient: not expensive from computational cost and storage requirement point of views.
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— Accurate: able to find a solution with precision and not sensitive to error in data and
arithmetic rounding error.

However, there are some trade-offs between these properties. For example, there are some
robust algorithms which are slow and there are some fast methods which require a huge memory
(refer to Castellanos et al. (2015) for an illustration). Therefore, in order to choose a suitable
optimization approach, one needs to forge a compromise between these properties.

Since for many applications the misfit functions (for both linear and non-linear problems)
are not strictly convex, there are the concepts of local and global minimizers (Fig. 3.1), and
accordingly the optimization algorithms are divided in two groups: global optimization and
local optimization methods.

»
>

3
>

Local minimum [

Global minimum %

Cost function
Cost function

y

Search Area’ Search Area'

Figure 3.1 — Schematic presentation of local and global minimums. a) For a strictly convex
misfit function there is only one local minimum which it is also the global. b) For many appli-
cations the misfit function can have both global and local minimum.

Global optimization methods

In some applications the global minimizer of misfit function is required and this entails
applying a global optimization methods (Dixon and Szego, 1978; Floudas, 2013; Grossmann,
2013). These methods can be classified in two branches: deterministic and stochastic methods.

Deterministic methods perform an exhaustive search over the search area of model param-
eters and find the global minimizer. For example, at the expense of computational cost, in
the framework of "finite exact methods" one can ensure the success of optimization in finite
iteration number (Arora et al., 1995).

The stochastic methods are based on random search. These ensure, in a probabilistic sense,
that the algorithm will find the global minimum. The pure random search is the simplest method
in this category in which through an inefficient approach for k£ random samples of search area
one calculates the misfit function and considers the minimum one as the global minimum.
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Among stochastic methods, perhaps, the most well-known is the Genetic algorithm in which
the random selection procedure is replaced by the process of natural selection (Goldberg and
Kuo, 1987; Hajela, 1990). Here, the algorithm starts with a population of candidate solutions
which is called a generation. A set of better populations, which has smaller misfit function
value, is stochastically selected from the given generation while they are allowed to reproduce
and cross among themselves with the aim of producing a better population (Arora et al., 1995).
In result, there is a better generation, like a natural population of biological creatures, which it
is more likely to be the solution of optimization problem. This iterative procedure continues
to satisfy a convergence criterion like maximum number of produced generations (Arora et al.,
1995).

Although the global optimization algorithms from computational cost point of view are
expensive, but recent achievements in computer science make some of them applicable. Sen
and Stoffa (2013) review some of the global optimization approaches in geophysical problem.
Also, in the context of velocity macro-model building, global optimization methods are applied
(Datta and Sen, 2016; Sajeva et al., 2016).

Local optimization

Iterative local optimization approaches start with an initial guess for the model parameters
and try to update them toward the global minimizer. These algorithms use some information
about misfit function (such as the value and first or/and second order derivatives with respect to
the model parameters) in the current iteration or, depending on the method, earlier iterations to
define the update direction. If the initial guess be close to the global minimizer, converging to
the global minimizer is more probable.

If I consider the updated model m as the perturbed version of a known reference model like
my, then I can write
m = mg + Am, (3.18)

where Am is the perturbation model and Am < my. Therefore, the minimum of the misfit
function C'(m) in (3.16) is sought in the vicinity of the reference model mgy. A second-order
Taylor’s expansion of the misfit function reads

1
C(my + Am) = C(mg) + Am'VC(mg) + EAmtsz(mo)Am + O(m?). (3.19)
By taking derivative with respect to the model parameters I can write
VC(m) = VC(mg) + V2C(mg) Am. (3.20)

At the minimum of the misfit function, the first-order derivative of the misfit function is zero.
This leads to the perturbation model as

Am = —[V*C(my)] 'V (my). (3.21)

This relation (3.21) defines the descent direction as the product of the inverse Hessian and
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gradient vector. Here the first-order derivative of cost function and the Hessian are calculated
for m = m,.

Considering the definition of misfit function (3.16), the derivative of the misfit function with
respect to the model parameters reads

_ (RN G em
VC(m) = <a§2if t)<d0b3 f(m)) 52
= —(52) (dons — dure) = —I'Ad,

where J is the Fréchet derivative or sensitivity matrix and d.;. stands for the calculated (pre-
dicted) data. Accordingly, the Hessian can be derived with differentiation of the expression (3.22)

t t t
V2C(m) = J'J + [a‘] Ad+ P pds 1 T ad
: .
— 3T+ [gr‘:lt(AdmAd) .

For misfit functions which are quadratic function of m (this is the case for the linear problem
d = Fm), the error term O(m?) and the second term in the Hessian are zero and the expression
(3.21) gives the desired perturbation (the one that makes m = mg + Am the minimizer of the
misfit function) in one iteration.

For non-linear problems several iterations are needed to take into account the non zero error
term O(m?) in the updates of m. Here, the first step is adopting a strategy for the model
updating procedure and then calculation of the required information such as the gradient of
misfit function, sensitivity matrix and Hessian. In the following sections, I first address the line
search method (Nocedal and Wright, 2006) as the updating strategy and then I shall review a
approach for the gradient calculation.

The above discussed approach based on the assumption of m = my + Am, is called the
linearization of the inverse problem and this raises the discussion about possibility of lineariza-
tion of the forward modelling. Therefore, before following the discussion about resolution of
non-linear inverse problems, I briefly address linearization of forward modelling.

Linearization of forward modelling
Considering m = my + Am and the expression d = f(m), the first-order Taylor’s expansion
of the forward modelling around the reference model m, reads

f (my)

f(mg + Am) = f(mg) + Am + O(m?), (3.24)

where for |[Am| < my, for some forward modellings I can ignore the error term O(m?) and
write

Of (my)

d=d,+ Am, (3.25)
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where dy = f(my). In a compact form I rewrite this expression as
d—-dy=Ad=F,Am. (3.26)

Here F\ designates the Fréchet derivative matrix. This expression linearly links the model
parameter perturbations to the data perturbations, and it is similar to the linear inverse prob-
lem (3.2) while here the inversion objective is estimation of Am. Therefore, one can use a
linear inverse problem solver to estimated the solution of eq. (3.26). Note that, for the non-
linear forward modelling the error term O(m?) is not zero and estimation of the perturbation
Am requires several iterations. As an example for the forward modelling linearization, Hole
(1992) linearized the forward modelling in first arrival traveltime tomography.

STOP

NO

Compute search direction

|

Y
Compute step length
293

Y
k=k+1
my; = my+ apPyg

Figure 3.2 — A general flowchart for local optimization approaches based on the line search
strategy. Convergence is achieved when there is no more update in model or the updated model
is approximated with certain accuracy. my is the initial guess for model (figure is adopted from
Sen and Stoffa (2013))

3.1.3 Line search strategy

In iterative local optimization schemes, there are different strategies for moving from one
model update to the next one, and one of the widely used strategies is the line search.

81



Adjoint slope tomography: Inverse problem

During each iteration of the line search (Fig. 3.2), an update along the defined search direc-
tion py (index £ designates the iteration number for the model updates) is sought such that the
updated model

my, = my + apg (3.27)

reduces the misfit function. In other words, this strategy can be summarized in the following
one dimensional optimization problem

ap€IRT

where o € IRT is the step length. But, in practice the exact solution of this minimization
problem is not required and with trial and error one can find the approximated minimizer. How-
ever, defining a suitable update for the iterate m; depends on both search direction and the step
length.

Search direction

The search direction can be defined in a general form as (Nocedal and Wright, 2006)
pr = —B;'VC(my), (3.29)

where By, is a symmetric and non-singular matrix. Definition of this matrix varies depending
on the local optimization methods.

For the steepest descent method the search direction is the steepest descent where p, =
—VC(my) (i.e. B is identity matrix). All the search directions with less than 7/2 radian
deviation from —VC(my,) guarantee the misfit function reduction. This can be understood by
Taylor’s series. For small oy, I can write

C(my, + oypr) = C(my,) + a;p VO (my) + O(f), (3.30)

where
p.VC(my) = ||px||[|VC (my)|| cos § < 0. (3.31)

Here 6 is the angle between VC'(my) and search direction pg and 7/2 < 6 < 7.

For the Gauss-Newton methods B, = J'J , i.e. the approximate Hessian in which one
ignores the second term of the full Hessian definition in eq. (3.23). In the Newton methods
B, = V2(C(m) and the updates are based on the full Hessian information.

The quasi-Newton methods define B, as an approximate expression of the Hessian, and
updates this approximation during the iterations by using the misfit function information in
current and earlier iterations.

The truncated Newton method also uses the approximation of the Hessian to define the
search direction while this approximation only depends on the current iteration. This requires
to solve a linear equation through iterative solvers. This strategy accounts for the higher eigen-
values of the inverse Hessian operator (Métivier et al., 2013).
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The Newton approaches generally are fast with quadratic local convergence rate but they
require calculation of the Hessian which can be expensive and difficult to achieve for some
optimization problems. Also, for the Gauss-Newton methods the calculation of sensitivity ma-
trix J can be expensive for large data sets. These drawbacks of the Newton and Gauss-Newton
methods make the quasi-Newton approaches attractive alternatives where explicit calculation of
the sensitivity matrix and the Hessian can be avoided. In this study I apply the L-BFGS method
(Byrd et al., 1995) (a quasi-Newton method) to handle the inverse problem in slope tomography.
In the next sections I shall explain the basis of this method.

Step length calculation

As mentioned before, the ideal value for o, is the minimizer of minimization problem (3.28)
which I rewrite it for a given search direction py, as

min  $(ay), (3.32)

ap€IR*

where ® (o) = C(my + aipg). This calculation is costly and even performing a local opti-
mization can be expensive due to repetitive misfit function calculation and probably its gradient.
Therefore, we perform an inexact line search to find a minimizer which reduce adequately the
misfit function. This procedure consists of two step: bracketing to find an interval containing a
suitable step length, interpolation to extract a step length within the interval.

A necessary but not sufficient condition in the step length selection is the misfit function
reduction. Here, I apply the Wolfe conditions to satisfy this criterion and ensure a suitable
step length calculation. The Wolf conditions consist of "sufficient decrease" and "curvature"
conditions (Fig. 3.3). The sufficient decrease condition reads

C(my + appr) < C(my) + c1a,piVC(my), (3.33)

where ¢; € (0,1). This inequality states that the reduction in the misfit function should be
proportional with oy, and the directional gradient p; VC(my,). Here the right hand side is a
linear function of o and it is indicated by /(<) in Fig. 3.3. Since for many sufficient small
values of « this inequality can be satisfied, this condition is not enough to ensure a reasonable
progress in the search for «. In order to avoid these unacceptably small steps one also need to
consider the curvature condition.

The curvature condition reads
P VC(my, + aipr) > ¢2pp, VC(my,), (3.34)

where ¢, € (c1,1)°. According to this inequality, the slope ®'(cy) = ptVC(my + apr)
should be greater than ¢, times the initial slope ®'(0) = pt VC'(my). Considering py, as the de-
scent direction, if the slope ®’(«ay) be strongly negative we ensure the misfit function decreases
in this direction (Fig. 3.3), while if the slope ®'(a4) be slightly negative or positive the misfit

3. The typical value of co for the quasi-Newton approaches is 0.9.
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function does not decrease more in this direction and we can stop the line search (Nocedal and
Wright, 2006).

Therefore, in each iteration of the model updating, there is an inner loop for ai. Here, the
index k refers to the model updates while 7 designates the iterations in the loop over ay. For
each iteration k 1 initialize the inner loop with an initial guess as o} from a predefined range. In
each iteration of loop over « I narrow the search area by bracketing. Candidate ai in the current
iteration j is derived by the interpolation of search area boundary values. The candidate which
satisfies the Wolfe conditions, is considered the step length for iteration k. With this o, and the
given search direction pj one can update the model parameters through m; 1 = my + a;px.

3.1.4 L-BFGS method

The Limited-memory BFGS (L-BFGS) is one of the quasi-Newton approaches which I shall
implement in the slope tomography inversion. This method is the modified version of the BEGS
method which, compared to the BFGS method, reduces the memory requirement for in the
resolution of inverse problems.

At each iteration of the BFGS method, the updated model is

Here "H,” stands for the Hessian approximation at iteration &£ and during the iterations is
updated through

Hyy1 = VIHL V) + prsis’, (3.36)
where |
Pr = - Vi =1 — pryssy, (3.37)
(I is identity matrix) and
Sp = My 1 — My, v = VO (my, 1) — VC(my). (3.38)

This approximation for the Hessian circumvents the cumbersome calculation of the full Hessian
but still storing and manipulation of this matrix for large model size is expensive. To avoid this
problem, the L-BFGS approach proposes a modified version of Hessian in eq. (3.36).

According to the L-BFGS method, one stores n recent vector pairs {s;,y;} and calculate
the approximate Hessian by

H, =(V,_, - Vi )H (Ve - Vii1)
+ Pk-m(Vi 1 Vi )Sk—mSt i (Viem - - V1)
 ppma (Vi Vi )$kmiStn (Vimer Vi) (339)
+ Pk—1Sk—1S)_1,
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AP(a) = C(my + apy)

" Desired
slope

& N &
< 4 < »>

<
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Figure 3.3 — The Wolfe conditions. The sufficient decrease condition restricts the search area
for « to the red arrows where ®(a) < I(«). The curvature condition avoids unacceptably
small « steps and ensures a relatively big reductions in the ®(«) value by considering those «’s
(indicated by the blue arrows) which make ®'(«) greater than desired slope c,®’(0) (figure is
adopted from Nocedal and Wright (2006)).

which includes only some inner products and vector summations. Here HY is the initial guess
for the Hessian in each iteration and simply can be the identity matrix. After each iteration I re-
place the oldest pair of stored {s;, y;} with the newer version. Through this approach curvature
information of n recent iterations is considered for the model updates (more detail in Nocedal
and Wright (2006, section 7.2)). In practice 3 < n < 20 is sufficient. This method provides in
a cheap way an approximate Hessian and it is a reliable candidate for large scale problems like
full waveform inversion (M¢étivier and Brossier, 2016). The above discussion on the L-BFGS
implementation leads us toward the calculation of misfit function gradient. In the following I
discuss how to perform this calculation.

3.1.5 Gradient calculation

One of the main ingredients of the local optimization techniques, such as quasi-Newton
methods, is the calculation of misfit function gradient with respect to the model parameters.
This gradient can be calculated directly by applying the finite difference method but this is
really expensive and not always precise (Chavent, 2009, section 2.1). According to eq. (3.22),
this gradient can be achieved through VC(m) = —J'Ad where J = dd;./0m is the Fréchet
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derivative matrix.

For a general physical inverse problem, one can consider that the data depends on the so-
called state variables which these variables are a function of the model parameters. Therefore,
the Fréchet derivative matrix includes the derivative of the state variables with respect to the
model parameters (Plessix, 2006). The relation between the state variables and model param-
eters are set through the state equations (also can be called forward modelling equations). In
the context of the reflection tomography, the state equations are the ray tracing equations and
the state variables are the spatial coordinates and the slowness vector of the rays. This defines
the Fréchet derivative matrix as the derivative of the spatial coordinates and the slowness vector
with respect to the background slowness and the reflector positions (Plessix, 2006).

If T define a non-linear inverse problem as d = R(u) (where u is the vector which gath-
ers the state variables, and R is the observation operator) and consider the state equation as
h(m, u) = 0, derivation of the state equation with respect to the model parameters reads

Jh Jh Ju
— — = j =1---M. 3.40
Smw) S mou S <0 (3.40
By solving the M linearized equations in expression (3.40) one can derive = 0, and
m;
calculate each column of Fréchet derivative matrix J through
ou

J; =R/ , 341
()5 (341)
where R/(u) is derivative of the observation operator and J = [Jy, Ja, -+, Jy]. Then, the

misfit function gradient can be achieved by VC'(m) = —J*(dobs — R(u)).

On the other hand, one can take advantage of the forward modelling linearization, eq. (3.26),
to perform M modellings and calculate the perturbation in data due to the perturbation in the
model parameters. However, these approaches can be expensive and memory demanding for
large scale problems and this promotes taking advantage of the adjoint state method for calcu-
lation of the misfit function gradient.

Adjoint state method

The adjoint state method (Chavent, 1974; Akcelik et al., 2002; Plessix, 2006) provides a
framework for calculation of a misfit function gradients with respect to its model parameters
without explicitly building the sensitivity matrix. Here, I use the method of Lagrangian multi-
pliers to establish this method.

By considering the non-linear inverse problem introduced above,

{ d - R

h(m. ) - 0. (3.42)
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I can rewrite the unconstrained optimization problem
min ||dos — R(w)|3, (3.43)
as the following constrained optimization problem
mniln | doss — R(u)]|3 subject to h(m,u) =0. (3.44)

I introduce a Lagrangian function £ and through its stationary points I derive solution of the
constrained problem (3.44) according to the method of Lagrangian multiplier. This Lagrangian
function reads

Lu, A m) = %(dobs ~ R(w)"(dyy, — R(u)) + A'h(m, u), (3.45)

where A is the Lagrangian multiplier or adjoint state variable. Note that, in the Lagrangian
definition the state variable does not depend on the model parameters. According to Karush-
Kuhn-Tucker (KKT) conditions (also known as first order optimality conditions) the gradient
of the Lagrangian with respect to d, A and m should be zero at optimum

VoL
VaL } (u,A,m)=0. (3.46)
Vil

By inserting the Lagrangian (3.45) into this system of equations I conclude

VoL —R'(dops — R(u)) + Vi h(m, u)'A
VaLl 3 (u,A,m)= h(m, u) =0. (3.47)
vmﬁ th(m, ll)tA

In order to solve the optimization problem (3.44) one needs to satisfy the KKT conditions. In
other words, one should solve the optimization problem (3.47) where the optimization space
includes u, A and m (full space method). Resolution of this non-linear system requires an
iterative approach where

Here = stands for the optimization space and Axy, is the search direction. Similar to the line
search method in section 3.1.2, one can choose different search directions (e.g. steepest descent
and Newton search directions). But, from optimization point of view resolution of this system
for large-scale problems is not feasible (Akcelik et al., 2002; van Leeuwen and Herrmann,
2015).

As an alternative approach, there is the so-called reduced space method (Akcelik, 2002)
which is based on a block elimination of the constraints, and consequently leads to an uncon-
strained optimization problem (Akcelik, 2002; van Leeuwen and Herrmann, 2015). In reduced
space approach the optimization space x is equivalent to m. The procedure for block elimina-
tion is as follow
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— Solve the block
VaL(u,\,m) =h(u,m) =0, (3.49)

which requires the forward modelling and results in state variables.

— Solve the adjoint state equation
Vol(u, A\, m) = —R'(dys — R(u)) + Vyh(m, u)'A = 0, (3.50)

which results in the adjoint state variable .

— Use the calculated adjoint state variable and derive the reduced gradient with
VmL = —Vih(m, u)f, (3.51)

which is equivalent to gradient of the misfit function (3.43) with respect to m.

Here the reduced gradient calculation is matrix-free and explicit building of the sensitivity ma-
trix is not needed, but, in each iteration, it requires a forward modelling and resolution of adjoint
state equation. The second order optimality condition results in calculation of the Hessian (van
Leeuwen and Herrmann, 2015) which I do not discuss it here.

Analytical resolution of the KKT system for many problems is not possible and one needs
to discretize the problem and use numerical methods. Here there are two approaches: dis-
cretiziation of the continuous KKT system, or defining the discrete Lagrangian and deriving the
discrete KKT system (Akcelik, 2002). However, if forming the continuous system is possible, it
can be used as a guide line for designing the discrete formulation (Chavent, 2009, section 2.7).

Note that, if the forward modelling operator be continuous, one can solve the continuous
system to derive the exact gradient expressions and then discretize the gradient, or, discretize
the forward modelling and form the discrete Lagrangian and calculate the gradient through a
discrete system (discretized adjoint equations). In the later option, the gradients are the approx-
imate derivative of discrete misfit function. But for problems with discrete modelling engine,
the resulted derivatives of the discrete KKT system are the exact derivative of the discrete cost
function (Chavent, 2009, chapter 2).

Plessix (2006) reviewed the adjoint state method for some geophysical applications such
as the full waveform inversion, stereotomography and least-square migration. He obtained the
reduced gradients through perturbation theory and augmented functional.

3.1.6 Scaling of model parameters

In non-linear multi-parameter inverse problems, the existence of different parameters with
different order of magnitudes makes non-Newton based optimization algorithms poorly scaled,
where the dominant parameter steers the inversion (Nocedal and Wright, 2006, p. 27). A com-
mon practice to make these inverse problems better-conditioned and make the model parameters
dimensionless is to scale/adimensionalize parameters. If I define M = {m;, my, m3} as the
model space for an inverse problem, the scaled/adimensionalized parameter m; simply can be
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defined as m
m; = —, (3.52)
Mo

where my € IR, is the scaling factor. The direct consequence of this scaling emerges in the
misfit function gradient calculation and Hessian operator where

oC oC
(9rh1 — 8m1 ’ (353)
2 2
00 _ 2 0¢ (3.54)

om? "o om?’
This scaling can influence partially the way the Hessian corrects for the leakage between param-
eter classes through the modification of the relative amplitudes of the off-diagonal blocks of the
Hessian. This is in particular true when data are affected by noise and damping regularization
is added to the Hessian (for an example in FWI refer to Operto et al. (2013)). As mentioned
before, the influence of scaling depends also on the optimization scheme. The algorithms which
take advantage of Hessian approximation or the exact Hessian, tune partially by themselves the
cooperation of different parameter classes with different order of magnitudes. But, methods like
steepest descent, which relies only on the gradient information have no control on the update
steps, are more likely to fail without scaling of parameters.
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3.2 Inverse problem in isotropic adjoint slope tomography

This section includes our paper, isotropic adjoint slope tomography (Tavakoli F. et al., 2017b).

Slope tomography based on eikonal solvers and the adjoint-state
method

B. Tavakoli E., S. Operto, A. Ribodetti, J. Virieux
Published in Geophysical Journal International (2017) 209 (3): 1629-1647

3.2.1 Summary

Velocity macro-model building is a crucial step in the seismic imaging work-flow as it pro-
vides the necessary background model for migration or full waveform inversion. In this study,
we present a new formulation of stereotomography that can handle more efficiently long-offset
acquisition, complex geological structures and large-scale datasets. Stereotomography is a slope
tomographic method based upon a semi-automatic picking of local coherent events. Each local
coherent event, characterised by its two-way traveltime and two slopes in common-shot and
common-receiver gathers, is tied to a scatterer or a reflector segment in the subsurface. Ray
tracing provides a natural forward engine to compute traveltime and slopes but can suffer from
non-uniform ray sampling in presence of complex media and long-offset acquisitions. More-
over, most implementations of stereotomography explicitly build a sensitivity matrix, leading to
the resolution of large systems of linear equations, which can be cumbersome when large-scale
datasets are considered. Overcoming these issues comes with a new matrix-free formulation
of stereotomography: a factored eikonal solver based on the fast sweeping method to compute
first-arrival traveltimes and an adjoint-state formulation to compute the gradient of the misfit
function. By solving eikonal equation from sources and receivers, we make the computational
cost proportional to the number of sources and receivers while it is independent of picked events
density in each shot and receiver gather. The model space involves the subsurface velocities and
the scatterer coordinates, while the dip of the reflector segments are implicitly represented by
the spatial support of the adjoint sources and are updated through the joint localization of nearby
scatterers. We present an application on the complex Marmousi model for a towed-streamer ac-
quisition and a realistic distribution of local events. We show that the estimated model, built
without any prior knowledge of the velocities, provides a reliable initial model for frequency-
domain FWI of long-offset data for a starting frequency of 4Hz, although some artefacts at the
reservoir level result from a deficit of illumination. This formulation of slope tomography pro-
vides a computationally efficient alternative to waveform inversion method such as reflection
waveform inversion or differential-semblance optimization to build an initial model for prestack
depth migration and conventional FWI.
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3.2.2 Introduction

Building a velocity macro-model from reflection data remains one of the most crucial and
challenging issues in seismic imaging. The difficulty arises from the nonlinearity of the inverse
problem associated with the long-wavelength reconstruction of the subsurface; by contrast the
imaging of reflectivity by migration is a far more linear problem (Claerbout, 1985). Velocity
model building provides the necessary background or starting model to perform prestack-depth
migration (Etgen et al., 2009) or full waveform inversion (FWI) (Tarantola, 1984a).

Among the most popular methods for velocity macro-model building, reflection traveltime
tomography (Bishop et al., 1985; Farra and Madariaga, 1988) and migration-based velocity
analysis (MVA) (Gardner et al., 1974; Al-Yahya, 1989) were specifically designed for seismic
reflection data. Reflection traveltime tomography, which builds a velocity model through the
minimization of the traveltime residuals, is computationally efficient but relies on tedious pick-
ing of continuous horizons. MVA methods rely on an explicit scale separation between the
background velocities and the reflectivity to iteratively alternate the velocity update and the mi-
gration. The velocity update is driven by flattening the reflectors in the common image gathers
or by minimizing reflection data residuals in the time domain after demigration. Among the
MVA methods, some rely on picking in the prestack migration volume (Al-Yahya, 1989) or on
more automatic waveform-based misfit criteria as in differential semblance optimization (DSO)
(Symes, 1998; Chauris and Noble, 2001) or migration-based traveltime inversion (MBTT) (Clé-
ment et al., 2001). Recently, the governing ideas of the MBTT method have been recast in the
framework of FWI, leading to the so-called reflection waveform inversion (RWI) (Xu et al,,
2012; Brossier et al., 2015; Wu and Alkhalifah, 2015; Wang et al., 2016) with an extension to
the joint inversion of diving waves and reflections proposed by Zhou et al. (2015). One draw-
back of MVA and RWI is the computational cost resulting from the migration performed at each
cycle of the alternating optimization.

The computational cost of MVA and the above-mentioned variants of the FWI makes trav-
eltime tomography an attractive technique for velocity model building, where we do not need
repeated migrations. However, picking either in the data domain or in the migrated domain is a
burden in traveltime tomography. As a remedy for the issue of horizon-based picking in reflec-
tion tomography, use of local coherent events in prestack datasets has been a breakthrough, first
introduced by Rieber (1936) and followed by Riabinkin (1957) and Sword (1987) in the frame-
work of the controlled directional reception (CDR) method. These local events are interpreted
as arrivals reflected from small reflecting facets. Main motivation of CDR has been to add, in
the data domain, the slopes of the local coherent events to the traveltimes to better constrain the
velocity model building process.

Billette and Lambaré (1998) extended the CDR method to stereotomography, which relies
on a semi-automatic picking of traveltimes and slopes of local coherent events in both shot and
receiver gathers. Each of these local events is tied to a reflecting/diffracting facet in the subsur-
face. The misfit between recorded and modelled two-way traveltimes and slopes at the source
and receiver positions is minimised to update the subsurface velocities and the coordinates of
the facets in depth. Moreover, take-off angles and the one-way traveltimes of the rays connect-
ing the facet to the source and the receiver can be added as optimization parameters with the aim
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of making the forward problem more efficient by avoiding two-point ray tracing or making the
inverse problem less prone to local minima by expending the search space. For this, the source
and receiver positions need also to be fitted since there is no guarantee than the rays associated
with the initial guess of take-off angles and one-way traveltimes will reach the shot and receiver
positions.

Through different applications of stereotomography (Billette et al., 2003; Lambaré et al.,
2004; Nag et al., 2006; Alerini et al., 2007; Prieux et al., 2013), some practical workflows
have been designed to mitigate the non-linearity of the inversion. These strategies rely on
a suitable scaling of the different optimization parameter classes, suitable initial localization
of the facets and a multi-scale approach during which the grid on which the velocity model
i1s parametrized is progressively refined. In spite of all these efforts, stereotomography still
suffers from the limitations of ray-based techniques to handle complex media (LLambaré, 2008).
A second limitation of computational nature is related to the fact that the inversion algorithm
relies on the explicit building from paraxial quantities of the sensitivity matrix which has a (data
size) x (model size) complexity. Although this matrix is a sparse matrix and its implementation
provides suitable information for a sensitivity analysis of the multi-parameter inversion, it can
represent a considerable computational burden when huge 3D datasets are tackled. A third
limitation is related to the significant number of optimization parameters of different nature
in ray-based stereotomography (e.g. velocity and ray parameters) that can make the inversion
poorly conditioned and hence difficult to scale.

In order to overcome these difficulties, we present a new formulation of stereotomogra-
phy. The first key ingredient is the computation of traveltimes by solving the factored eikonal
solver with the fast sweeping method (FSM) (Zhao, 2005; Fomel et al., 2009). Our main mo-
tivation behind the use of eikonal solver at the expense of ray tracing is to avoid the issue of
non uniform ray sampling that can arise in presence of low velocity zone or area of rapidly-
varying wavespeeds. Moreover, a factored form of the eikonal equation improves the accuracy
of the traveltime computation nearby the sources. Exploiting source-receiver reciprocity, we
compute the synthetic slopes at the source and receiver positions by finite differences from trav-
eltime maps computed from neighbour source and receiver positions. By doing so, we limit
the computational burden of our approach by solving the eikonal equations from the source and
receiver positions rather than from the scatterers. The second key ingredient is the computa-
tion of the gradient of the stereotomography misfit function with the matrix-free adjoint-state
method. Plessix (2006) developed the gradient of the stereotomography misfit function from the
ray equations and showed how solving the adjoint-state system is less computationally intensive
than solving the propagator system required to compute the sensitivity matrix with paraxial ray
equations. In our formulation, the state equations resulting from the use of a finite-difference
eikonal solver as forward modelling engine (eikonal equation and slope estimation from finite
differences of traveltime maps) drive us toward a model space formed by the subsurface veloci-
ties and the coordinates of the scatterers. This model space may be easier to manage than those
used in ray-based stereotomography (Billette and Lambaré, 1998) because it involves a smaller
number of parameter classes. Therefore, this choice may mitigate issues of parameter cross-
talk and of ill-posed inversion. In this study, we support the legitimacy of this statement with an
application to the complex Marmousi model. Other applications of classic stereotomography
on the Marmousi model with different model parametrizations are presented by Chauris et al.
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(2002b) and Billette et al. (2003).

In the following, we first review the principles of the classical ray-based stereotomography.
Then we introduce the forward-problem (state) equations that are used to compute traveltimes
and slopes in our formulation referred to as adjoint slope tomography. From these equations,
we introduce the data and model spaces, and compute the gradient with a formulation of a semi-
discretized adjoint-state method. We then discuss some practical aspects of the implementation
of the method before showing its relevance with three synthetic examples. The third exam-
ple shows an application to the Marmousi model performed with a realistic synthetic dataset
inferred from a sparse picking of reflectors in the Marmousi model. The accuracy of the esti-
mated model is assessed as a starting model for frequency-domain FWI with a realistic starting
frequency of 4Hz. We manage to build a reliable initial velocity model for FWI without taking
advantage of any prior knowledge of the velocity structure. However, our results also show the
sensitivity of the method to sparse distribution of picks in deep complex zone or near the ends
of the acquisition layout.

3.2.3 2D Classical stereotomography

Slope tomography methods allow for the estimation of subsurface velocity models from
slopes and traveltimes of local coherent events on unmigrated data (Fig. 3.4). These local
coherent events correspond most of the time to a reflection from a small reflector segment (Bil-
lette et al., 2003). However, they can also represent diffractions or diving waves (Plessix, 2006;
Prieux et al., 2013). Since the structures that generate local coherent events are parametrized
by point diffractor in slope tomography, we will refer to them as scatterers in the following.
For two dimensional acquisitions, a stereotomographic dataset consists of N locally-coherent
events that can be parametrized by

d = [(s,1, Ty Dss D)l (3.55)

n:]_?

where s and r denote the position of the source and receiver, p,; and p, are the slopes picked in
the common-receiver and common-shot gathers for source s and receiver r, respectively (equiv-
alently, the horizontal component of slowness vector at the position of source s and receiver r),
and 75 , is the two-way traveltime (Fig. 3.5).

The scatterer related to each pair of local events is located at a position denoted by x from
which a pair of rays are propagated in a background velocity model toward the source and
receiver. The take-off angles of these two rays define the dip component of the scatterer that
is mapped by the source-receiver pair. The scatterer position and the take-off angles can be
represented by dip bars as shown by Billette et al. (2003, their figs 4 and 9) the assemblage of
which can be viewed as a skeleton of a migrated image. This ray-based description leads to the
following definition of the stereotomographic parameters

m = {(x,0s,0,, Ts, T,)u| 01, lem)X 1}, (3.56)

where fields 7T and 7, stand for one-way traveltimes of the rays shot with take-off angles 6, and
0, from the scatterer toward the source and receiver (Fig. 3.5). Quantities 7%, 7}, 65 and 0, are
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Figure 3.4 — Local coherent events in stereotomography. Each local coherent event is de-
scribed by the source and receiver positions (s, r), the slopes (ps, p,) picked in common-shot
and common-receiver gathers and two-way traveltime 7,

Calculated Data Model Observed Data

Figure 3.5 — Data space and model space in classical stereotomography. The symbols 4 denote
the velocity nodes. Two rays are shot toward the source "s" and receiver "r" from the scatterer
x with take-off angles O, and ©,. Corresponding one-way traveltimes are 7, and 7. The
velocities, the scatterer coordinates x and the ray attributes (O, ©,., Ts and 7;.) form the model
space of classical stereotomography. The scatterer position and the two take-off angles (O,
©,.) define a dip bar (or migration facet) shown by the segment running through the scatterer.
The horizontal component of the slowness vectors at the source and receiver positions, ps and
pr, the two-way traveltime 7, and the source and receiver positions form the data space of the
classical stereotomography. The observed data are designated with the symbol ” x 7 (figure
adapted from Billette and Lambaré (1998)).
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introduced as optimization parameters primarily for sake of efficient ray tracing with end points
near the actual source and receiver locations. The fact that the end points do not match the true
shot and receiver positions requires involving these later as observables in the data space (eq.
3.55). However, these parametrizations for the data space and model space provide the most
general definition for the inverse problem where different ray tracing methods can use a subset
of these parametrization as the data and model space. For example as an alternative, two-point
ray tracing can be performed at the expense of computational efficiency. This option allows
one to remove T}, T}, 0, and 6, from the model space and s and r from the data space. The
velocity macro-model can be parametrized by the coefficients c,, of cardinal cubic B-spline
functions, regardless of the ray tracing method, which ensure the second-order continuity of
velocity model required by paraxial estimations (Billette et al., 2003).

A subsurface model is iteratively updated by minimization of the least-squares misfit be-
tween picked and modelled data. The inverse problem is solved through the explicit building of
the sensitivity matrix, which can be inferred from paraxial ray quantities (Billette and Lambaré,
1998). The resulting tomographic system augmented with smoothing constraints is solved with
a linear conjugate gradient such as LSQR (Paige and Saunders, 1982). In practice, different
strategies have been implemented in stereotomography to cope with potential non-linearities
and ill-posedness resulting from the multi-parameter (i.e. velocity, ray parameters and scatterer
positions) nature of the reconstruction. Billette (1998) proposed a workflow subdivided in three
steps: initialization of ray parameters in a homogeneous background velocity model, estima-
tion of a constant-gradient velocity model that best fits the stereotomographic observed data,
and joint inversion of the ray parameters, scatterer positions and spline coefficients modifying
the background constant-gradient velocity model. This procedure faced difficulties in case of
complex geological structures where the second step cannot converge to a sufficiently-accurate
velocity model (Billette et al., 2003). Time stripping (Alerini et al., 2007) is another tech-
nique to incorporate the stereotomographic picks in a progressive manner, according to their
traveltimes. For very smooth and layering velocity models, this approach seems efficient but,
since the position of the scatterers and the one-way traveltimes are updated independently, this
method may fail to converge in presence of strong lateral velocity variations. Target-oriented
strategies are also possible to reduce the non-linearity of the inversion (Billette, 1998).

To establish a powerful, automatic and comprehensive approach, Billette et al. (2003) in-
troduced a multi-scale approach. They proposed an initialization of the model parameters by
considering a sparse distribution of cubic cardinal B-spline nodes in each direction and a sim-
ple geometrical consideration for the ray parameters in a homogeneous background velocity
model. The next step is the localization, that includes updating independently the ray parame-
ters and positions of scatterers while the velocity is fixed at its initial value. In the third step,
they perform a joint inversion of all model parameters through a multi-scale approach where the
grid of spline nodes is progressively refined over the different multi-scale steps. In this study,
we design a workflow along these lines, with different model parametrization and inversion
implementation.
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3.2.4 Adjoint slope tomography

Compared to classical stereotomography, our implementation of slope tomography relies,
on the one hand, on solving the forward problem by numerical resolution of the eikonal equation
and, on the other hand, on using the adjoint-state method to compute the gradient of the slope
tomography misfit function.

Although eikonal solvers do not provide explicit information on rays attributes such as
slopes, they avoid the issue of non-uniform ray sampling caused by low or rapidly varying
velocities in particular near grazing angles. It is worth reminding that the aim of the slope to-
mography is to build smooth velocity models. Therefore, our motivation behind using eikonal
solvers is not to use diffractions or head waves generated by low or high velocity contrasts,
these arrivals being challenging to pick in the data, but rather to take advantage of robust and
accurate computation of uniformly-sampled traveltime maps in smooth media.

Current implementations of eikonal solvers do not identify multiple arrivals generated by
multi-pathing which remains a computational challenge (Qian and Leung, 2004). Therefore,
we consider only the fastest solution in the present formulation. Operto et al. (2000, their figs
10 and 11) showed that ray+Born migration/inversion using first-arrival traveltimes provide
acceptable quantitative migrated images of the Marmousi model as long as the background
model is sufficiently smooth. In this case, the amplitudes of the velocity perturbations are
reasonably estimated where true velocity structure is complex and generates ray folding. This
suggests that the information carried out by multiple arrivals in the data is accounted for in an
average sense. Indeed, this amplitude recovery from first-traveltime arrivals is achieved at the
expense of the quality of the focusing, that is hampered by the smoothness of the background
model (compare figures 7 and 9 in Operto et al. (2000)). We can transpose this reasoning from
the migration task to the velocity model building counterpart by assuming that the velocity
models estimated by slope tomography are smooth enough such that first-arrival eikonal solver
predicts in average sense traveltimes of multiple arrivals that would have been picked in the data.
In summary, our choice of eikonal solver rather than ray tracing is pragmatical. It provides
a robust tool to compute uniformly-sampled traveltime maps that accurately predict picked
traveltimes as long as the velocity model is forced to be smooth enough.

For solving the inverse problem, we compute explicitly the gradient of the misfit function
with respect to the model parameters using an adjoint-state formulation. This allows us to avoid
building the sensitivity matrix and performing large-scale matrix resolution. The matrix-free
nature of this approach makes the inversion scheme more capable of handling large data sets.
In the following section, we review the model and data spaces used in our forward modelling
engine and the adjoint formulation of slope tomography. All the mathematical symbols used in
our formulation are presented in Table 3.1.

Data and model space definition
In adjoint slope tomography, we consider descending wave propagation from the source

and receiver positions toward the scatterers (Fig. 3.6), unlike ray-based approaches where rays
are shot from the scatterer toward the source and receiver positions with prescribed shooting
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Table 3.1 — Mathematical symbols.

Symbol Description
N Total number of scatterers.
M Total number of cubic B-spline nodes.
Ns Number of distinct shot gathers.
Ny Number of distinct receiver gathers.
N; Number of distinct receivers in the shot-gather s.
NI Number of distinct sources in the receiver-gather 7.
N Number of scatterers for source-receiver pair (s, 7).
Mg r nth scatterer associated with source and receiver pair (s, 7).
Xng.r Position of nth scatterer associated with source-receiver pair (s, 7) .
Xg, Xy Position of source s and receiver r .
A Observed two-way traveltime for scatterer n ..
Ty Calculated two-way traveltime for scatterer n ..
Pine. Observed local slope for scatterer 7, at the position of sth source of receiver-gather 7.
Do, Calculated local slope for scatterer n, at the position of sth source of receiver-gather r.
Pron., Observed local slope for scatterer n , at the position of rth receiver of shot-gather s.
Prons., Calculated local slope for scatterer n , at the position of rth receiver of shot-gather s.
(...)" Transpose operator.
v Velocity model on the Cartesian grid.
C B-spline velocity coefficients: v = Bc
m = {c,X,,,} Adjointslope tomography model parameters.
d Adjoint slope tomography observables.
C'(m) Adjoint slope tomography misfit function

angles (Billette, 1998). These shooting angles explicitly define the dip of the scatterer (i.e.,
reflector segment if the scatterer lies on a reflector) sampled by the source-receiver pair. In our
approach, we shall show that the dip component of a scatterer is implicitly embedded in the
adjoint sources. This implicit representation results from the way we estimate the slopes at the
source and receiver positions by finite differences.

Since one eikonal resolution provides a traveltime map in the whole target and each shot and
receiver gather can be associated with several picked coherent events, descending propagations
from the surface to the scatterers mitigates the number of forward modellings as the number of
shots and receivers is expected to be one to two order of magnitude smaller than the number of
scatterers. The local-coherent events, picked on common-shot and common-receiver gathers,
are parametrized by their two-way traveltimes and the two slopes (in 2D) at the source and
receiver positions. These quantities define the data space of the adjoint slope tomography. To
each picked event in the data space is associated a scatterer in the subsurface. Accordingly, we
label each scatterer with the subscripts of the source and receiver to which it is related. This
prompts the following notations for the data space of the adjoint slope tomography:

NS

r
r=1

Ns

d = (Turnrs Ponons Proner) o2y [ |2 (3.57)

ns,'r:1 .
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Figure 3.6 — Layout of forward modelling in a) classic stereotomography: two rays are back
propagated from scatterer toward the associated source and receiver, and in b) adjoint slope
tomography: two traveltime maps are generated from associated source and receiver toward the
scatterer.

where s and 7 denote a source and receiver, n,, a scatterer associated with the pair (s, 7),
T 1 n, . the two-way traveltime along the paths connecting the source s and the receiver r to the
scatterer 1., Psn,, and p,,, . the horizontal component of slowness vector at the source and
receiver position, respectively. Unlike in classical stereotomography, the source and receiver
positions are not part of the data space since we perform wave propagation from these exact
positions. In classical stereotomography, one needs to minimize distances between source or
receiver position and the end points of the rays emitted with the prescribed shooting angle
from the scatterer: some specificities of the ray-tracing engine has led to a particular extension
of both data space (source/receiver positions) and model space (shooting angles and one-way
traveltimes).

Consequently, the model space involves two categories of parameter classes: coordinates of
the scatterers x,,, , = (. ., z. ) and subsurface velocities.

s,T t
) (3.58)

M Ng
R (A o i

Here, c¢,,, denote the coefficients of the cubic cardinal B-splines, that are used to parametrize the
subsurface velocity model (Billette, 1998). This sampling of the velocity model operates as an
implicit regularization of the stereotomography. While the cubic cardinal B-spline parametriza-
tion is generally a natural choice for ordinary differential equations such as (paraxial) ray trac-
ing, eikonal solvers as partial differential equations are often formulated for efficiency on a
Cartesian grid. Nevertheless, we consider that B-splines will describe in a compact way the
smooth velocity structure we are looking for. We may consider this sampling choice as a hard
constraint on the model space. We shall also promote a soft constraint through the Gaussian
filtering of the misfit gradient.

Forward problem

According to the data space defined in the eq. (3.57), the forward-modelling engine requires
calculation of the slopes at the source and receiver and the two-way traveltimes for each triplet
(s,r,ms,). We first compute the traveltime maps ¢5(x) and ¢,(x) initiated from each source
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and each receiver, respectively, in the velocity model using zero traveltimes at the source and
receiver positions as Dirichlet boundary conditions in the eikonal equation

1
H(x, Vi, (x)) = |Vt (x)|* — e = (3.59)
ts(xs) =0 (3.60)
and
1
_ 2 _ _
H(x,Vt.(x)) = |Vt (x)| 200 0, (3.61)
to(x,) =0 (3.62)

where the velocity model v(x) is parametrized on the Cartesian grid that is used for building
the discrete field solution.

The two-way traveltimes T . ,, . for the scatterer n,, are given by

Tormer = Qn,, ts + Qn,, b1, (3.63)

where (), , is a sampling operator, which extracts the traveltime at the scatterers position, Xy, .
In this study, we implement this sampling operator with a windowed sinc function (Hicks, 2002)
although other options can be considered.

We compute the traveltime maps with a factored eikonal solver based on FSM (Fomel
et al.,, 2009). Although the local finite-difference stencil considers only outward directions
when computing traveltimes for external nodes of the grid, the sweeping scheme guarantees the
coverage of all the wave propagation directions. Moreover, the factorization technique allows
one to remove the singularity at the point source position. The extension of this method to TTI
anisotropic media as proposed by Waheed et al. (2015) and Tavakoli F et al. (2015) may provide
the necessary forward modelling engine for adjoint slope tomography in anisotropic media.

As previously mentioned, two slopes that are picked in a shot and receiver gathers and tied
to a scatterer in the subsurface correspond to the horizontal component of the slowness vectors
at the receiver and source positions. Exploiting the reciprocity of the wave propagation between
source and scatterer and between receiver and scatterer, and assuming a dense sampling of shots
and receivers, we estimate in a finite-difference sense these two slopes from the traveltime maps
generated by the left and right neighbour receivers/sources (Fig. 3.7). This leads to the following
expression of the slopes

Ots(X

ps,nS,T = 8.<T,' ) ~ (Qns,rts—l—l - Qnsyrts—l)/zAsa (364)
ot,(x,

pr,nsm = ai} ) ~ <Qns7rt7«+1 — QnsyTtTfl)/QAT, (365)

where As and Ar denote the source and receiver intervals, respectively.

With this reciprocity-based strategy, slopes at the source and receiver positions are inferred
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As Ar
s—1 S s+1 r-1 r r+1
< \ 4 Y. % Y.

X

Figure 3.7 — Horizontal component of slowness vectors at the source/receiver positions,
(Psny.rs Pron,., ), are inferred from the traveltime fields emitted from neighbour sources/receivers.
As and Ar are the source and receivers interval, respectively.

from traveltimes sampled at the scatterer positions, namely far away from the sources or the
receivers where traveltimes have singular values. Therefore, we expect these traveltimes to be
accurate enough for a reliable finite-difference estimation of the slopes at the sources or at the
receivers, thanks to the smoothness of the velocity model. Alternatively, slopes can be estimated
through a partial differential equation by solving the angle equation V6.Vt = 0 in isotropic
media. This means that the gradient of the take-off angle ¢ is constant along the ray (Noble
etal., 2012; Belayouni, 2013) which can be recast into the more general expression 0H /0p - dp
for anisotropic media with point source condition. We prefer the semi-discretized formulation
because, in this case, synthetic fields to be found are only the two traveltimes maps. We are
confident that the finite-difference estimation of slopes is accurate enough in smooth media we
are looking for, thanks to the use of the reciprocity.

Eqgs 3.59-3.65 define state equations that will be used to estimate the gradient of the adjoint
slope tomography misfit function. With our formulation, the number of forward problems scales
to the number of sources and receivers.
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Multi-parameter inverse problem

From the definition of the data space (eq. 3.57), the misfit function of the adjoint slope
tomography is given by

S Ns Ns T
C(m) = Torm,. (M) — ;m”)z
Tsr =1 r=1 ns, T_l
Ns Ny Ny”
2
+ 20—2 ZZ Z psnsr psner)
Ps s=1 r=1 ng, =1
r ’I‘ NS ,T
2
+ 205 S0 e m) —pl, (3.66)
T r=1 s=1 ns,r=1
where the symbol * denotes the picked data and quantities O'T , p , and 0‘ , are elements of

a diagonal covariance matrix containing the variance of each data class. The inverse of this
matrix plays the role of a weighting operator which balances the relative contribution of each
residual class during the inversion (Tarantola, 1987).

Minimizing the misfit function C'(m), eq. 3.66, is a non-linear problem which can be tackled
either with global or local optimization techniques. Although global optimization can be used
for 2D tomographic problems (Datta and Sen, 2016; Sajeva et al., 2016), we focus this study on
Newton-based local optimization scheme that updates 1terat1vely the model parameters m as

2 _
s ) 90 ). (3.67)

mg 1 = My + oy (@(mk} om

Here the positive real step length «y is estimated by line search while satisfying the Wolfe
conditions (Nocedal and Wright, 2006). We use the L-BFGS method (Byrd et al., 1995) imple-
mented in the SEISCOPE optimization toolbox (Métivier and Brossier, 2016) to account for the
Hessian operator in the inversion. Considering the contribution of the Hessian operator is cru-
cial to manage the potential leakage between the two different parameter classes (velocity and
positions of scatterers). Because this is often not enough, a common practice makes the differ-
ent parameter classes dimensionless in multi-parameter inversion to better balance the relative
contribution of each parameter class. This will improve the condition number of the inversion.
In our case, with the units for velocity (meter/second) and for scattered positions (meter), we
have not found the need to do so.

Gradient computation with the adjoint-state method

We compute the gradient of the misfit function (eq. 3.66) with the adjoint-state method
implemented through the Lagrangian formalism (Chavent, 1974; Plessix, 2006).

We build the Lagrangian misfit function by augmenting the misfit function C' with equality
constraints requiring that the state variables are realizations of the state equations (eqs 3.59-
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L(m,u,u) = H(u,m)

Ns 1? Ns T
- E E E s, TN, r srngr Qnsr Qns,rt'r)

s=1 r=1nsr=1

B er: Z Esmer (Psier — (Qna,torr — Q. ts1)/2A5)

s=1 r=1 ns,r=1
Ny N& Np”
- Z Z Z 5"nvns,r (p'ryns,v‘ - (Qns,rtr“l’l - Qns,rt""*1>/2A7A)
r=1 s=1 ns,r=1
Ny

. -Z< ) HG V), — 3 > (060 | Hix V00,

r=1
- Z W ts(x,) = Z U to(x,), (3.68)
s=1 r=1

where scalar products, (-, -), are defined on the targeted subsurface domain €2. The arguments of
the Lagrangian u = (T ;.. s Dsny.ps Pring.rs bss br 6s(Xs), £0(%)) and @ = (fs rng s Esimgrs Ermars
sy Ay U5, 1) gather the state and adjoint-state variables, respectively. Since the state variables,
the adjoint-state variables and the model parameters are processed as independent quantities in
the eq. (3.68), we rewrite C'(m) as H(u, m). Finally, we substitute in the state equation satis-
fied by p . and p,.,, . the formal expression of the slopes, namely Ot, /0z4 and Ot,./Ox,, by
their finite-difference approximation as provided in eqs (3.64) and (3.65), eliminating the need
of considering slope maps in the derivations.

The adjoint-state equations are obtained by zeroing the partial derivative of the Lagrangian
with respect to the state variables. It is straightforward to derive the expression of the adjoint-
state variables i, .y, > §sn, . and &, ., Which correspond to the traveltime and slope residuals
weighted by the coefficients of the covariance matrices.

ac 1 * ATS”’:”S,T

a— — 0 — /’I’S,T,ns,r - Q_(TS,T’,TLS,T - TS,T,TLS,T) = 2

T57T7n5,7‘ O-Ts,r O-Ts,r

oL 1 Apsn

J— _ * B S,T

a - O - éﬂsvns,r - 2 (psans,r - ps7nsyr) - 2 )

Psns,r s Ip

oc 1 . Apr Mo
a - 0 — 67‘77157',« - 2 (prans,r - pr,ns”») - 2 ‘

pr,ns,r Upr Upr

Zeroing the partial derivative of the Lagrangian with respect to ¢5(x;) and t,(x,) indicates the
adjoint-state variables 1/, and 1), are zero, therefore, the zero traveltime boundary conditions on
the sources and receivers do not insert any information to our formalism.

To develop the adjoint-state equations satisfied by A\s(x) (namely, 0L/0ts = 0), we have to
identify all of the terms containing t in the summation over sources of the state equations sat-
isfied by p; ., (third line in eq. (3.68)). We find two contributions coming from the neighbour
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source s + 1 and s — 1. We finally obtain for L /0t

NS NS sT

Z Z Qnsrﬂsrnsr

r=1 ng, =1

Nsl Ns 1,r

Z Z QTLS 1, Tgs_lansfl,r

r=1 ng_1,=1

Ns+1 Ns+1 r

QAS Z Z Q”s+1 r€5+1 Nst1,r

r=1 nsgy1,,=1

+Z (V- e0ve), = (VEx) ) ),

where the last line has been obtained by integration by parts (Taillandier et al.

(3.69)

, 2009). Here, I'

denotes the boundaries of {2 and n denotes the outward unit normal vectors to them. Without
loss of generality, we shall impose Dirichlet boundary conditions for the adjoint variables, so
that A\;(x)Vts(x) - n = 0 over I': this will be a non-restrictive hypothesis as long as all sources
and receivers are inside the numerical domain (Taillandier et al., 2009). In a similar way we

calculate 0L/0t,.

Zeroing eq. (3.69) gives the adjoint-state equation satisfied by A\ (x)

N3 NST
CAEIENIEED D DRI
r=1nsr=1
N5+1 Ns+1r
2A3 Z Z Qn5+1 Tgs—&-l Ns41,r
r=1 nsy1,r=1

— 1
N{?le Ng

1 n
B QTAS Z Z Qns 1r€s—1,ns_l,r.

r=1 ns_1,=1

In a similar way, the adjoint-state variables \,(x) satisfy

(V- G0V () = SN O,

s=1 ns =1
NT‘+1 Ns ,r+1
: : : : Qna r+1§r+1n5’r+1
s=1 ngrr1=1

N7 -1 Nsrl

QAT Z Z Qnsr 157"_11715,7“71‘

s=1 ng,r—1=1
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We use the same approach as Taillandier et al. (2009) based on the FSM method (Zhao, 2005)
to solve the linear eqs (3.70) and (3.71) for A\;(x) and A.(x). However, we implement the
traveltime and slope residuals as source terms at the scatterer positions in the right-hand sides
of the adjoint equations rather than as a boundary condition in Taillandier et al. (2009, their
equation 12). This results because we assume that the shots and receivers are inside the domain
2. These adjoint sources back-propagate the traveltime and slopes residuals along two ray tubes
connecting the scatterers to the shots and receivers. Traveltime residuals ATy, ,, = are back-
propagated from the scatterer position n,, toward the shot s and receiver r, as it would be in
reflection traveltime tomography. Together with these traveltime residuals, the slope residuals,
that are tied to the neighbour sources s + 1, s — 1 (eq. 3.70), and receivers » + 1,7 — 1 (eq.
3.71), are back-propagated from the scatterers ns_1 ,, s41,, N5 r—1 and ng .1 toward the shot
s and receiver r. Therefore, the spatial support spanned by these neighbour scatterers constrain
the dip angle at the scatterer n,, and, hence can be viewed as a discrete approximation of the
two take-off angles that are conventionally estimated in ray-based stereotomography. In the
example section, we illustrate the shape of the adjoint-state variables \;(x) and \,.(x) and the
role of residuals in scatterers repositioning. The contribution of all of the scatterers associated
with one source or receiver and its neighbours are gathered in the right-hand side by summation.
Therefore, the number of adjoint-state problems to be solved is equal to the number of sources
and receivers and hence is independent of the number of scatterers, an important property which
makes the computational cost independent of the number of picked events.

The gradient of the misfit function (3.66) with respect to the model parameters is obtained
by taking the partial derivative of the Lagrangian (3.68) with respect to the model parameters.

The gradient of the misfit function with respect to the velocities v on the Cartesian grid is
the sum of the adjoint-state variables \;(x) and \.(x) weighted by the velocity raised to the

power 3.
As(%) i
v (X) ’ r=1

The gradient with respect to the cubic B-spline coefficients ¢ = ¢,,|_, can be inferred from
the eq. (3.72) by applying the chain rule of derivatives

Wk

. Ar(x)
Voux)C = — o) (3.72)

s=1

V.C =B!'V,C, (3.73)

where B stands for the cubic cardinal B-spline operator (v = Bc) and * denotes the adjoint
operator. The gradient with respect to the scatterer coordinates is given by

anmt_%anmm>

S
0Xp,, OXp,,

vx’ﬂs,'rcv :MS,T,HS,T<
53,715,1' 8@”5,7' 8@”5,7'
Cnerg g — ey
2As \ 0x,, , 0%, .,
™n a n 8 n,
5 sTs,r < Q s,rt Q 8,7 tr_1)7

r+1 =
2A7 \ 0y, , 0Xp, .,

+ (3.74)

+

where the terms 0Q),,, ./0%,,, can be unambiguously obtained through the derivative of the
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windowed sinc function (Hicks, 2002). The coordinates of the scatterers are updated from the
traveltime maps computed from the sources and receivers to which they are related as well as
from those computed from the neighbouring sources and receivers. Again, this highlights the
additional constraints provided by slopes to locate the scatterers. The different steps required to
compute the gradient are outlined in Algorithm 3.

Implementation of adjoint slope tomography in practice

We subdivide the adjoint slope tomography into three main steps following the strategy pro-
posed by Billette et al. (2003). Three steps, (1) initialization of scatterer positions, (2) prelim-
inary localization of the scatterers and (3) multi-scale inversion for joint velocity and scatterer
updates, aim to mitigate the non linearity and ill-posedness of the inversion (Algorithm 4).

Initialization of scatterer positions: An initial guess of each scatterer position can be com-
puted analytically from the observed traveltime and slopes by assuming straight rays
(Billette et al., 2003, their appendix A). At this stage, no initial velocity model needs
to be defined: each picked data related to a scatterer defines an effective homogeneous
velocity. As underlined by Billette et al. (2003), closed-form solutions have always been
found in our numerical examples and, the computational cost is negligible.

Localization of scatterer positions: In order to remove noisy picks and make the initial posi-
tions of the scatterers as close as possible to their true positions, we update the scatterer
positions keeping a fixed background velocity model. One may use either a homoge-
neous velocity model or a constant-gradient velocity model to compute the traveltimes

Algorithm 3: Gradient algorithm
v=Bc¢
for s/r=1to Ng/ N, do
Compute t, / t,, eqgs. (3.59)-(3.62)
end for
for s/r=1to Ng/ N, do
for r/s=1to N]/N] do
for n,, =1to N;" do
Compute T ;s rs Psne.r ! Prons.,» €98- (3.63)-(3.65)
end for
end for
: end for
: Compute C, eq. (3.66)
: for s/r=1to Ng/ N, do
Compute A\, / A\, egs. (3.70)-(3.71)
: end for
: Compute V,C, eq. (3.72)
: Compute V.C = B'V,C, eq. (3.73)
: Compute V4C, eq. (3.74)

D AN AN i e
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and slopes analytically and hence make this re-localization step computationally effi-
cient. This background velocity model might be chosen to make the distribution of the
scatterers as even as possible in the subsurface. For example, a too slow homogeneous
model might tend to squeeze the scatterers in the shallow part of the subsurface medium.
In contrast, a constant-gradient velocity model can help to equally distribute the scatterers
in depth. If no prior information coming from well logs are available, finding an appro-
priate constant-gradient model by trial and error or grid search is not challenging due to
the computational efficiency of the localization process. Since the velocity model is not
updated during the localization step, the resolution of the eikonal equation needs to be
performed only during the first iteration, where we store the traveltime maps.

Multi-scaling joint inversion: The last step consists of simultaneously updating all of the
model parameters through a multi-scale approach. Multi-scale imaging is performed
through a progressive refinement of the spline parametrization, that is implemented tak-
ing advantage of the subdivision property of the B-spline surfaces (see de Boor (1978) or
Virieux and Farra (1991, their appendix)). We complement the regularization performed
by the coarse B-spline parametrization by an additional Gaussian smoothing of the gra-
dient computed on the Cartesian grid, similar to the one used by Taillandier et al. (2009)
for first-arrival traveltime tomography. This smoothing acts as a soft constraint to reduce
the null space, as opposed to the sampling strategy of the model space which is a hard
constraint. With this smoothing regularization, the gradient of the misfit function with
respect to the B-spline coefficients can be written as

V.C =B'GV,C, (3.75)

where G is the Gaussian smoothing operator and the 3D operator B‘G can be written as
the tensorial product of three 1D operators (Operto et al., 2003, appendix B). The main
aim of the Gaussian smoothing is to filter out the footprint of the sources, receivers and
scatterers in the velocity gradient computed in the Cartesian grid.

3.2.5 Synthetic examples

In this section, we assess the adjoint slope tomography with synthetic examples of increas-
ing complexity. In the first and second examples, we design an ideal experimental set-up with
a dense distribution of scatterers and a wide-aperture acquisition geometry to prevent velocity-
versus-depth ambiguity (Bube et al., 2005) during the joint update of velocities and scatter-
ers. The third example aims to reconstruct a smooth version of the Marmousi model from
realistic synthetic picks that would be generated from a towed-streamer acquisition. We as-
sess the accuracy of the slope tomography velocity model by using it as an initial model for
frequency-domain FWI. For all of the following tests, we compute the observed data set, i.e.
{Tsrns. Psing.s Prm,.. }» in the true velocity model and for the true scatterer positions with our
forward-modelling engine. Assessment of adjoint slope tomography in more realistic settings,
where two-way traveltimes and slopes are picked in the common shot/receiver gathers or in the
common-image gathers, is left to future studies.
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Algorithm 4: Adjoint slope tomography workflow. N,,;: number of multi-scale step; S:
B-spline subdivision operator. For sake of clarity, the model parameters m, the B-spline
velocity coefficients c, the misfit function C' and its gradient V' are indexed by the scale
step ¢ and the iteration number k.

1: Initialization of scatterer positions (Billette et al., 2003, Their appendix A)

2: Set initial B-spline velocity model ¢,

3: Preliminary re-localization of scatterers in cg
4: for i =1to N,,; do

50 ¢o; =Scn, i1

6: for k=1to N; do

7 call L—BFGS(mk_Li,Ck_l,i,VCk_l,i)

8: my; = my_i; +Amy_;

9:  end for

10: end for

—
—

: Vfi?’ull = BN7nscNm57Nit

Example 1: circular anomaly

In this example, the true subsurface model consists of a constant-gradient velocity back-
ground model (v(x, z) = v, + a X z) inside a model of 20 km x 5 km, that contains a smooth
circular velocity anomaly of radius 750 m (Fig. 3.8). We use v, = 1000 m/s and @ = 0.9 s~! in
the background model, while the velocity reaches 3820 m/s in the centre of the inclusion. A line
of sources, spaced 200 m apart, is set at 500 m depth. Each shot is recorded by five receivers
at 500 m depth with offsets of 0.8, 1.6, 2.4, 3.2 and 4 km. The scatterer layout is composed
of 155 scatterers with a spacing of 200 m and 700 m in the horizontal and vertical directions,
respectively. Each scatterer is located midway between a source and receiver positions. This
setting provides a reasonable angular illumination of the target. The same Cartesian discretisa-
tion of the velocity model is used for the forward and inverse problems using a grid interval of
50 m. We use a low-pass Gaussian filtering of the misfit function gradient for regularization.
The correlation length for this filtering is 200 m. Setting (o7, ,, 0y, 0p,)=(1. ms, 0.01 ms/m,
0.01 ms/m) balances the three terms in the misfit function (eq. 3.66).

The initial velocity model is homogeneous with a wave-speed of 1000 m/s. The initial
estimates for positions of the scatterers are randomly distributed around their exact positions
with a maximum deviation of 400 m (Fig. 3.8a). Since the main goal of this test is to assess the
capability of the method in finding the circular anomaly and the scatterer positions, we design
the optimization process as follows. Firstly, we find value 0.4 for a that allows for the best data
fit using the initial positions of the scatterers. Then, starting from the resulting approximated
background velocity model, we jointly update the velocities and the scatterer positions. The
final velocity model and scatterer positions after 100 iterations suggest no leakage between the
two parameter classes, since the scatterers were moved to their correct positions (Fig. 3.8b).
The decrease of the misfit function over iterations is shown in Fig. 3.9. The reconstruction
of the inclusion shows some vertical smearing of the bottom end of the inclusion that may
result from the narrowing of the angular illumination with depth (Fig. 3.8). In contrast to the
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Figure 3.8 — Circular inclusion example. a) Initial position of scatterers, randomly distributed.
b) Final adjoint slope tomography velocity perturbation model (inverted velocity model minus
the true constant-gradient background velocity) with superimposed exact (cross) and calculated
(circle) scatterers positions. Diagrams show the direct comparison between calculated (blue)
and exact (red) velocity perturbations across horizontal and vertical profiles cross-cutting the
centre of the anomaly.

reconstruction in the vertical direction affected by smearing, some low-velocity perturbations
on both sides of the inclusion in the horizontal direction probably reflect a small deficit of low
wavenumbers (Fig. 3.8, horizontal profiles). These limited bandwidth effects can be related to
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the shape of the stereotomography sensitivity kernels, which connect the scatterers in depth to
the sources and receivers at surface (Fig. 3.10). The elongated shape of these sensitivity kernels
in sub-vertical directions favours a smooth reconstruction of the vertical wavenumbers as in
transmission tomography, while the lateral deviation of the kernels generated by heterogeneities
located between the surface and the scatterer may favour the update of intermediate horizontal
wavenumbers at the expense of the low components as in reflection tomography.

For illustrative purposes, Fig. 3.10 shows the kernel of the misfit function gradient with
respect to the velocity in a homogeneous background velocity model. Here we consider one
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Figure 3.9 — Circular inclusion example. Convergence diagram in logarithmic scale for the test
in Fig. 3.8.
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Figure 3.10 — Circular inclusion example. The kernel of misfit function gradient with respect to
the velocity in a homogeneous background velocity model for one 4 km-offset source-receiver
pair. The kernel consists of adjoint-state variables A\;(x) and A,(x) which are weighted by the
velocity raised power three. Here the source-receiver includes one scatterer at 4.3 km depth.
Migration facets can be constructed by neighbour scatterers.
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4 km-offset source-receiver pair and one scatterer located midway between the source and re-
ceiver positions at 4.3 km depth. This kernel is formed by the superposition of the adjoint-state
variables \s(x) and \,(x) weighed by the velocity raised to a power three (eq. 3.72). Since the
background model is homogeneous, the two neighbouring sources and the two neighbouring
receivers that are required to build the right-hand side terms of the adjoint-state eqs (eqs 3.70
and 3.71) involve two scatterers located on both sides of the scatterer in question. The central
and the two neighbour scatterers define the spatial support of the source of the adjoint-state
equation, that back-propagate the time and slope residuals toward the source (left ray tube) and
receiver (right ray tube) positions. The spatial support spanned by the two neighbouring scat-
terers define the so-called dip bar (here, a horizontal bar) (Billette et al., 2003), from which
two rays are shot with appropriate take-off angles in ray-based stereotomography so that they
honour the Snell’s law at the scatterer. While these two take-off angles are explicitly part of
the optimization parameters in ray-based stereotomography, they are implicitly estimated by
adjoint slope tomography through the joint localization of the nearby scatterers, hence defining
a model space with a more limited number of parameter classes.

Example 2: curved layer anomaly

The target of the second example is a layer with a synclinal geometry that is embedded in
a 20 km x 5 km homogeneous velocity background model (Fig. 3.11a). The aim of this test
is to validate the adjoint slope tomography in a classical reflection configuration and assess the
contribution of the slope information to overcome potential velocity-depth cross-talk during the
velocity estimation. The observables are generated from two series of scatterers that follow the
top and the bottom of the layer and a horizontal line of scatterers located below the layer at a
depth of 4200 m. This latter line of scatterers provides the necessary illumination in depth to
constrain the bottom reflector of the layer.
The velocity in the homogeneous background model is 3000 m/s and the velocity within the
smoothed layer anomaly reaches a maximum value of 4000 m/s. A 2400 m single-offset acqui-
sition layout is designed with regular sources and receivers distribution on the surface meaning
that each scatterer is reached by only one source-receiver pair. Here, each scatterer is ob-
served with the source-receiver pair which results in minimum traveltime and this causes some
scatterers have a common source-receiver pair. This configuration implies that, without slope
information, the inversion may not cope with the velocity-depth ambiguity. In this example, we
use the multi-scale approach during which the spline interval decreases throughout five steps
from 1000 m to 60 m and from 2500 m to 150 m in the vertical and horizontal directions, respec-
tively. The initial velocity model is homogeneous with an overestimated velocity of vy = 3300
m/s. The initial scatterers are located midway between the source and the receiver at a depth
of vy x t/2 where t denotes the true two-way traveltimes (Fig. 3.11a). Therefore, the initial
dips at the scatterers as predicted by the initial slopes at the source and receiver positions are
horizontal and do not embed any prior information on the geometry of the layer. Moreover,
these horizontal dips do not match those that would be inferred from the relative positions of
the initial scatterers since these latter are not horizontally distributed (Fig. 3.11a).
The velocity model and the position of scatterers that have been reconstructed after 210 itera-
tions are shown in Fig. 3.11b. Here the correlation length of Gaussian filter is 200 m. Overall,
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the shape of the syncline is well recovered as shown by the good agreement between the true
and the reconstructed lines of scatterers aligned along the top and bottom reflectors with some
small mismatches toward the ends of the layer (Fig. 3.11b). The bottom line of the scatterers
shows more obvious footprint of velocity-depth ambiguity toward the ends of the line in the
form of underestimated depths balanced by two circular blobs of low velocities. Overall, these
mismatches remain acceptable owing the limited offset coverage considered in this example.
The tomography reconstructs a smooth representation of the layer as shown by the horizontal
and vertical profiles in Fig. 3.11. In the vertical direction, the smoothing of the layer generates
overestimated velocities just above the top reflector that are balanced by underestimated back-
ground velocities in the first 1.5 km in depth. Below the bottom reflector, the velocities tend
to be overestimated to balance the underestimated velocities in the smooth reconstructed layer.
Toward the middle of the last scatterer line, a slight downward shift of the reconstructed line
also contributes to partially balance these overestimated velocities below the layer. Fig. 3.12
shows the convergence diagram for multi-scaling optimization including different five scales.

In order to assess more precisely the contribution of the source and receiver slopes in the
inversion, we perform three inversions that rely only on slope information (Fig. 3.13d), travel-
time information (Fig. 3.13c) or both (Fig. 3.13b). The Fig. 3.13a shows a close-up of the initial
model where the layer exhibits some dips as shown by the superimposed true and initial scat-
ter positions. We initialize the scatterer positions midway between shot and receiver positions,
which implies that pairs of scatterers share the almost same position (Fig. 3.13a, red asterisk
symbol), while the true scatterers are uniformly distributed along the reflectors (Fig. 3.13a,
green plus symbol). We design this configuration in order to assess the ability of the slope
tomography to move the scatterers both horizontally and vertically.

Traveltime inversion fails to position correctly the scatterers (Fig. 3.13c). First, the depths of
the scatterers on the top interface and bottom interfaces are overestimated and underestimated,
respectively. This inaccurate vertical positioning is balanced by erroneous velocity update,
manifested by overestimated velocities in the background model and underestimated velocities
in the layer, in order to fit traveltimes. This highlights velocity-depth cross-talk during the
multi-parameter reconstruction. Second, the traveltime inversion fails to move the scatterer
horizontally, that highlights the missing slope constraints as suggested by the results of the
slope inversion. In other word, in absence of the slopes information, there is not any constraint
to locate the scatterer along the isochrone which is defined by observed traveltime (Chauris
et al., 2002a).

Fig. 3.13d shows that the slope-only inversion fails to fit traveltimes, that is highlighted by
the fact that the depth of the scatterers associated with the upper interface are underestimated
and the velocities in the background model are overestimated. Unlike the traveltime inversion,
the vertical mispositioning of the scatterers does not balance the erroneous velocities to honour
traveltimes (these latter being not involved in the inversion). However, slope inversion man-
ages to horizontally move the scatterers to their true horizontal coordinates, unlike traveltime
inversion. This sensitivity to the horizontal positions can be intuitively understood from the gra-
dient of the misfit function with respect to scatterer coordinates, which involves the difference
between sampled neighbouring traveltime maps at the scatterer position, eq. (3.74).

Fig. 3.13b shows how the joint inversion of traveltimes and slopes allows to overcome these
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Figure 3.11 - Layer example. a) Exact velocity model with superimposed exact (green "+") and
initial (red "*") scatterer positions. b) Reconstructed velocity model by adjoint slope tomogra-
phy with superimposed exact (green "+"), initial (red "*") and calculated (black "o0") scatterer
positions. Diagrams show the direct comparison between calculated (blue) and exact velocities
(red) across horizontal and vertical profiles cross-cutting the velocity model at 2.5km depth and
10km distance.

artefacts and retrieve both the correct velocities and the horizontal and vertical coordinates of
the scatterers.

Example 3: Marmousi model
Building velocity macro-model

We now consider a more realistic example with the complex Marmousi model (Fig. 3.14a)
(Bourgeois et al., 1991). Because of its structural complexity, the reconstruction of this velocity
model by tomographic methods is challenging. As mentioned by Lambaré (2008) and shown
by Billette et al. (2003), ray-based stereotomography has not fully succeeded in reconstructing
the smooth components of this model, for three possible reasons: non-linearity of the inverse
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Figure 3.12 — Layer example. Convergence diagram in logarithmic scale for the example in

Fig. 3.11. The colours show the localization step (L’) and scales number in multi-scaling

approach scheme.

problem, intrinsic limitations of ray theory, and unreliability of stereotomographic picking. We
generate the targeted velocity model of the stereotomographic inversion by Gaussian smooth-
ing of the original Marmousi model with vertical and horizontal correlation lengths of 100 m
(Fig. 3.14b). This smoothing is sufficiently mild to guarantee that the resulting model provides
a good background model for prestack depth migration (e.g., Thierry et al., 1999) or a good
initial model for FWI considering a realistic starting frequency of the order of 4 Hz. Note that
we use a less aggressive smoothing (100 m correlation length instead of 240 m) than Billette
et al. (2003) and Chauris et al. (2002b) to generate the true background velocity model to be
reconstructed by stereotomography. In our application this can contribute to make the distribu-
tion of scatterers in depth more non-uniform and generate multi-pathing. The grid interval in
the smoothed Marmousi model is 20 m.

To build the dataset for inversion, we pick manually the main reflectors in the Marmousi
model (Fig. 3.14¢) and compute the corresponding reflection traveltimes and slopes numerically
with our forward engine. To generate a realistic dataset, we assign a source-receiver pair to each
scatterer according to the Fermat’s principle by searching the scatterer that has the minimum
reflection traveltime along a reflector. Moreover, we check that the found scatterer corresponds
to a specular reflection point; if not, we remove its associated traveltime and slopes from the
dataset. This condition is fulfilled if the sum of the slowness vectors estimated at the scatterer
position from the source and receiver traveltime-map gradients is aligned with the normal to the
reflector. We consider a towed-streamer acquisition with offsets ranging between 100 m and
3425 m. Ninety-one shots every 100 m are recorded by 134 receivers spaced 25 m apart. The
first shot is located at a distance of 7400 m in Fig. 3.14 and the acquisition layout is moving from
right to left, implying a deficit of scatterers in the bottom-right part of the target. According to
this source-receiver geometry, our reflector picking in the Marmousi model (Fig. 3.14c) results
in more than 6000 observables in the data domain. Two shot gathers located at x = 800 m and
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Figure 3.13 — Layer example. Comparison between joint traveltime+slope, traveltime only and
slope only inversions. a) Close-up of the initial velocity model with superimposed true (green
"+") and initial (red "*") scatterer positions. The initial positions of the scatterers are midway
the source and receiver positions meaning that the local dip predicted by the shot and receiver
slopes would be horizontal. Note that pairs of scatterers share the same initial position. (b-d)
Close-up of the velocity model after (b) joint traveltime and slope inversion, (c¢) traveltime-only
inversion, and (d) slope-only inversion (d). The retrieved scatterer positions are shown by black

circles. See text for detailed interpretation.
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Figure 3.14 — Marmousi example. (a) True velocity model, (b) Smoothed Marmousi velocity
model used as the targeted model of the adjoint slope tomography. (c) Scatterers that have been
used to generate the traveltimes and slope dataset from the velocity model shown in (b).

x = 4800 m are shown in Fig. 3.15 with superimposed traveltimes and slopes generated from
the reflector picks shown in Fig. 3.14c. Both of these gathers include the deepest scatterers; the
shot gather at z = 4800 m, unlike the other one, includes the reflection from complex geological
structures. Our picking of the Marmousi reflectors should be reasonably representative of the
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one that would have been performed in the prestack migrated domain (namely, in common-
image gathers). Indeed, traveltime and slope observables can be generated from image-domain
picks by demigration (Chauris et al., 2002a; Guillaume et al., 2008), in a manner comparable
to our ad-hoc approach except that we took advantage of our knowledge of the true model to
measure the dips instead of picking them. Our reflector picking leads to a sparse distribution
of locally-coherent events in the gathers as illustrated in Fig. 3.15. Note that some picks in
the complex zone have not satisfied the specular-point condition. Therefore, our inversion can
suffer from a deficit of illumination in this complex part of the model.

In order to reconstruct the smooth Marmousi velocity model, we follow the stereotomo-
graphic workflow introduced in the section 3.2.4. During the localization step and the following
slope tomographic inversion, we use (o7, , , 0p,, 0, )=(1. ms, 0.01 ms/m, 0.01 ms/m). Also, we
estimate an appropriate correlation length of 200 m for Gaussian smoothing by trial and error.
After the initialization step (Fig. 3.16a), we performed a localization of the scatterers from a
homogeneous velocity model with a 2000 m/s velocity (Fig. 3.16b). Then, we removed outliers
associated with scatterers that fall outside the limits of the subsurface target. After localizing the
scatterers, we performed four successive slope tomographic inversions by refining the velocity
grid by a factor 2 in both directions at each step. During these four multi-resolution steps, the
horizontal and vertical B-spline node spacings decrease from 1300 m to 160m and from 400 m
to 50 m, respectively. During these four steps, the inversion has performed 3, 147, 50 and 165
iterations to generate the velocity models and the scatterer positions shown in Fig. 3.16(c-f).
Overall, the positions of the scatterers tend to align with the reflectors of the Marmousi model
as the resolution of the velocity model improves over the four multi-scale steps with however,
a certain hierarchy driven by the local structural complexity of the velocity model. During the
first-scale inversion, the scatterer positions and the background velocities were not significantly
updated because of the B-spline grid intervals are too coarse (Fig. 3.16¢). Large-scale varia-
tions of the background velocities are introduced in the whole model during the second step;
however, the scatterers start being aligned with the reflectors only in the left part of the model
where the structure is simpler (Fig. 3.16d). During the third step, the scatterer positions are
moved to their correct positions in the upper-right part of the model but the inversion fails to
significantly update their positions at the reservoir level (Fig. 3.16e). During the fourth step,
the scatterers are aligned along the reflectors with improved accuracy as the resolution of the
velocity model is improved with the most significant updates in the complex zone at the reser-
voir level (Fig. 3.16f). Through these iterative updates, the most obvious inaccuracies occur at
the reservoir depths and near the bottom-right end of the model where the overburden exhibits
significant dips and the acquisition geometry provides a limited illumination. The misfit func-
tion plotted as a function of the iteration number over the localization and the four multi-scale
steps shows a regular decrease of the data misfit, suggesting a reasonable tuning of the inversion
(Fig. 3.17). If we would have used a constant-gradient velocity model during the localization
instead of a homogeneous model, we could have started the slope tomography inversions on
a finer spline grid to converge in a smaller number of iterations toward a final model almost
identical to the one shown here. In this test, by considering a homogeneous background veloc-
ity model, we intended to assess the capability of the model to image smooth components of
complex structures almost from scratch.

As a quality control of the final results, we have superimposed the dip bars onto the original
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Figure 3.15 — Marmousi example. Examples of traveltime and slope observables (red segments)
generated from the velocity model of Fig. 3.14b and the scatterers of Fig. 3.14c. The shot
positions are x=800m(a) and x=4800m(b). Each red segment shows the traveltime and the
slope of each picked event. The blue segments represent the traveltimes and slopes computed
in the final adjoint slope tomographic model (Fig. 3.16f).

Marmousi velocity model (Fig. 3.18b). The dip associated to each scatterer is computed a
posteriori from the traveltime gradient vectors Vt, and Vt, computed in the slope tomography
velocity model (Fig. 3.18a). We also show the direct comparison between the dip bars (black
segments) and the true position of the scatterers resulting from the picking of the Marmousi
reflectors in Fig. 3.18c. Fig. 3.18a,c show a fairly good agreement at all depths in the left
part of the Marmousi model where the dips are reasonably mild. In the more complex central
and right parts, the alignment remains acceptable in the shallow part, while the adjoint slope
tomography failed to provide a reliable reconstruction at depths greater than 2.5 km beyond
6 km of distance. This mispositioning of the dip bars in the complex deep part manifest as
significant late traveltime misfit in the shot gathers of Fig. 3.15. An insufficient illumination
aperture at the reservoir depths, resulting from the strong lateral variations in the overburden
and the position of the target near the right end of the acquisition, might explain this failure.

The final estimated velocity model by adjoint slope tomography is complex enough to gen-
erate multi-valued ray fields. This is illustrated by calculating rays+wavefronts (Lambaré et al.,
1996) for this velocity model (Fig. 3.19a). In Fig. 3.19a the rays+wavefronts are superimposed
with the first-arrival wavefronts computed with our eikonal solver for a source at x = 6 km.
The complexity of the slope tomographic velocity model generates caustics which are singular
points for the first-arrival wavefronts (Fig. 3.19b). Our finite difference approach for the slope
estimations near these caustic points can be erroneous; another possible reason for misposi-
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Figure 3.16 — Marmousi example. Adjoint slope tomography results. Velocity model and
scatterer positions after (a) the initialization step, (b) the localization step and (c-f) four multi-
scale adjoint slope tomographic inversions with spline-grid refinement. See text for details.

tioning of the dip bars in the complex zone (Fig. 3.18c). However, the calculated first-arrival
wavefronts with the eikonal solver are completely matched with the solutions of wavefront con-
struction method.

FWI with initial model from adjoint slope tomography

We now assess the quality of the adjoint slope tomographic velocity model (Fig. 3.20a)
as a starting model for frequency-domain FWI of long-offset data. As such, we consider a
stationary-receiver acquisition geometry with a 9 km maximum offset. The aim of this increased
offset range is two fold. First, it increases the non-linearity of FWI associated with cycle skip-
ping of both diving waves and wide-angle reflections and hence provides a suitable framework
to assess the adjoint slope tomographic model as a good initial model for FWI. Second, this
long-offset acquisition provides a sufficient wide scattering-angle illumination to prevent some
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Figure 3.17 — Marmousi example. Misfit function versus iteration number plotted with a log-
arithmic scale. The colours delineate the localization step ("Loc’) and the scales number the
multi-scale inversion.

notches between the wavenumber content of the slope tomographic velocity model and that of
the perturbation model generated by FWI when a starting frequency as high than 4 Hz is used.
The acquisition consists of 41 sources every 200 m that are recorded by 231 receivers spaced
40 m apart. We invert sequentially five frequency components of the wavefields (4,5,7,9,12
and 16 Hz) with the L-BFGS algorithm. The final inverted velocity model by FWI (Fig. 3.20b)
shows a good qualitative agreement with the true Marmousi velocity model except near the
bottom-right of the model (Fig. 3.14b). Fig. 3.21 shows a more quantitative assessment of the
accuracy of the FWI model by the direct comparison between vertical profiles extracted from
the final adjoint slope tomographic model, the final FWI model and the true Marmousi model.
The agreement between the FWI and the true profiles is good down to 2 km depth both in terms
of resolution content, positioning in depth and velocity estimation, except near the right-end of
the model. The resolution degrades near the bottom of the model as the number of available
events becomes more limited.

3.2.6 Discussion

We have presented a new formulation of stereotomography. The key ingredients are the
computation of the traveltimes with an eikonal solver, the inference of the slopes at the source
and receiver positions from these traveltimes by finite differences and the computation of the
misfit function gradient with the matrix-free adjoint state method. Our formalism relies on a
limited number of parameter classes (subsurface velocities and scatterer coordinates) compared
to the ray-based stereotomography developed by Billette and Lambaré (1998). This directly
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a) Distance(km)

Figure 3.18 — Marmousi example. (a-b) Scatterer positions with dip bars estimated by adjoint
slope tomography superimposed on the final inverted velocity model (a) and on the true Mar-
mousi model (b). c) Direct comparison between the reconstructed dip bars (black segments)
and the scatterers (grey circle) that have been used to generate the data set (Fig. 3.14c¢).
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Figure 3.19 — Marmousi example. a) Smooth marmousi model built by slope tomography with
superimposed ray+wavefronts, computed with the wavefront construction method of Lambaré
et al. (1996), and wavefronts computed with the factored eikonal solver. (b) Same as (a) without
the ray field.

results from the use of an eikonal solver instead of a ray-tracing algorithm to compute travel-
times and slopes. The eikonal equation using the shots and receivers as sources and the finite-
difference estimation of the slopes from the traveltime solutions of the two eikonal resolution
define the state equation of the adjoint problem. The adjoint-state variables associated with the
source-side and receiver-side traveltimes are solution of a transport-like equation, which builds
the sensitivity kernels of the velocity update along two ray tubes connecting the scatterer to
the sources and receivers. The right-hand side of these adjoint-equations describe a source term
whose spatial support, weighted by the two-way traveltime and slope residuals, defines a migra-
tion facet or dip bar at the scatterer position. The position of a scatterer is updated from the local
gradients of the traveltime maps generated from the sources and receivers to which it is related
and also from the gradient of the traveltimes generated by neighbouring sources and receivers.
Again, the contribution of neighbour sources and receivers highlight the additional constraints
provided by slopes to localize the scatterers. Our parsimonious parametrization may contribute
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Figure 3.20 — Marmousi example. a) Final inverted velocity model by adjoint slope tomog-
raphy. b) Final FWI velocity model using the adjoint slope tomography model (a) as initial
model.

to make the inverse problem underlying adjoint slope tomography more robust and easier to
tune than the ray-based counterpart by avoiding over-parametrization than can be lead to sig-
nificant parameter cross-talk and ill-posed inversion (Billette and Lambaré, 1998). Moreover,
the computational burden resulting from the use of an eikonal solver instead of ray tracing is
efficiently balanced by the fact that traveltime computations are performed from the source and
receiver positions rather than from the scatterers. The second advantage is related to our ability
to process large-scale dataset without any matrix resolution. In return, we do not have access
to the sensitivity matrix that is useful to perform local a posteriori resolution analysis. How-
ever, the computational efficiency of our approach can be used to build the resolution matrix
numerically through spike tests. Alternatively, second-order adjoint-state method can be used
to implement truncated Newton optimization as an alternative to the L-BFGS optimization. The
efficient computation of Hessian-vector product with second-order adjoint state method (Mé-
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Figure 3.21 — Marmousi example. Direct comparison of logs between exact velocity model in
Fig. 3.14(a), black line, and the estimated velocity by adjoint slope tomography in Fig 3.20(a),
blue line, and inverted velocity model by frequency domain FWI in Fig 3.20(b), red line, while
using adjoint slope tomography solution as initial model.

tivier et al., 2013, 2014a) can be also used to perform this resolution analysis (Fichtner and
Trampert, 2011). Implementation of the truncated Newton method in our adjoint slope tomog-
raphy is ongoing.

One of the main limitations of our method compared to more automatic waveform inversion
techniques such as reflection waveform inversion (Xu et al., 2012; Brossier et al., 2015; Zhou
et al., 2015) is related to their ability to handle complex structures (LLambaré, 2008). The main
bottleneck remains the picking of local coherent events, which has not been investigated in this
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study. Beyond the picking issue, any fast solver providing the traveltime of the most-energetic
arrival (Kim, 2001) or of all the arrivals (Qian and Leung, 2004) instead of the first traveltime
might improve the imaging in complex area where ray folding occurs, as has been shown in a
prestack-depth migration context (Operto et al., 2000).

Chauris et al. (2002a,b) and Nguyen et al. (2008) have shown how the picking and stereoto-
mographic inversion can be implemented in the prestack depth migration domain. Indeed, our
approach can be also used when picking is performed in the migrated domain after demigration
(modelling) of seismic invariants (Guillaume et al., 2008). The benefit of this strategy is that
picking can be performed more easily in the migrated domain after suitable preprocessing of
the kinematics, while the demigration allows one to avoid repeating migration at each itera-
tion of the slope tomography. Chauris et al. (2002a) and Chauris et al. (2002b) also show how
migration-based velocity analysis (or slope tomography after demigration) can be performed
with a reduced data-space and model-space parametrization involving one slope in the data
space and the velocity model in the model space. This reduced parametrization can be consid-
ered in the framework of our adjoint formulation, although its robustness should be assessed
through numerical investigation. Do we converge to the true minimum, when considering im-
plicitly scatterer positions? Do we mitigate non-linearities issues when adding these positions
to the model space?

In slope tomographic methods, one scatterer is related to one shot-receiver pair and all of
the scatterers are processed independently during the inversion. However, due to the intrinsic
redundancy of seismic multi-offset acquisition, one position in the subsurface is sampled by
many shot-receiver pairs. Any optimization constraints on the relative position (i.e., proximity)
of scatterers and the alignment of facets that are related to neighbouring sources and receivers
should make the inversion more robust.

In this study, we assess adjoint slope tomography for short-spread reflection acquisitions.
The use of an eikonal solver provides a robust modelling engine to extend adjoint slope tomogra-
phy to long-offset acquisitions where traveltimes and slopes of both diving waves and reflected
waves can be involved in the inversion as shown by Pricux et al. (2013). Use of long-offset data
raises the issue of anisotropy, which can be taken into account with a factored eikonal solver
proposed by Waheed et al. (2015) and Tavakoli F. et al. (2015) or more sophisticated approaches
based on the resolution of the Hamilton-Jacobi equation with level-set techniques (Qian et al.,
2003). Extension of adjoint slope tomography to TTI anisotropy is part of our future work. In
this long-offset framework, adjoint slope tomography can provide reliable initial model for FWI
in the sense that both approaches share the idea of using the full information content in the data
through a dense picking of high-frequency scattered waves in slope tomography and the use of
the waveforms of all of the arrivals in FWIL.

3.2.7 Conclusions
We develop an adjoint formulation of the slope tomography as a new formulation of stereoto-
mography to avoid large-scale matrix resolution. Moreover, a finite-difference eikonal solver

is proposed as an alternative to ray tracing to avoid the issue of non-uniform ray sampling that
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can arise at long offsets and in complex models. Compared to the classical ray-based imple-
mentation of stereotomography, the model space involves subsurface velocities and scatterer
positions, but not shooting angles and one-way traveltimes. The local subsurface dips, that are
parametrized by the two shooting angles in ray-based stereotomography, are implicitly repre-
sented in the spatial support of the adjoint source and reconstructed through the update of close
scatterers. The eikonal resolutions are performed from the shot and receiver positions to miti-
gate the number of the forward modelling required by the misfit function gradient: the number
of state and adjoint problems to be computed scales to the number of sources and receivers but
is independent of the number of scatterers, hence leading to an efficient computational frame-
work. Exploiting the reciprocity principle of wave propagation, the slopes at the source and
receiver positions are estimated in a finite-difference sense from traveltimes extracted in the
subsurface far away from the source singularities. In this framework, source and receiver po-
sitions need not to be considered in the data space as traveltimes can be sampled accurately at
arbitrary positions in the finite-difference grid with suitable interpolation schemes. The cho-
sen smaller model space, compared to the model space in classic ray-based stereotomography,
mitigates potential leakage between parameters and balances possible non-linear features of the
optimization scheme. The L-BFGS optimization scheme, which accounts for the Hessian in a
cheap way, mitigates the leakage between wave speeds and scatterer positions. Other second-
order optimization algorithms, such as the Truncated Newton method, can be also implemented
in the adjoint slope tomography. Our approach takes advantage of a multi-scale strategy during
which the velocity grid is progressively refined. Through the estimation of velocity model for
Marmousi model, we show that adjoint slope tomography is an appropriate candidate for build-
ing background velocity model for prestack depth migration and FWI. We plan to extend our
formulation to 3D TTI media as well as to consider applications to real case studies.
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3.3 Inverse problem in anisotropic adjoint slope tomography

In this section, I discuss the inverse problem in anisotropic adjoint slope tomography. The
general framework is an extension of the isotropic formulation presented in section 3.2. This
section is the first draft of a paper and its form follows a paper style.

3.3.1 Introduction

Different applications of seismic imaging techniques, such as migration and FWI, have
proven that a precise and accurate subsurface image requires to consider anisotropy (Alkhalifah
and Larner, 1994; Prieux et al., 2011; Pratt et al., 2001; Warner et al., 2013; Berkhout, 2014).
Anisotropic seismic imaging, as an inverse problem, consists of two main ingredients: 1) a
forward modelling engine to track the wave propagation in anisotropic media, and 2) a non-
linear multi-parameter inverse scheme to manage the cross-talk between the different parameter
classes. Because the inverse problem for general anisotropic elastic media is highly ill-posed,
the Earth anisotropy is approximated by a simplified model in many applications. One of the
most common approximation relies on the assumption that the subsurface is layered with a
vertical or tilted symmetry axis. These subsurface models are generally referred to as VTI and
TTI media, respectively. In the following, we review some of the methods which aim to estimate
the anisotropic properties in VTI/TTI or more complicated models.

NMO-type velocity analysis is among the first approaches to update subsurface veloc-
ity in presence of anisotropy (Tsvankin and Thomsen, 1995; Alkhalifah and Tsvankin, 1995;
Grechka and Tsvankin, 2000). This method analyses NMO moveout in transversely isotropic
(TT) media by considering long-spread non-hyperbolic reflections, and try to estimate the quar-
tic term of Taylor series expansion for P and vertical S waves t2 - 22 curves. Alkhalifah and
Tsvankin (1995) simplified and stabilized this approach for acoustic VTI media by formulating
the method with ray parameters. They showed that, P-wave NMO velocity for the dipping re-
flectors in a homogeneous transversely isotropic (T1) medium can be fully described by zero-dip
NMO velocity and the effective 1. They extended this formulation to vertically inhomogeneous
media by generalizing the NMO equation of Tsvankin (1995) for anisotropic layering media
(Alkhalifah and Tsvankin, 1995). They derived these parametrization for weak anisotropy, but
in practice it is applicable for arbitrary strength of anisotropy. Here, the interval velocities are
calculated by Dix formula and during inversion this calculation of velocity for layers leads to
some instabilities due to error accumulation at depth (Zhou et al., 2004). Therefore, for complex
structures, this approach requires an advanced expertise for avoiding instabilities.

Traveltime tomography (Aki et al., 1977; Nolet, 1987) is a well-known method for depth
imaging in isotropic and anisotropic media. The forward-modelling engine in anisotropic trav-
eltime tomography generally relies on ray tracing (Cerveny, 2001) while different approaches
based on prior information and regularization have been developed to deal with the ill-posedness
of the inverse problem. Using additional information, like VSP traveltimes, which puts more
constraints on the reconstructed parameters is a common practice to resolve the non-uniqueness
of the inversion solutions (Tsvankin, 2001b; Bakulin et al., 2010; Zhou and Greenhalgh, 2008;
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Sexton and Williamson, 1998). Taking advantage of regularization techniques in inverse prob-
lem, is another approach where one can partially manage the ambiguity between parameters
(Zhou et al., 2011; Wang and Tsvankin, 2013). Clapp et al. (2004); Fomel (2007) designed
a shaping filter as regularization operator to update the subsurface models such that they fol-
low the geological structures. The tomographic methods also differ in the way they manage
the multi-parameter reconstruction. Zhou et al. (2011) proposed a joint inversion of all the
subsurface parameters while Jiang and Zhou (2010), through an error analysis, showed that a
hierarchical approach provides more reliable results; they first reconstruct the vertical velocity
and ¢ before updating ¢ once the misfit function has been decreased by a sufficient amount.
Woodward et al. (2008) applied a mono-parameter inversion for the vertical velocity and then
estimate € and 9 by zeroing the RMO at well locations.

Migration velocity analysis (MVA) for anisotropic media relies on the same principle of
isotropic MVA: flattening the reflector on common image gathers (CIGs). Sarkar and Tsvankin
(2004) introduced a MVA method which takes advantage of factorized blocks for VTI in which
anisotropic parameters are constant while velocity can vary. Behera and Tsvankin (2009) ex-
tended this method to TTI media where the tilted angle in each block respects the geological dip
(Audebert et al., 2006). They use a Kirchhoff prestack depth migration, based on anisotropic
ray tracing for heterogeneous TI media, to iteratively perform the migration. For complex sub-
surface models this method can be less efficient due to the limitations of ray-based modelling
techniques in complex media and the constant-property assumption underlying the block fac-
torization strategy (Wang and Tsvankin, 2013). Wave-equation MVA (WEMVA) (Sava and
Biondi, 2004) avoids the ray-based methods by using a linearized wave equation operator to
update image perturbations. Extension of this approach to 2D VTI media is introduced by L.i
and Biondi (2011); Li et al. (2012). Weibull and Arntsen (2014) formulated WEMVA for 2D
TTI media where they update jointly v,, € and ¢ and utilize a regularization term in the mis-
fit function. They also emphasized the necessity of additional information to overcome the
non-uniqueness of solutions.

Full-waveform inversion (FWI) is a data-driven optimization problem which can be used to
reconstruct the subsurface parameters, including anisotropic properties (Pratt et al., 2001, 2008;
Prieux et al., 2011; Plessix and Cao, 2011; Gholami et al., 2013b,a; Alkhalifah and Plessix,
2014; Cheng et al., 2016; Rusmanugroho et al., 2017). In order to update anisotropic properties
of a medium, FWI requires a suitable parametrization to resolve the ambiguity between param-
eters classes defining the anisotropy (Plessix and Cao, 2011; Gholami et al., 2013b,a). There
are different applications of FWI in anisotropic media which only consider the anisotropy in
waveform modelling and not inversion. As an example for multi-parameter anisotropic FWI,
Gholami et al. (2013a) applied a 2D VTI acoustic FWI on synthetic and real wide-aperture data
to invert jointly for vertical and horizontal velocities. When the observed data includes a wide
range of azimuths and offsets, the footprint of anisotropy is more significant. Rusmanugroho
et al. (2017) adapted a 2D TTI FWI where they use Voigt parametrization. A synthetic exam-
ple shows that, without priory geological constraints, this approach recovers the tilt angle and
anisotropic properties of the subsurface model. However, for real data applications it is difficult
to extract the anisotropic parameters from only surface data.

Compared to the WEMVA and FWI methods, the lower computational cost and easier im-
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plementation of traveltime tomographic approaches make them still attractive for subsurface
parameter estimations. Among tomographic methods, slope tomography is a popular approach
where the continuous horizon picking in conventional tomography is replaced with local co-
herent event picking (Rieber, 1936; Riabinkin, 1957; Sword, 1987; Billette, 1998). Extension
of stereotomography (Billette, 1998), as a slope tomographic approach, to anisotropic media is
introduced by Nag et al. (2006); Barbosa et al. (2006). These approaches rely on anisotropic ray
tracing and the explicit building of Fréchet derivative matrix in forward and inverse problem,
respectively. The main difference between these methods is their approach in mitigating the
ill-posedness of the inverse problem. Nag et al. (2006, 2010) reduce the size of the model and
data spaces by fixing the source and receiver depths (constant Z stereotomography), and Bar-
bosa et al. (2006, 2008) parametrize the subsurface model by square of vertical, horizontal and
diagonal velocity for an elliptic/anelliptic media. For these approaches, like other tomographic
based methods, the joint inversion of all the subsurface parameters without extra information,
like well logs or transmission arrivals, can not result in trustworthy solutions for the subsur-
face parameters. For example, Begat et al. (2008) proposed a joint slope tomographic approach
where they use transmission arrivals, as well as picks from reflection data, to resolve the am-
biguity between ¢, 6 and vertical velocity. There are few references in the literature about
application of these methods on real data sets, although, oil industries has developed a strong
practical expertise on anisotropic slope tomography.

Guillaume et al. (2008); Lambaré et al. (2008) introduced a non-linear slope tomographic
method in which the picking procedure is performed in pre-stack depth migrated (PreSDM) or
pre-stack time migrated (PreSTM) domains and the model updates are achieved by a non-linear
tomographic inversion. This approach removes the problem of several migrations in MVA based
methods, and compared to the classic slope tomography, provides the inversion with more re-
liable picks. Lambaré et al. (2009) developed this method to 3D velocity model building for
time imaging where they use a general NMO equation (Castle, 1994) in time migration and
through that update the effective velocity and 7 in VTI media. Messud et al. (2015) extended
this approach to 3D orthorhombic media and estimated the azimuthal velocity for time imaging.
They parametrized the model space by RMS velocity and three parameters describing the el-
lipticity and anellipticity of the hyperbolas due to anisotropy. They built the Fréchet derivative
matrix through the paraxial ray tracing and used a quasi-Newton approach as the optimization
technique.

We reformulated the classic stereotomography by using a factored eikonal solver (Fomel
etal.,2009) as a forward modelling engine and a matrix free formulation based upon the adjoint-
state method (Plessix, 2006) for inversion. This formulation is the extension of our former study
in isotropic adjoint slope tomography (Tavakoli E. et al., 2017b). The eikonal solver removes
the well-known limitations of ray tracing (like non uniform sampling and shadow zones) and
provides a uniform sampled traveltime map. In order to calculate the traveltimes, we solved the
eikonal equation for the injection points at the source and receiver positions and sampled the
resulted traveltime maps at the scatterer positions. We utilized source-scatterer and receiver-
scatterer reciprocities to derive slopes at the source and receiver positions by finite difference of
the traveltime maps associated with neighbouring sources and receivers. Therefore, the number
of forward problem scales to the number of sources and receivers rather than scatterers. These
forward and inverse problems result in a model space including only velocity and scatterer
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positions, and a data space consisting of two-way traveltimes and slopes at the source and
receiver positions. This smaller model space and data space may mitigate the ill-posedness
of inverse problem. Here we extend this formulation to anisotropic media by applying a TTI
factored eikonal solver (Tavakoli F. et al., 2015; Waheed et al., 2015) in forward modelling and
solving the associated adjoint state equations for gradient calculations.

In the following, we first address the bases of classic anisotropic stereotomography and
then we introduce the anisotropic formulation for the adjoint slope tomography. We evaluate
our formulation with two synthetic examples, and in the final section we conclude with some
important discussions such as the parameter cross-talks, sensitivity of the anisotropic inversion
to the offset illumination and the subsurface parametrization.

3.3.2 Anisotropic extension of classic stereotomography

Nag et al. (2006); Barbosa et al. (2006) introduced extensions of the classic stereotomog-
raphy to 2D VTI and general anisotropic media, respectively. They preserve the ascending ray
based formulation of the classic approach and modify the forward modelling and inversion as
we shall explain in the following. In these approaches the forward modelling is performed by
anisotropic ray tracing and the inverse problem relies on a matrix-based formulation based upon
the explicit building of the Fréchet derivative matrix through paraxial ray tracing. Introducing
anisotropy to the classic formulation leads to a more ill-posed inverse problem. In the following,
we briefly explain the strategies proposed in these methods for handling this ill-posedness.

Barbosa et al. (2006, 2008) considered the following data space in their approach
d = (XsaxraTs,rap&pr)iH\il- (376)

which is the same as for the isotropic formulation. Here x; and x, stand for the source and
receiver positions and (7 ., ps, p,) are the two way traveltime, slope at the source and slope at
the receiver position for the ith scatterer, respectively. They implement the anisotropic stereoto-
mography for a medium with elliptic and anelliptic anisotropy where they can parametrize the
subsurface model based on P-wave slowness surface. This leads to the following model space

m = {(x,0,0,,Ts,T;), P}, (3.77)

where (x, 0, 6,., Ts, T,.) stand for the scatterer positions, take-off angles for the ascending rays
and their one-way traveltimes. The end points of the ascending rays define the calculated
position of the sources and receivers and their corresponding slopes. The parameters P =
(Py, P, P3) describe the subsurface model where P, and P; are the square of the horizontal and
vertical velocities and P; indicates square of velocity along a propagation direction defined by
the ellipse orientation (Barbosa et al., 2008). They concluded that this subsurface parametriza-
tion makes the inversion less prone to parameter cross-talk, that are potentially generated by the
narrow azimuth illumination provided by surface seismic experiments (Barbosa et al., 2008).
Barbosa et al. (2006) assessed the method by a synthetic example where they use transmission
data as the complementary information.
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Nag et al. (2006, 2010) introduced the constant Z stereotomography to handle the ill-
posedness of TTI/VTI stereotomography. With the aim to reduce the data space in anisotropic
stereotomography, they considered no uncertainties on the depth of sources (z,) and receivers
(2) and set these vertical positions to those of the observed data. This defines the data space as

d= (1’57 L, Ts,?"ap57p7‘)i|£\;17 (378)

where z, and z, stand for the horizontal coordinates of the source and receiver positions for
the sth scatterer. The other parameters are the same as those used in the classic formulation
of stereotomography. As the depth of the sources and receivers are not treated as observables,
the end points of the ascending rays are defined by these depths rather than from the one-way
traveltimes. This means there is no need to consider one-way traveltimes among the model
space parameters. Therefore, the model parameters can be defined as

m = {(x,6,,0,), m}. (3.79)

Here m; denotes the subsurface parameters in 2D TTI/VTI anisotropic media (i.e. v,, €, §
and 6) on spline nodes. In practice, in forward modelling two ascending rays are shot from
each scatterer with predefined take-off angles while their end points are at the intersection with
the corresponding depth level z; and z,.. This method is only assessed with a 2D synthetic
example designed as a series of independent mono-parameter inversions for updating each of
the subsurface parameters while other model parameters are fixed to their true values (Nag et al.,
2010).

3.3.3 Anisotropic adjoint slope tomography for 2D acoustic TTI media

Anisotropic adjoint slope tomography inherits its main structure from our previous formula-
tion for isotropic adjoint slope tomography (Tavakoli F. et al., 2017b). Compared to the isotropic
formulation, two main extensions are necessary: adapting the forward modelling engine for cal-
culation of traveltime map in TTI media (discussed in chapter 2) and solving the adjoint state
equations for TTI media. Table 3.2 presents the mathematical symbols used in this section.

In the following, we first introduce the model and data spaces. Then, we discuss the for-
ward modelling engine and the inverse problem. In the formulation of forward and inverse
problems we use Thomsen parameters (Thomsen, 1986) (i.e. v,, €, 0 and ) to represent a 2D
TTI medium. Other possible parametrizations are discussed in the section 3.4.2. Through two
synthetic examples we assess our method potential for subsurface parameter estimation.
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Table 3.2 — Mathematical symbols.

Symbol Description

N Total number of scatterers.

M Total number of cubic B-spline nodes.

Ns Number of distinct shot gathers.

Ny Number of distinct receiver gathers.

N; Number of distinct receivers in the shot-gather s.

NI Number of distinct sources in the receiver-gather 7.

NpT Number of scatterers for source-receiver pair (s, 7).

Ny nth scatterer associated with source and receiver pair (s, ).

Xn,., Position of nth scatterer associated with source-receiver pair (s, 7) .

Xg, X, Position of source s and receiver r .

- Observed two-way traveltime for scatterer n .

Tsrn,. Calculated two-way traveltime for scatterer 7 ;.

Penar Observed local slope for scatterer 7, at the position of
sth source of receiver-gather 7.

Dsns.r Calculated local slope for scatterer n, at the position of
sth source of receiver-gather 7.

Prng., Observed local slope for scatterer 7, at the position of
rth receiver of shot-gather s.

Prig.r Calculated local slope for scatterer n . at the position of
rth receiver of shot-gather s.

(...) Transpose operator.

Uy (%) Vertical velocity model on Cartesian grid.

€(x), 0(x) Anisotropy parameters on Cartesian grid.

0(x) Tilted angle for TTI media on Cartesian grid.

ciliy B-spline coefficients for subsurface parameters:

v, = Bcy, € = Bea, d = Bes, 0 = Bey.
m = {c;|{_;,X,,,} Adjoint slope tomography model parameters.
d Adjoint slope tomography observables.
C'(m) Adjoint slope tomography misfit function

Data and model spaces definition

The definition of the data space in anisotropic adjoint slope tomography is the same as for
the isotropic formulation (chapter 3.2)

Ns
s=1

Ng
r=1

N (3.80)

ns,'r:17

d= (Ts,r,ns,r yPsng vy Prong )

where T ., ., Psn,, and p,.,, . respectively stand for the two-way traveltime and slopes at the
source s and receiver r for the nth scatterer associated with pair (s, ).
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We define the model space m as

Ns
s=1

Ny
r=1

S,T t
4 \M S
m = ({eim i3 DX, NI (3.81)
where ¢; ,,, for i = 1 — 4 represent respectively the cubic cardinal B-spline coefficients for the
Uy, €,0 and tilted angle #. This model space definition is the direct result of using an eikonal
solver as forward engine, where we do not need to calculate explicitly the polarization vectors
for anisotropic media.

Forward problem

Forward modelling in anisotropic adjoint slope tomography is based on the same principles
as the isotropic adjoint slope tomography (section 3.2.4). It only requires a modification in
traveltime calculation where we replace the isotropic eikonal solver with our TTI eikonal solver
introduced in chapter 2. In our eikonal solvers, the first arrival traveltime maps are solution of a
PDE constrained by a Dirichlet boundary condition at the injection point. For each scatterer we
solve two TTTI eikonal equations with the associated source and receiver as the injection points

H(x,Vity(x)) =0,

{ o) =0 (3.82)
n H(x, V1,(x)) = 0
x, Vt.(x)) =0,

{ )= (3.83)

where ¢4(x) and ¢,(x) are first-arrival traveltime maps originated from source s and receiver
r, respectively. Here H stands for the Hamiltonian representation of 2D TTI eikonal equation
(Alkhalifah, 2003; Waheed et al., 2014),

H(x, Vt(x)) = A(V3t(x))? + C(Vst(x))? + B(Vat(x))2(Vt(x))? — 1. (3.84)

—

Here Vit(x) = (Vzt(x), Vzt(x)) is the spatial derivative of the traveltime map ¢(x) in the 2D
local rotated coordinate system defined by tilted angle map 6 for 2D TTI media. In other word,
by introducing the rotation operator R,

o Vat(x) cosf  —sinf\ [V,t(x)
Vit(x) = = RVit(x) = : (3.85)
Vst (x) sin @  cos@ V.t(x)
Therefore, we can rewrite the Hamiltonian (3.84) in a matricial form as

H(x,Vt(x)) = A(RVt),)* + C((RVt).)* + E((RVt),(RVt).)? — 1. (3.86)
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Here the subscripts x and z indicate the first and the second elements of the vector RVt, re-
spectively, and the coefficients A, C' and E are defined as (Thomsen, 1986; Tsvankin, 1997)

A =v2(1 4+ 2¢) = v},

2 Unmo
C =v; T+ 25 (3.87)
E=— 21)3(6 —9) = —ZUgvimon,

where the anelliptic parameter 7 is defined as

B €—0
1426

n (3.88)
Here for the sake of brevity we omit the coordinate dependency of the parameters. We compute
the traveltime maps with an iterative factored eikonal solver based on the fast sweeping method
(FSM) (Zhao, 2005) which is introduced in detail in chapter 2 and Tavakoli F. et al. (2015).
Although in tomographic methods we deal with smooth velocity models, this forward modelling
engine can calculate precisely traveltimes in geologically complex models. The extension of
this forward modelling engine to 3D TTI models is presented by Waheed et al. (2015).

After solving eqgs. (3.82) and (3.83) for source s and receiver r, we calculate two-way trav-
eltime 7T}, ,,, , for the nth scatterer of pair (s, r) by

Tsrms, = Qn,, (ts +t,). (3.89)

(n,., 1s a sampling operator for extracting the traveltime at the scatterer positions, x,,, .. Here
we use windowed sinc function (Hicks, 2002) while other sampling operators also can be con-
sidered.

In order to calculate the slope at the source and receiver positions, we apply the same ap-
proach that used in the isotropic case (section 3.2.4). Considering the reciprocity between the
source-scatterer and receiver-scatterer, we design a finite difference operator calculating the
horizontal component of the slowness vector at the source and receiver positions. For scatterer
ns, the inputs of this operator are traveltime maps from neighbouring sources of the source s
and neighbouring receivers of receiver . This gives the following expressions for the slope at
source (ps,n, ) and receiver (p,.n, )

Ots(X,

Psns,, = % ~ Qns,r (ts—‘rl - ts—l)/QAsa (3.90)
ot,(x,

pnns,r = % ~ Qns,r (tr—i-l — tr—l)/2Ar- (391)

Here As and Ar are source and receiver intervals, respectively. Thanks to the reciprocity
rule, the finite difference operator samples the traveltime maps far from the singular points
of the eikonal equation (source and receiver positions). The smooth velocity in the background
(as long as there is no multi-pathing) ensures a trustworthy approximation for slopes at the
source and receiver positions. Through a test in Appendix C, we also investigate the effect of
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the source/receiver interval lengths on the precision of slope estimation with eqs (3.90)-(3.91)
where we conclude if the subsurface model be smooth, the effect of increasing these intervals
(in a reasonable range such as As, Ar < 500 m) is negligible.

This finite-difference estimation of the slopes provides some qualitative insight on the role
of the slopes in the positioning of the scatterers. The difference between traveltimes from the
neighbouring sources and receivers at the scatterer position provides some constraints on the
dip of the so-called migration facet (or dip bar). The dip of these migration facets constrains
in turn the lateral positions of the scatterers, which is poorly constrained by traveltime only (as
any scatterer along an isochrone surface will honour the same traveltime). We discussed this
issue within an example in section 3.2.5. The finite difference approximation of slopes brings
to light the relationship between adjoint slope tomography and double-difference tomography
(Yuan et al., 2016).

Multi-parameter Inverse problem

We consider a /2-norm misfit function between observed, denoted by symbol *, and calcu-
lated data

C(m) B QCTT ZZ Z SrnST T;:?"a”sm)Q

s=1 r=1 ns,=1
S S Né"
+ 202 ZZ Z psnm psn”)Z
Ps s=1 r=1 ns =1
r NT NST

+ 20’2 ZZ Z prnsr prns,«)27 (392)

Pror=1 s=1 ns =1

where aT , p , and a are the elements of a diagonal covariance matrix, which weight the
relative contrlbutlon of each data classes in the misfit function (Tarantola, 1987). In this study
we do not consider any regularization term in the misfit function. We use a Newton-based local
optimization algorithm to update iteratively the model space,

92C 190
My, = my + (@(mk» (). (3.93)

0*C ocC
Here the search direction ( m? (mk)> 6_(mk) is the Newton direction, and a line search
m m

method satisfying the Wolfe conditions is used to set the value of the step length o, € IR,.
We use the L-BFGS method (Byrd et al., 1995), implemented in the SEISCOPE optimization
2

0°C
2) and find the
m

minimizer of the misfit function C'. This method belongs to the family of quasi-Newton methods
where, instead of computing explicitly the n x n Hessian matrix, we recursively estimate it from
a few vectors of length n (Nocedal and Wright, 2006).

toolbox (Métivier and Brossier, 2016), to approximate the Hessian operator (
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In this multi-parameter inversion, the different orders of magnitude of the different param-
eter classes make the optimization poorly scaled. In general, some optimization methods like
Newton’s algorithms are less sensitive to poor scaling while algorithms like steepest descent are
highly sensitive (Nocedal and Wright, 2006). As in the first iteration of L-BFGS method the
initial value for Hessian is identity (i.e. the search direction is steepest descent), this method is
also sensitive to poor scaling. As a remedy, we use a constant scaling factor for ¢,  and theta
to bring them to the same order of magnitude of v, and scatterer positions. Without this scaling
the optimization is highly prone to converge toward a local minimum.

Gradient computation with the adjoint-state method

In order to calculate the gradient of the misfit function with respect to the model parameters
we use the adjoint-state method (section 3.1.5) which provides a matrix-free formulation for the
gradient calculation without explicit building of the sensitivity matrix. This property makes the
adjoint-state method well suited for large-scale inverse problems at the expense of restriction on
optimization method selection; one can only apply the optimization approaches which do not
require the sensitivity matrix (such as Quasi-Newton optimization methods) (Chavent, 2009).
We use the Lagrangian formalism of the adjoint state method to impose the constraints (i.e.
eqs (3.82),(3.83), (3.89)-(3.91)) to the misfit function C'. This leads to the Lagrangian definition
as

L(m,u,u) = H(u,m)

N. N: NOT
— ZZ Z ,Usrns,« srn” Qnsr( ))

s=1 r=1 ns =1
S 9 NST‘

_ ZZ Z fsnsr psnsr Qns’r( s+1 = 5_1)/2AS)
s=1 r=1 ns,r=1
1‘ NT NST

_ ZZ Z 57’”57‘ prnsr Qnsr< r+1 = rfl)/QAT)
r=1 s=1 ns =1

i< ) | H(x, Vi (x )>Q - %i<)\r(x> | H(x, Vtr(x)>ﬂ.

r=1
(3.94)

l\DIr—t

Here () stands for the subsurface domain. The Lagrange multipliers or adjoint state variables
and the state variables are gathered in vector u and u, respectively, as

u= (,U's,nnsyra fs,ns,ra gr,ns,m >‘s> >\7»), u= (Ts,r,ns,raps,ns,w pr,ns,w ts> tr)' (395)

Because the state variables are considered independent of the model parameters, we rewrote
the misfit function C'(m) as #(u, m) in the Lagrangian. Here the unknowns are the adjoint
state variables which can be calculated by zeroing the partial derivative of the Lagrangian with
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respect to the state variables. Here is the solution of jis .y, ., §sn,, and &,

oL 1 * ATS’T’nS’T
W— = 0 — l’l’sﬂ‘,ns,’l‘ = Q_(TS,T’,TLS,T - TS,?",’I’LS,T) - 2 !
8527715,1” 10-T5,7" A O-Ts’r
ps ns T
6’ - O - 687715,7‘ = 2 (ps,ns,r o p:ﬂ’bsm) - 2 ’
Psns,r s Ip
a£ _ 0 . * Ap"" ns s
= — €7~7n57T = 3 (pr,ns,r = Prn, ,) - 2
) Y ’ ?
pr,ns,r Pr pr

The two other adjoint state variables A4 and )\, respectively are solution of the adjoint equations
0L/t = 0 and L/0t, = 0. Gradient of Lagrangian (3.94) with respect to t is given by

Ns Ns T

Z Z QnSTﬂsrngr

r=1 nsr=1

Ns+1 Ns+1 7

ZAS Z Z Q"s+1 r£8+1 Nsg1,r

r= mertr=l (3.96)

Nsl Na 1,r

A Z Z Qns 1r€3*17ns—1,r

r=1 ns_1,=1

+ ZS(V c(As(X) Us) ) + ZS(A x)U,.n

where I" denotes the boundaries of Q and Uy = Vv, () H (X, t5(x)) and U, = Vyy, (x H (X, (%))
are the group velocity vectors along the ray-paths initiated from source s and receiver r, respec-
tively. In order to derive the last two terms in eq. (3.96), we use an integration by part as
reviewed in Appendix A. Considering a Dirichlet boundary condition as \;(x)U, - n = 0 over

I" we obtain
NS NS’ r

(V- Ua==> Y Q4 frsrn,,

r=1 ng, =1

N9+1 Ns+1 r

A Z Z Q"a+1 r §3+1 Mst1,r (3.97)

r=1 ngy1,r=1

Nsle 1,r

ZAS Z Z Qns 1T§s—1,n571m.

r=1 ng_1,=1
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Similarly the adjoint state variable )\, satisfies

T’ N-S’V‘
(V ' (AT Z Z QnsrllfsrnST
s=1 ns =1

Nr+1 NS ,r+1

D Ol DI AT (3.98)

s=1 ngry1=1
Nr 1 Ns’r 1

ZAr D> Qb

s=1 ngr_1=1

We use a conservative finite difference operator * alongside the FSM to solve the linear eqgs (3.97)
and (3.98). The right hand sides are defined at the scatterer positions and solution of these equa-
tions represents a flow directing from the scatterers toward the sources and receivers. In similar
fashion to the isotropic formulation (eqs 3.70 and 3.71) or adjoint first arrival traveltime tomog-
raphy (Taillandier et al., 2009), here we solve a transport like equation but for 2D TTI media
which requires designing a suitable conservative finite difference operator (details in Appendix
B). The role of the right hand side source terms is fully explained in section 3.2.4.

The gradient of the misfit function, or equivalently the gradient of the Lagrangian (3.94),
with respect to the subsurface parameters is the weighted summation of the adjoint fields A\; and
Ar

Vi C = Z As( 8H2>;Zt Z Al aHQ’;:(t ; D 399
Z L QXaEV(t )( x) i A aH(QXéeV(Z)(X))’ (3.100)
Z As( aHzxa;t )( ) TN;)‘T(X) : 812(2252;(){))’ (3.101)
Z M) 2L QXE)Zt Z () 2L 2X69v(t )( x) (3.102)

The gradients of the Hamiltonian H (x, Vi(x)) , for a given traveltime map ¢(x), with respect
to the subsurface parameters can be calculated as follow

OH (x, Vt(x))

o~ 21+ 20(RVEL)" + 20,(RV1).)* = 8ui(e = 0)((RVE),(RV).)",

(3.103)

QR VIX) _ o 0((Rvt),)? — 20 (RVE) (RVE).)2, (3.104)

0e(x)

4. Conservative finite difference operators honour the conservation law.
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0H(x,Vt(x)) 4 ,
“aom) - 2W((RVD(RVE.) (3.105)
O, Vilx) _ 2A(RV1).(R'Vt), + 2C(RVt).(R'Vt).

o (3.106)

+ 2E(RVt),(RVE).. ((R’Vt)x(RVt)z + (RVt)x(R’Vt)Z),

where R’ is the gradient of rotation matrix with respect to 6 and the index (...), and (...),
designate the first and second elements of the related vector. We omit the coordinate dependency
of traveltime maps for the sake of brevity. In section 3.3.4 through a synthetic example, we
illustrate the role of these weights on the shape of gradients and the sensitivity of the gradients
to offset (reflection angle) variations. In Appendix D, we validate the accuracy of calculated
gradients with the adjoint state method against the finite difference approach.

The dominant terms of the weights (3.103)-(3.106) shape the sensitivity kernel of the associ-
ated gradients in eqgs (3.99)-(3.102). For weight (3.103) associated with V,)C in eq. (3.103),
two first terms are dominant and this makes the gradient with respect to v, sensitive to both
vertical and horizontal propagations. In contrast, V) C' is mostly sensitive to the horizontal
paths because the dominant term in the associated weight (3.104) is tied to the horizontal deriva-
tives of traveltimes. For V) C' the highest amplitude for sensitivity kernel is for the oblique
propagations where the single term in the weight (3.105) is maximum.

Remember, in the model space definition, expression (3.81), the subsurface parameters are
defined on the spline nodes and therefore the final step in the gradient calculations is projection
of the calculated gradients on the Cartesian grid, eqs (3.99)-(3.102), to cubic B-spline bases,
c; = cim|M_,|1,. This can be achieved by applying the chain rule of derivatives

V., C=B'V,,C, (3.107)
V.,C =B'V.C, (3.108)
Ve, C =B'V;C, (3.109)
Ve,C =B'VeC, (3.110)

where ”"B” stands for the cubic cardinal B-spline operator (v, = Bcy, € = Bca, § = Bes,
0 = Bcy ) and (- - - )! denotes the adjoint operator.

The gradient with respect to the scatterer coordinates is given by

0xXp, , 2As

57"77'13,7"

v (o1 = temt) + S5 (b1 — tr_1)>. G.111)

(B (b + ) +

Xng,r

Here the term 0Q),, , /0%, is calculated by analytical derivative of windowed sinc function
(Hicks, 2002). As mentioned before one can choose other simpler sampling operators at the
expense of accuracy of the operator gradient. Direct contribution of the traveltime maps of
neighbouring sources and receivers is the result of our finite difference scheme in slope calcu-
lation. The different steps required to compute the gradients are outlined in Algorithm 3.
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Algorithm 5: Gradient algorithm
v, = B¢
e=B8B Co
0=D~B C3
=58 Cy
for s,r =1to Ny, N, do
Compute t4(x), t,(x)
end for
for s,r =1to Ny, N, do
for r,s =1to N7, NI do
for n,, =1to N;" do
Compute Ts,ns,r’ Psng s Pring,r
end for
end for
: end for
: Compute misfit function C'
: for s,r =1to Ng,N, do
Compute \g, A\,
: end for
: Compute V,, C, V.C, V;C, V,C
: Compute V,C'
: Compute V..C|i, = BY(V,,C,V.C,V;C,V,O)

—_ =
e R AR U SRl e

[\ N NS e e e e

Implementation in practice

The implementation of the anisotropic slope tomography is similar to the strategy we ap-
plied in isotropic formulation in section 3.2 which is based on the implementation of classic
stereotomography (Billette et al., 2003). The anisotropic slope tomography includes three main
steps: 1) initialization of the model parameters, 2) localization of the scatterers while subsurface
parameters are fixed to their initial values, 3) multi-scaling joint inversion of the parameters.
Detail of this three-steps procedure can be found in section 3.2.4. We can consider all the sub-
surface parameters as the optimization parameters (those we aim to update) or consider some
of them as the passive parameters and keep them fixed during the inversion. During the third
step, after convergence in each scale we apply the subdivision technique (Virieux and Farra
(1991, their appendix)) to refine the spline grid for the subsurface optimization parameter(s) to
insert shorter wavelength components of the subsurface to the inversion. This mitigates the ill-
posedness of the inverse problem. Algorithm 6 summarizes the anisotropic slope tomography
workflow.

3.3.4 Synthetic examples

In this section we assess the method against two synthetic examples: a circular anomaly in
a homogeneous VTI background and a part of BP TTI salt model (Shah, 2007). For both tests,
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Algorithm 6: Anisotropic adjoint slope tomography workflow. N,,;: number of multi-
scale step; S: B-spline subdivision operator; M¢;,,;: the final updated subsurface opti-
mization parameters on Cartesian grid. For sake of clarity, the model parameters m, the
subsurface optimization parameters on B-spline nodes c°”, the subsurface passive param-
eters on B-spline nodes ¢, the misfit function C' and its gradient VC' are indexed by
the scale step ¢ and the iteration number k. The model parameters consist of scatterer
positions, subsurface passive and optimization parameters.

1: Initialization of scatterer positions (Billette et al., 2003, Their appendix A)

2: Initialize the subsurface optimization parameters on B-spline nodes ¢’ ¢
3: Preliminary re-localization of scatterers in c”* and c”*"

4: for i =1to N,,; do

5: Cg‘zt = SC(])\}[’):tﬂ'*l
6: for k=1to N; do
7: Perform forward modelling for my,_; ;
8: Calculate the cost function — Cj,_1 ;
9: Calculate the gradients for optimization parameters (Algorithm 5) — VCj_; ;
10: call L-BFGS(mk_17i,Ck_17i,VCk_17i)
11: my; = my_i; +Amy_;
12:  end for
13: end for

ms

. _ opt
14: Mfmal =By CN7nS7Ni

we generate the observables with our forward modelling engine where we consider a regular
distribution of the reflection/diffraction points in the true subsurface models. Compared to
datasets generated by picking in the data domain, this artificial dataset provides a more uniform
distribution in depth of the scatterers, and hence a better-controlled subsurface illumination.
In a preliminary stage, our aim here is to mitigate the impact of the picking and the related
illumination issues on the inversion results to focus on the ability of the method to update
multiple subsurface parameter classes associated with anisotropy.

VTI circular anomaly

As a first example we consider a 5 km x 21 km VTI medium which includes a smooth
circular anomaly for v,, € and §. The background model is a constant-gradient model for v,
and is homogeneous for o and € (Fig. 3.22). We define 155 reflection/diffraction points on five
horizontal lines with 200 m and 700 m interval in the horizontal and vertical directions, re-
spectively. Also, there is a line of sources/receivers at 500 m depth with 200 m spacing. Each
reflection/diffraction point is sampled by five source-receiver pairs with offsets 0.8, 1.6, 2.4, 3.2
and 4 km such that the midpoint of the source-receiver is aligned with the reflection/diffraction
point. This results in 755 scatterers (black circles in Fig. 3.22a). Here the goal is to recover
the circular anomaly of v,, € and ¢ starting the inversion from their true background models.
The scatterer initial positions are randomly distributed around the true positions with a maxi-
mum deviation of 400 m (Fig. 3.23a). The forward modelling is perform in a finite-difference
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Figure 3.22 — VTI circular anomaly example. True model for a) v, b) €, and c¢) §. The big
circle in a) represents the velocity anomaly position and small dots are reflection/diffraction
points (the true scatterer positions).

grid with a grid interval of 50 m in both the vertical and horizontal directions. The values for
(o1,,,0p,,0p,) are (1072,1075,107°). In this example we multiply € and 6 by constant scaling
factor 1000 to make their order of magnitudes in the same range as v, and scatterer positions.

a) Distance (km) Distance (km)

4000
2000

Figure 3.23 — VTI circular anomaly example. v, and the scatterer positions after a) Initialization
and b) after Localization step. The initial v, model is the true background.

After the localization step (Fig. 3.23b) the scatterers are positioned nearby their true posi-
tions. This results because we use the true subsurface background models as the initial models.
However, there are some mis-positioned scatterers on the top line because a 4km-offset source
receiver pair leads to pathological scattered paths formed by two diving wave paths that pass
the turning point. This means there is no reflection with offset 4 km from the top line reflec-
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tion/diffraction points and consequently the calculated data for the top line scatterers with this
offset are erroneous. In the current implementation of our method, these scatterers play the
role of noisy scatterers. In the perspective section (section 5.2), we shall discuss about taking
advantage of diving wave propagation by inserting diving wave picks among the observables.
In the framework of classic formulation, Pricux et al. (2013) implemented this extension.

In Fig. 3.24(a) we show the adjoint fields A; and A, at the first iteration of the joint inversion
for a scatterer located at 2.2 km depth and a source-receiver offset of 4 km. The associated
gradients with respect to v,, € and ¢ are shown in Fig. 3.24(b-d), respectively. For the gradient
with respect to v,, (Fig. 3.24b) the sensitivity for both vertical and horizontal propagations is
in a same order of magnitude. Here, the strong vertical sensitivity is due to surface to depth
propagation and source and receiver footprints. For the gradient with respect to e (Fig. 3.24¢)
and ¢ (Fig. 3.24d) the sensitivity is for the horizontal and midrange propagation paths. These
observations are consistent with the explanations of eqs (3.103)-(3.105); the gradients with
respect to subsurface parameters are the weighted adjoint fields and the dominant terms in these
weights shapes the sensitivity kernel associated with each parameter class.

a) Distance (km) Dlstance (km)
0 2 4

Depth (km)

-1.5
-1.0
-0.5

x10'4

Dlstance (km) Distance (km)
2 4

N
N—

Depth (km)

?-H

x10-7 x10-9

Figure 3.24 — VTI circular anomaly example. a) Adjoint fields A; and A, for one 4km-offset
source-receiver pair (s, ) associated with a scatterer x at 2.2 km depth. Gradient with respect
to b) v,, ¢) € and d) ¢ in first iteration. Compared to the a) and b) ¢ panel has amplitudes that
are two order of magnitude smaller.
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Figs 3.25-3.27 show the recovered circular anomaly after 110 iterations of the joint update
of all the model parameters (v,, €,  and scatterer positions). We use the multi-scaling approach
where, during 5 multi-scale steps, spline-node intervals decrease from 250 m to 65 m and from
1000 m to 130 m, in the vertical and horizontal directions, respectively. In order to regularize the
optimization problem we smooth the gradients and apply a hard constraint on the inverted value
of € and ¢ to keep them always positive. The updated parameters reveal the leakage between all
the parameter classes.

Fig. 3.25 presents the inverted v, and scatterer positions where the cross-talk between these
parameters results in a slight mismatches between the true and updated scatterer positions below
the circular anomaly. The upward shifts of these scatterers compensate partially the underesti-
mated v, anomaly. The oblique paths crossing the underestimated v, at the center of anomaly
generate some negative perturbations. Due to the cross-talk between the scatterer positions
and v,, these negative values perturb the scatterer positioning on the left and right side of the
anomaly.

Velocity(m/s) Distance (km)
0 300 5 10 15
0 f —

- 200

£ S
x —_~
z ces=ss e=eeee 100 3
8_ LTS coococces \@
o 0

3004 Ao

1504 - - ) } ................

Velocity(m/s)

5 10 15
Distance(km)

Figure 3.25 — VTI circular anomaly example. Updated v, circular anomaly and scatterer po-
sitions after 170 joint inversion iterations. Diagrams show the direct comparison between true
(red) and updated (blue) values along the lines cross cutting the anomaly.

Fig. 3.26 shows the updated model for e. The shape of € sensitivity kernel (Fig. 3.24c)
leads to a horizontal smearing for the anomaly. Because of the overlap between the sensitivity
kernel of v, and e for horizontal propagation paths (compare the weights in eqs. (3.103) and
(3.104), both include the horizontal derivatives), we can state that the over estimated ¢ above
the anomaly mostly is a compensation for the underestimated velocity. Due to the acquisition,
the overlap between sensitivity kernel of v, and ¢ is more influential (vertical propagation in
this acquisition is dominant), and in result the erroneous 0 values above the anomaly relevantly
are more considerable than those in €.

143



Adjoint slope tomography: Inverse problem

Dlstance (km)

0.3
0.2

m
0.1
0.03

Epsilon
0.03 0.3
0
€
X
=3
a
[0
(@]
5
0.30
c
o
‘»
Qo
w
0.03

10
Distance(km)

15

Figure 3.26 — VTI circular anomaly example. Inverted e circular anomaly after 170 joint in-
version iterations. Diagrams show the direct comparison between true (red) and inverted (blue)
values along the lines cross cutting the anomaly.
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Figure 3.27 — VTI circular anomaly example. Inverted ¢ circular anomaly after 170 joint in-
version iterations. Diagrams show the direct comparison between true (red) and inverted (blue)
values along the lines cross cutting the anomaly.
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As discussed in the explanation of Fig. 3.24(d), ¢ sensitivity kernel mostly influences the
propagations with small polar angles. Compared to the shape of the updated anomaly for ¢, there
is not considerable smearing for the updated ¢ anomaly, Fig.3.27. The overestimated values on
the top and sides are a compensation for the underestimated velocity. Also the mispositioned
scatterers on the shallow part are generating some artefacts on updated ¢.

A hard constraint on the € and ¢, which keep the updated values positive, makes a blind
zone below the updated anomalies where the updated values could be negative. It is worth
mentioning that a portion of updated values for € and ¢ are due to the cross-talk of model
parameters. Both mispositioned scatterers and the underestimated velocity can amplify the
inverted values for € and J. In section 3.4 we shall discuss more in detail the leakage between
different parameters and the possible remedies such as scaling and parametrization. Note that,
these reliable constructions for all the model parameters is achieved for a slope tomographic
data set with only few noisy picks and enough illumination of the subsurface by scatterers with
large-reflection angle, while in real applications (as we shall discuss in chapter 4), presence
of noisy picks and lack of long wavelength propagations can prevent updating the Thomsen’s
parameters.

Sensitivity of the gradients to offset (reflection angle)

In order to illustrate the sensitivity of V, C, V.C and VsC' to offset variations (or here
equivalently the reflection angle), we compare these gradients for different offsets through the
following example.

We consider the VTI example in Fig 3.22 but with a homogeneous background for vertical
velocity, v, = 1500 m/s, and only the circular anomaly of vertical velocity. We consider one
reflection/diffraction point at (z, z) = (10, 2.3) which is sampled by five source-receiver pairs
with offsets 1,2, 4, 6 and 9 km (Fig. 3.28). We calculate the observables by applying our forward
modelling on the true model parameters.

The initial slope tomographic model consists of the true scatterer position and the true back-
ground subsurface parameters (no v, circular anomaly). The absence of the vertical velocity
anomaly generates the two-way traveltime and slopes residuals. After solving the state equa-
tions (3.97) and (3.98), we calculate the gradients through eqs (3.99)-(3.101).

Figs 3.29-3.31 present the gradients with respect to v,, € and 9, respectively, for the five
mentioned source-receiver pair offsets. As expected by the physics of the parameters and the
calculated weights in eqs (3.103)-(3.105), gradients with respect to v, show same range of
sensitivity for all the offsets, while € is responsive only to the long offset propagations (or
wide angle reflection). These demonstrations imply that for updating € parameter we do need
long-offset acquisitions. Parameter o has more sensitivity to the midrange offsets. Note that,
the sensitivity of v, and 0 to offset variations is close to each other and this shows there is a
cross-talk between these parameters for a wide range of offsets.
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Figure 3.28 — Sensitivity of gradients to offset. The true v, model which consists of a homo-
geneous background and an anomaly (the dark half-circle). The scatterer at depth (black facet)
is sampled by five source-receiver pairs with offsets 1,2,4,6 and 9 km. the dashed line desig-
nates the rays sampling the scatterers within the initial model, a homogeneous VTI model with
v, = 1500 m/s, € = 0.03 and 6 = 0.01.

TTI BP salt

As a second synthetic example, we consider the smoothed BP salt model. We build true v,,
e and 0 maps by smoothing the original subsurface models with different Gaussian smoothing
operators. The smoothing length is 250 m for v, and 1000 m for € and 9, respectively. Fig. 3.32
shows the true subsurface models which are 11.2 km x 30 km in size and discretized with a
grid interval of 50 m. We consider 370 reflection/diffraction points with 500 m and 1000 m
horizontal and vertical interval, respectively. Each of these points are sampled by five source-
receiver pairs at the surface with offsets of 1, 3, 5, 8 and 10 km. This builds a dataset with 1850
scatterers with a rather complete coverage of short and long offsets. However, the maximum
reflection angle in the shallow part is larger than in the deep part (compare the schematic ray
paths in Fig. 3.32a). We set our goal retrieving the v, and ¢ models while ¢ and 6 are kept fixed
to their true values. The values for (o7, ,,0p,,0p,) are (1072,107%,107°). In this example we
multiply € with a fixed scaling factor, 4000, to make its order of magnitude same as v, and
scatterer positions.

We initialize the model parameters v, and e with constant-gradient models (Fig. 3.33a-b).
The initial position of the scatterers are random distributions around the true positions with
the maximum offset of 500 m (Fig. 3.33). We prefer to avoid the localization step to have a
better assessment of the method in joint inversion of the scatterer positions, v, and €. We apply
regularization by smoothing the gradients with a Gaussian operator of window length 1000 m
in the horizontal and vertical directions.

During each step of our multi-scaling approach, we first invert jointly for v, and scatterer
positions. After satisfying the convergence criterion (which can be a fixed number of iterations
or a specific convergence rate) we restart the inversion by joint inversion of v,,, € and the scatterer
positions using the final v,, model and scatterer positions from the previous stage as the starting
point for the new inversion. Here the convergence criterion for the joint inversion of v, and
scatterer positions in each scale plays an important role for handling the cross-talk between e
and v,. We stop the joint inversion of the v, and scatterer positions when the update in v, and
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Figure 3.29 — Sensitivity of gradients to offsets. Gradient with respect to v, for different offsets.
Panels show gradient for one scatterer in a homogeneous VTI media for offsets 1,2,4,6 and
9km, respectively from top to bottom.

scatterer positions become small compared to previous iterations. This can be assessed through
the analysis of the convergence rate.

We define three scales such that the vertical and horizontal intervals of spline nodes vary
from 250 m to 70 m. Fig. 3.34 shows final updated models of v,, € and scatterer positions
after 405 iterations within three scales (Fig. 3.35). Diagrams in Figs 3.36 and 3.37 show direct
comparison between the exact and final updated v, and €. The v, model is well reconstructed
up to 8 km depth but in deeper parts lack of long wavelength propagation leads to an erroneous
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Figure 3.30 — Sensitivity of gradients to offsets. Gradient with respect to e for different offsets.
Panels show gradient for one scatterer in a homogeneous VTI media for offsets 1,2,4,6 and
9km, respectively from top to bottom.

reconstruction of v,. This deficiency also affects reconstruction of e (Fig. 3.34b).

The final updated ¢ map (Fig. 3.34b) presents a reliable reconstruction down to 3 km depth.
Here wide reflection angles of shallow scatterers (< 3 km) provide enough illumination for
retrieving €. Moreover, a dense coverage of adjoint fields in the central part makes the updated
e even at deeper part (> 3 km) close to the true values (Fig. 3.37). This shows that without
a priori information, slope tomography can retrieve an acceptable approximation of € when a
wide-aperture illumination is provided by a long-offset acquisition. The cross-talk between the
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Figure 3.31 — Sensitivity of gradients to offsets. Gradient with respect to ¢ for different offsets.
Panels show gradient for one scatterer in a homogeneous VTI media for offsets 1,2,4,6 and
9km, respectively from top to bottom.

Uy, € and scatterer positions is the most influential issue which prevents a better reconstruction of
€. We observe that increasing the density of the reflection/diffraction points for this acquisition
does not improve the resolution and accuracy of the inverted e. This emphasizes the importance
of wide azimuth reflections and diving waves in reconstruction of the ¢ model.

The upward shift for the updated positions below 9 km depth (Fig. 3.34a) is the direct
consequence of v, and € underestimation. However, in the shallow part there are some erroneous
positioning of the scatterers associated with long-offset source-receiver pairs. For offsets greater

149



Adjoint slope tomography: Inverse problem

Distance (km) Distance (km)
10 20

Depth(km)

1500 2000 2500 3000 3500 4000 4500 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Uy (mis) €

Depth(km)

0 0.02 0.04 0.06 0.08 -08 -06 -04 -02 0 02 04 06 08

) 0

Figure 3.32 — TTI BP salt example. a) True models for v,, b) ¢, ¢) § and d) tilt angle. The
black circles in a) designate the true position for 370 reflection points. Each reflection point is
sampled with five source-receiver pairs with offsets 1, 3, 5, 8 and 10km.
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Figure 3.33 — TTI BP salt example. Initial models for a) v, and b) €. The black circles on a)
represents the random initial scatterer positions.

than 8 km we observe propagation of diving waves (Fig.3.38). This implies that the observables
built by our forward modelling engine for shallow scatterers (and with large reflection angle)
are erroneous. These scatterers play the role of noise in our synthetic data set.
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Figure 3.34 — TTI BP salt example. Inverted model for a) v, and b) €. The black circles on a)
represent the final inverted scatterer positions.
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Figure 3.35 — TTI BP salt example. Convergence Diagram plotted with a logarithmic scale.
There are 3 scales within 405 iterations. The curves show the misfit function with respect to
iteration number for the traveltime (red), slope at source (blue), slope at the receiver (green),
and total misfit function (black). Summation of the residual curves (red, green and blue) is the
total misfit function.
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Figure 3.36 — TTI BP salt example. Direct comparison between the exact (red) and inverted

(blue) v, by anisotropic slope tomography in Fig. 3.34(a). The green line designates the initial
velocity model.
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Figure 3.37 — TTI BP salt example. Direct comparison between the exact (red) and inverted

(blue) e by anisotropic slope tomography in Fig. 3.34(b). The green line designates the initial €
model.
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Figure 3.38 — TTI BP salt example. Isotropic ray tracing for true BP v, model. There is two
sources at the surface (black squares). Diving waves are generated for offsets > 7 — 8 km.
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3.4 On the footprint of parameter cross-talk and parametriza-
tion

3.4.1 Assessment of parameter cross-talk

To gain more quantitative insight on the parameter cross-talk between different parameter
classes we design the following tests. We consider a similar true model as the VTI circular
anomaly example (Fig. 3.22, section 3.3.4) but without circular anomaly inclusion for € and 9.
The non-zero value for € and ¢ in background keeps our tests in the framework of VTI media.
The inversion goal shall be the reconstruction of the v, anomaly. The anisotropic parameters
(¢,0) and scatterer positions (X,.) are initialized by their true values and initial v, model is
the true constant-gradient background (v, model in Fig. 3.23a). We perform several inversion
schemes which differ in frozen model parameters (namely passive parameters) and unfrozen
model parameters (namely optimization parameters). The passive parameters always are fixed
to their true values. Therefore, for all the following tests v, is always an optimization parameter
and €, 0 and scatterer positions can be a passive or optimization parameter. In order to assess
the inversion solutions, in the following we compare the difference between the final updated
optimization parameter(s) and the associated true background value (perturbation models). The
perturbation model for a passive parameters is zero.

Test series 1: scatterer positions as passive parameter

As a first series of tests, we consider the scatterer positions as passive parameters and fixed
to their true positions while € and  can be a passive or optimization parameter. Fig 3.39(a)
shows the true v,, anomaly (difference between the true velocity model and the constant-gradient
background). Panels of the row (b) are the solution of a mono-parameter (v,,) inversion scheme
where both € and 0 are passive parameters. Inverted v, anomaly (Fig 3.39b1) is nearly identical
to the true one (Fig. 3.39a).

The joint inversion of v, and € reveals a small leakage between these two parameters
(Fig. 3.39c1-c3). Because of this leakage, we observe some smearing for the anomaly in the ver-
tical direction, as well as underestimation of v,, at the central part of the anomaly. The smearing,
which generates overestimated v,, outside the inclusion, is a compensation for underestimated
v, in the central part. This underestimated values are generated by adjoint ray tubes sampling
the erroneous inverted € at the center.

The joint inversion of v, and 9, while € is a passive parameter, generates some artefact
on the inverted 0 model ( Fig. 3.39d1-d3). Comparison with the previous inversion for v,-¢
(Fig. 3.39c1-c3) emphasizes that leakage between the optimization parameter d-v, is more sig-
nificant than for v,-e. Again, here the inverted v, anomaly is smeared and the updated values at
the center of anomaly are underestimated (Fig. 3.39d1). This underestimation is more notice-
able than the previous test in Fig. 3.39(c1). This is mostly because of the erroneous inverted
map and cross-talk between optimization parameters. Due to the shape of § sensitivity kernel,
which is more responsive to the mid-range propagations, the smearing of the v,, anomaly in the
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vertical direction is more significant than during the epsilon update (Fig. 3.39c1). Compared
to the joint inversion of v, and e (Fig. 3.39c1-c3), here the smearing is generated by narrower
reflection angles and this results in a slight difference between the shape of the inverted v,
anomaly in two tests.

Fig. 3.39(el-e3) shows the perturbation models after joint inversion of v,, e and 0 (three
optimization parameters). Here, the error for inverted v, anomaly is larger than two previous
joint inversions of in Fig. 3.39(c1) and Fig. 3.39(d1). In addition to leakages between v,,-0 and
v,-€, the cross-talk between € and ¢ also takes part in the underestimation of v, at the center of
anomaly. Smearing and the amplitude of the artefacts in the updated ¢ and € are more significant
than two previous tests (compare second and third column of rows (e), (d) and (c) in Fig. 3.39).
In order to understand better the source of these artefacts we plot in Figs. 3.40(a-c) the gradient
w.r.t v, € and 0 at the first iteration of this joint inversion. Here the gradient with respect to v,
(Fig. 3.40a) has sensitivity to the both vertical and horizontal propagations while the gradient
map of e (Fig. 3.40b) is only sensitive to wide angle reflections. The gradient with respect to
0 (Fig. 3.40c¢) includes high amplitudes for the midrange reflection angles. These patterns for
the gradients coincide with the smearing in v, anomaly and the artefacts on the updated € and §
maps.

Test series 2: scatterer positions as optimization parameter

As a second series of tests, we consider the same configuration in the previous tests but
here scatterer positions are always optimization parameters and they are initialized with the true
positions.

Fig. 3.41 includes solutions of different inversion schemes. Compared with Fig. 3.39, there
are two extra columns in the right, column 4 and 5, which present the perturbation of updated
scatterer positions from their true positions in vertical (z) and horizontal (z) directions. The
dots are plotted at the true X and their size and colors indicate the horizontal and vertical per-
turbations of the scatterer positions. These scatterer perturbation maps are all in the same scale,
and note that, each dot represents the superimposition of perturbations from five independent
scatterers sampled by five different offsets.

Fig. 3.41(f1-f5) shows the final perturbation models of v, and X joint inversion where ¢
and 0 are passive parameters. The underestimated velocity at the center of v, anomaly is com-
pensated by mis-positioning of the scatterers in the vertical and horizontal directions. Because
of the acquisition layout and leakage between v, and X.; we observe again a vertical smearing.
For X the horizontal errors are higher than vertical ones. Thanks to the v, gradient (sen-
sitive to both vertical and horizontal propagation), for many scatterers the ambiguity between
z components of X, and v, is resolved well. But for the x components, lack of horizontal
propagations results in erroneous values for the horizontal positioning of X;.

By performing joint inversion of v,, € and X, while ¢ is a passive parameter we observe
some artefacts on the updated e (Fig. 3.41g1-g5). These erroneous e updates are originated pri-
marily from cross-talk between v,-¢ (such as the test in Fig. 3.39c1-c2) and have been further
strengthened by adding new degrees of freedom in the inversion though the update of e-X;.
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Figure 3.39 — Assessment of parameter cross-talks. a) True v, circular anomaly. Difference
maps for updated v, € and J (respectively column one, two and three) for different joint inver-
sion schemes. Here optimization and passive parameters are (passives are in brackets): b1-b3)
Uy [€,0, Xget)s €1-€3) vy, €, [0, Xger), d1-d3) v, 0, [€, Xset] and e1-€3) vy, €, 0, [Xser]-

Compared to the joint inversion of v,- X ( Fig. 3.41f4-15), here the perturbations of the z coor-
dinate of the scatterers are more significant and these vertical perturbations increase with depth
as the wide aperture illumination decreases. This results because adding e to the optimization
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parameters increases the ill posedness and strengthen the error in v,, € and z. During the early
iterations of joint inversion, the missing v, anomaly generates both positive v, and € perturba-
tions as well as an upward shift of the scatterers. The mispositioned scatterers sampled with
wide reflection angles generate strong artefacts in the updated € (such as trails at the bottom left
and right) while if we keep X.; as passive parameters (like the test in Fig.3.39¢1-c3) this error
is far less. The erroneous updated e disables the inversion to recover well the v, anomaly and
consequently perturbs X, in the vertical direction.

Fig. 3.41(h1-h5) shows the perturbation models for joint inversion of v,, § and X, while
€ 1s a passive parameter. Compared to the previous joint inversion scheme for v,, € and X,
(Fig. 3.41g1-g5), here estimation of v, at the center of anomaly is slightly closer to the true
values and this can be the result of less perturbation in the vertical positioning of X,.. During
the inversion when the scatterers are perturbed upward to compensate absence of v, anomaly,
the sensitivity kernels of 4 and v, are both boosted at the anomaly region. Because of overlap
between sensitivity pattern for v, and ¢, the underestimated v, mostly emerges as artefacts
on ¢ map rather than perturbation of X,.,. Compared with the joint inversion of v,, €, and
Xt (Fig. 3.41), this results in less perturbation in z component of X, and consequently less
smearing for the v, anomaly. The horizontal smearing in v, is balanced by higher errors in z
component of scatterer positions.

Fig. 3.41(i1-15) shows the perturbation models for joint inversion of all the parameters v,, e,
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Figure 3.41 — Assessment of parameter cross-talks. Difference maps for updated v,, €, d, z and = components of X, (respectively
from first to fifth column) for different joint inversion schemes. Here optimization and passive parameters are (passives are in brackets):
%ﬂ:ﬁMv Vy, Nmm?TV mm_, WH|NMV Uy, Nmn? €, —&w WH:FMV Uy, Nmn? mmv T_ and mMLMV Uy, Nmn? €, 0.

158



Adjoint slope tomography: Inverse problem

0 and X,. The updated v, anomaly presents the same pattern of smearing and underestimation
as previous testes. Compared to the joint inversion of v,-e- X, (Fig. 3.41g1-g5), the € artefacts
are less strong. These artefacts and the mis-positioning of the scatterers generate smaller data
residuals for the deep scatterers with wide reflection angles and this reduces the amplitude of
the oblique adjoint ray tubes passing the anomaly. Here during the early iterations of the joint
inversion, emergence of a strong ¢ and e artefacts makes underestimation and smearing of the
v, anomaly stronger than other tests. The perturbed z components are mostly relates to the
scatterers sampled by narrow reflection angles where estimated v, and ¢ play a major role in
accurate scatterer positioning.

Test 3: offset range and multi-scaling effect

There are two other issues worth discussing here: first, what is the effect of increasing
reflection angles (offset) on the leakage patterns? and second, does the multi-scaling approach
mitigate the cross-talk between parameters or non-uniqueness solution of the inversion? To
answer these questions we perform the following tests.

Consider joint inversion of all the parameters, i.e. v,, €, 0 and X, where each reflection
point is sampled by five offsets 0.8,1.6,2.4,3.2 and 4 km (same as test 2 in Fig 3.42i1-i5).
We perform joint inversion of all the parameters for two new offset ranges: a shorter range
(0.4,0.8,1.2,1.6 and 2 km) and a longer range ( 1.2,2.4,3.6,4.8 and 6 km). Fig 3.42 shows
the final perturbation models for these offset ranges. The larger offset range (Fig 3.42ml-
m5) boosts the sensitivity of € and in result the artefact on the € map are stronger compared
to the shorter offset ranges (Fig 3.42i2 and n2). Larger offsets increases the illumination of
the subsurface along subhorizontal wave paths and this resolves better the ambiguity between
the horizontal positioning of scatterers and subsurface parameters (compare Fig 3.42m5, 15
and n5). Since the vertical positioning of the scatterers is influenced by both v, and ¢ and
there is a strong cross-talk between these two parameters, modifying the offset range does not
impact significantly the vertical positioning of the scatterers (compare Fig 3.42m4, i4 and n4).
Accordingly, modifying the offset range does not also affect significantly the amplitudes of the
0 perturbations. Shorter offset ranges favours the sensitivity of v, in the vertical direction and
considering the mis-positioned z components and cross-talk between v,-9, this leads to more
smearing of v, for the shorter offset ranges. Therefore, improving the illumination helps better
controlling the scatterer positions but tends to increase leakage between subsurface parameters
(in particular v, and €).

As a last test we demonstrate the effect of multi-scaling approach on mitigating the cross-
talk between different parameter classes. In the multi-scaling approach the inversion starts on
a coarse grid of spline nodes for subsurface parameters and during the inversion the number
of nodes are increased, while for mono-scaling approach the inversion is performed on a fixed
Cartesian grid. In Fig. 3.43 we compare the perturbation models from joint inversion of all
parameters in multi-scaling approach (same as test 2 Fig 3.4111-15) and mono-scaling approach
on Cartesian grid (Fig. 3.43p1-p5). The comparison reveals that the  and e perturbations are
stronger in the mono-scaling approach than in the multi-scaling one (compare Fig. 3.43i2-i3
and p2-p3). This is correlated with smaller perturbations of both the vertical and horizontal

159



Adjoint slope tomography: Inverse problem

7 Distance (km) 13

N

w

Depth(km)

N

c:oo

-50 150 350 0
Uy (m/s)

0.05 0.1 0 0.05 0.1 25 50 0 25 50
€ o) z deviation (m) x deviation (m)

Figure 3.42 — Assessment of parameter cross-talks. Offset range effect. Difference maps for updated v,, €, §, z and = components
of X (respectively from first to fifth column) for joint inversion of all the parameters in different offset ranges for scatterers. Offset
ranges are m1-m5) (1.2,2.4,3.6,4.8,6) km, i1-i5 (0.8,1.6,2.4,3.2,4) km and n1-n5) (0.4,0.8,1.2, 1.6, 2) km. Maps in i1-i5 are same

as Fig. 3.41(11-15).
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positioning of scatterers when multi-scaling is applied. The perturbation of z and x components
of X, in multi-scaling approach is less. The negative perturbations on the left and right sides
of the v, inclusion is stronger when mono-scaling is applied and these contribute in erroneous
0 and € updates as well as the scatterer position. The multi-scaling approach manages to insert
lower wavenumber at lower scales and by adding more nodes during upper scales it retrieves
the high frequencies. During the lower scales, the number of subsurface nodes are less and
this reduces the ill-posedness of the inverse problem and prevents from convergence to a local
minimum. For realistic subsurface models, using a mono-scale approach leads the inversion
toward a local minimum during early iterations.

Therefore, a combination of a proper offset distribution for scatterers and multi-scaling
approach can be the first remedy for the problem of cross-talk between parameters.

3.4.2 Impact of subsurface parametrization upon anisotropic slope to-
mography

In addition to the scaling which can steer the inversion, reparametrization of the model
space is another tool to mitigate the cross-talk between the different parameters and make the
inversion better-conditioned. Each parametrization is a set of independent parameter classes
that fully describe the properties of the subsurface governing wave propagation. The choice
of parametrization in waveform inversion methods is a key issue and is driven by three main
specifications: 1) the trade-off between spatial resolution and parameter cross-talks which can
be assessed by the so-called radiation pattern that control amplitude versus angle variation of
the partial derivative (scattered) wavefield 2) choice of a suitable set of optimization parameters
to prevent over parametrization, and 3) scaling of different parameter classes to improve the
conditioning of the inverse problem. In the framework of FWI there are different studies which
investigate influence of parametrization (Forgues and Lambaré, 1997; Operto et al., 2013; Gho-
lami et al., 2013b; Plessix and Cao, 2011; He and Plessix, 2017; Rusmanugroho et al., 2017).
However, these concerns can be extended to other imaging methods which does not apply a full
waveform modelling, such as anisotropic tomography. In the following we seek to gain pre-
liminary insights on the sensitivity of anisotropic adjoint slope tomography to the subsurface
parametrization.

Parametrization of anisotropic slope tomography primarily relies on different representa-
tion of anisotropy in the medium. Among different set of parameters that describes a VTI
medium are (v,, €,0), (Vnmos Uny 0)s (Vnmos 0, €) and (v, 1, 6). Considering the relations vy, =
VuV 1+ 20, v, = v,0/1 4+ 2eand n = € — 0/1 + 26, these sets fully define the subsurface prop-
erties. We can calculate the gradient of misfit function with respect to these parameter sets
by

awa ) PH eV (0)
As( A ( 112
Z 201 (x Z 20p(x) G.112)

OH (x, Vt 8[—[ (x, Vt,.(x))
2 Opa(x ZA 20py(x)
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Figure 3.43 — Assessment of parameter cross-talks. Multi-scaling effect. Difference maps for updated v,, €, 4, z and x components
of X, (respectively from first to fifth column) for joint inversion of all the parameter in 11-i5) multi-scaling approach and p1-p5)
mono-scaling on Cartesian grid.
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aHth 28Hth())
Vis0C = = > As(x) ZA TR (3.114)

where (p1, pe, p3) stand for the parameters defining the VTT model (similar to eqs (3.99)-(3.101)
for (v,, €,0) parametrization). Here Hamiltonian H is formulated with the same parameters
under question.

It is worth drawing the analogy between radiation pattern in full waveform modelling and
the sensitivity kernels (or gradients) in our formulation. Radiation pattern in FWI is defined by
0B/0m where B stands for the forward modelling and m the model parameters. Here, 0H /Om
builds the spatially-dependent coefficients that weight the sensitivity kernel of the subsurface
parameter update along the scatterer-to-surface propagation paths (eqgs. (3.103)-(3.106)). It is
important to stress that the scatterers in slope tomography do not play the same role as the vir-
tual scattering sources in FWI. In the first case, the scatterers are used as secondary sources
in depth to compute the sensitivity kernel of slope tomography along transmission paths con-
necting the scatterer to the sources and receivers and update the subsurface along these paths
accordingly. In FWI, they are used as the second-order source of the Fréchet derivative wave-
field to compute the parameter update at the scatterer position. In this case, the scattering angle
controls the resolution of the parameter under question. Using the term of "radiation pattern” in
slope tomography is not appropriate since there is no amplitude information here. But, despite
the fact that slope tomography deals only with the kinematic part of the data, there are many
similarities between the radiation patterns of PP transmission waves in FWI (He and Plessix,
2017) and sensitivity to the propagation direction in slope tomography. In fact, slope tomogra-
phy can be viewed as a kinematic equivalent of RWI (reflection waveform inversion) where the
reflector at depth are used as secondary sources to update the velocities along up-going paths
connecting the reflector to the surface.

In this study we do not assess all the possible parametrization for slope tomography. We
only consider (v,m0, s, d) parametrization as a possible, not the best, alternative to (v, €,0)
parametrization. This parametrization can be interesting since it provides a decoupling between
the vertical and horizontal propagation while there is no need to scale two velocities. There are
other widely-used parametrization such as (Um0, 7, 0) (Alkhalifah and Tsvankin, 1995), which
favours application like amplitude-preserving-migration (Kiyashchenko et al., 2004). For this
parametrization again we need scaling of v,,,,, or 7.

With parametrization (vy,,, Us, 0) TTI eikonal equation (3.84) can be written as

H(x, Vit(x)) = A(Vzt(x))* + C(Vzt(x))® + E(Vat(x))*(Vzt(x))* — 1, (3.115)
where
A =v},
U?%mo
“ =+ 20y (3.116)

E :U2 (Uzzmo — U%)
nmo (1 + 25)

The equivalent of these coefficients in (v, €, d) parametrization are A = v2(1 + 2¢), C' = v?
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and £ = —2vl(e — ).

In order to derive the gradients of the misfit function with respect to the parameters (v,,m0, U, 0),
similar to egs. (3.99)-(3.106), we need only to calculate gradient of Hamiltonian (3.115) with
respect to (Vpmo, U, 0) as follow

o E:Z(ZTD = 20 (RVH).)? + (2, — A)(RVOL(RVD.P), G117
) = 20, ((RY1).) = T2 (RV0,(RV).). (3.118)
g = ~ s (R + (= (RVIL(RYDF). G119)

The gradient with respect to tilted angle ¢ is same as eq. (3.106).

In the expression (3.117) the dominant term is linked to the gradient of traveltime in the
vertical direction and this means we expect more sensitivity to vertical propagations for v,,,,,

gradient. But the equivalent of this expression in (v,, €, ) parametrization, i.e. T has two
Uy

dominant terms, associate with gradient of traveltime in the vertical and horizontal directions,
which makes the sensitivity kernels of v, responsive to both vertical and horizontal propagation.

The gradient of the Hamiltonian with respect to v, presents same sensitivity pattern as the
gradient with respect to € in eq. (3.104); the sensitivity is significant along the subhorizontal
paths of the adjoint fields. But, for gradient of the Hamiltonian with respect to ¢ there is a con-
siderable difference between two parametrizations. In (v,, €, d) parametrization the sensitivity
of the § gradient, eq. (3.105), is more along intermediate reflection angles while for (v,,,0, Un, 9)
parametrization this sensitivity is mostly for vertical propagations. This is why, from mathe-
matical and pragmatical point of view, during the inversion for (v,,,, s, ) parametrization
we prefer to keep 0 as a passive parameter to remove the cross-talk between v,,,, and 9. In
Fig. 3.40(d-f) we plot the gradients at first iteration of a joint inversion for v;,,,,, v, and ¢ (the
subsurface model is inferred from the test in Fig. 3.39(el-e3)). These gradients highlight the
difference between the discussed weights for two parametrizations. In Fig. 3.40(f) the white
zone on the ¢ kernel are the clipped values because of the high positive amplitudes. Here, we
use the same scaling factor for 6 which has been used in Fig. 3.40(c). We keep the color-scales
in Fig. 3.40 in a same range to emphasize the difference between two parametrizations. For this
example we observe the relative amplitude of gradient with respect to v,,,, 1s higher than vy,
and the sensitivity pattern for v,,,,, and  are same.

Now we compare the results obtained with (v, vp, ) parametrization with those inferred
from (v,, €, ) parametrization for the example in Fig. 3.41(g1-g5) where § is a passive param-
eter and v,, € and X are the optimization parameters. Here, we consider v,,,,,, vy and X, as
the optimization parameters. We apply the relations v,,,,, = v,V 1 + 20 and v, = v,/1 + 2¢
to convert the true v,, € and 6 models to true v,,,, and v, models. The true v, is a constant-
gradient background with a circular anomaly at the center, and the true models for € and § are
two homogeneous models. This implies the true v,,,,,, and v;, models include a constant-gradient
background and a circular anomaly at the center (Fig. 3.44s1-s2). In the following the pertur-
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bation models for v,,,,, and v, are defined as the difference between final updated and the true
background models for v,,,,,, and vy,.

We initialize v,,,,, and v, by their true background models (i.e. true models without the
circular anomalies) and X with true positions. Fig. 3.45(t1-t5) shows the final perturbation
models of v, Vg, & and X, components for joint inversion in (v,m0, s, 0) parametrization.
The updated v,,,,,, anomaly is underestimated at the center, and because of the acquisition lay-
out and vertical sensitivity of gradient with respect to v,,,,,,, there is a vertical smearing for the
anomaly. The gradient with respect to vy, is sensitive to wide reflection angles and this leads to
smearing of the updated v, anomaly along some oblique adjoint ray tubes (Fig. 3.45t2). But,
lack of scatterers with wide reflection angles results in the underestimation of v;, and horizon-
tal perturbation for X,.. This horizontal mispositioning of the scatterers also contributes in
erroneous vy, updates. On the other hand, enough illumination with vertical propagations well
resolves the ambiguity between v,,,, and vertical positioning. Because of v,,,, and v, de-
coupling in (v,me, Up, §) parametrization, the errors in the updated velocities mostly relates to
cross-talk between the velocities and X ;.

Fig. 3.44(q1-q2) shows the v,,,, and v;, models inferred from the v, and € model and the
background delta of the test in Fig. 3.41(g1-g2) where we performed a joint inversion of v,, €
and X,.. Both parametrizations result in a similar v,,,, anomaly but the updated v;, and X,
are different. The artefact on updated € in (v,, €, §) parametrization (Fig. 3.41g2) generates an
overestimated vy, at the centrer of anomaly (Fig. 3.44q2) and some artefacts at the deep part.

We also compare the updated € and v, in both parametrizations. We apply the relations
Unmo = UpV 1+ 20 and v, = wv,v/1 + 2¢ to derive v, and € from the updated v,,,,, and vy,
in (Vpmo, Un, d) parametrization (Fig. 3.45z1-z2). Compared to the updated v, in (v,,€,0)
parametrization, the calculated v,, anomaly from v,,,,,, is a closer estimation of the true anomaly.
However, the calculated € from the updated v, and v, in (Vpmo, Un, d) parametrization results
in some negative values for € (Fig. 3.41z2, here negative values are clipped).

Therefore we can conclude, for a suitable parametrization one should consider two issues:
1) the acquisition layout, and 2) the requested parameters. When we need estimation of v,,,,,, in
areflection data set with short azimuth acquisition, a parametrization which is more sensitive to
the short-offset reflections, like (vm0, Un, 0) is favourable. However, this parametrization is in-
appropriate if e model is requested as the final imaging product. Here, v,,,,,, and v;, have mostly
a vertical and horizontal sensitivity, respectively. This results in a poor estimation of e through
€ = ((Vn/Vnmo)*(1 + 20) — 1)/2. In other words, we use two quantities (Um0, v4) Without
any overlap on their sensitivity kernels to extract another parameter (this is another reason for
poor reconstruction in Fig. 3.41g2). Concerning this issue, (v,m0, 7, 0) parametrization can be
reliable in € reconstruction because v,,,,, has a full aperture sensitivity.

3.4.3 Conclusion
We extend the adjoint slope tomography to anisotropy through a factored TTI eikonal solver
in forward modelling and a matrix-free inversion scheme based on the adjoint state method. The

eikonal solver provides a uniform sampled traveltime map where there is no shadow zone while

165



Adjoint slope tomography: Inverse problem

N

Depth(km)
w

IS

0
0
)

-50 150 350  -50 150 350 0 0.05 0.1 0 5 0
Unmo(m/s) vy (/) ) z deviation (m) x deviation (m)

Figure 3.44 — Parametrization test. True circular anomalies of s1) v,,,,, and s2) v, for the example in Fig. 3.41(gl-g5). Difference
maps for updated v,,,0, U, 9, z and = components of X, (respectively form first to fifth column) in joint inversion for parametrization

4 o~ [ c\ 1 .14 . r~\ [/ c\ T 1 1 I'nd

166



Adjoint slope tomography: Inverse problem

"¢ st 1910wered Arssed A[uo ay $1s9) y1oq Jog (¢ ‘Ua ota) (
Y)Y 03 )81y wioj AaAandadsar) #¢y jo sjuouodwod = pue z ‘¢ 2 ““a pajepdn J0j sdewr d0udropi(q 19} uonezindwered — Sp°c NS

(w) uoneinsp x

(w) uoneinsp z

¢ 2‘*) (63-13 uoneziowered 10J uorsioAur julof ur (UwN[od

3 (s/w) ag

(wx)yrdag

N

€l (w»)souessig

167



Adjoint slope tomography: Inverse problem

the implemented factorization method efficiently removes singularity of the point source. In-
stead of ascending regime for wave propagation in classic formulation, we solve the eikonal
equation from source and receiver positions. By considering the reciprocity rule, we propose
to calculate the slopes at source and receiver positions by applying a finite difference operator
on traveltime maps from neighbouring sources and receivers of the source and receiver under
question. This leads to a computational cost which depends on the number of sources and
receivers rather than scatterer numbers. In this framework the model space includes the subsur-
face parameters (i.e. vertical velocity and anisotropy parameters) and scatterer positions, and
the observables are scatterers two-way traveltimes and slopes at the source and receiver posi-
tions. We apply the L-BFGS algorithm in our multi-scaling inversion scheme to inexpensively
exploit the Hessian information and mitigate the leakage between different parameter classes.
However, scaling of parameters is crucial in avoiding convergence toward a local minimum.
Through a realistic example, TTI BP salt model, we show that a dense and wide azimuth acqui-
sition provide enough illumination for vertical velocity and epsilon reconstruction. The future
extensions of this method include applying some regularization terms in the misfit function to
reduce the leakage between parameters, updating jointly the transmission and reflection arrivals,
and investigating other parametrizations like Voigt parameterization.
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Chapter 4

Real data application

Chapter overview: In this chapter we present application of anisotropic slope tomography to a
real data set. The seismic data is a 2D towed-streamer dataset from north-west of Australia and
was provided by CGG. The picking procedure is performed by CGG in common image gathers
and observables are deduced in the data domain by kinematic demigration. In the following,
we first discuss about the provided data and picks, and since our method is based on picks in
the unmigrated data domain (two-way traveltimes and slopes at source and receiver positions),
we present an approach to transform the picks from migrated domain to data domain. Then, we
compare the CGG velocity model with velocity model inferred from anisotropic slope tomog-
raphy where the Thomsen’s parameters d and € have been used in a passive way. As a quality
control of our results we perform VTI reverse time migration with the CGG and our velocity
models to assess the flatness of the common image gathers and focus of energy on final mi-
grated image.

4.1 2D BroadSeis data

The 2D towed-streamer real data set is provided by CGG and acquired in the north-west of
Australian continent (Fig. 4.1), Carnarvon Basin. The region under exploration includes several
gas reservoirs at depths greater than 3 km in Triassic Mungaroo formation. This interval consists
of the fluvial sandstones and non-marine brackish siltstone. The discovered gas accumulations
in the Mungaroo formation are both in fluvial section and the marine-reservoirs and the deeper
Locker Shale is interpreted as the source rock. On the top of the Mungaroo formation there
are Brigadier formation and the Murat siltstone which include several rotated horst and graben
structures due to the continental break up of the North Western Australian margin. These horst
blocks form the hydrocarbon traps (Wellington, 2016). There are many reports which explain
geology and exploration history in this basin. For a complete list of these publications the reader
is referred to the Australian government-Geoscience Australia website (http://www.ga.gov.au/).
A discussion on the geological interpretation of the imaging results is out of the scope of our
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Real data application

study, that will focus on the methodological aspects of the slope tomography (inversion set-up
and quality control of the results from the imaging perspective).

The acquisition line length is approximately 57 km and there are three wells nearby the line
(Fig. 4.1) which only include the P-wave velocity information. This acquisition consists of 2479
shots and a streamer of 8250 m length. The source and hydrophone intervals are ~ 25 and 12.5
m, respectively, and the sources are at 5 m depth while the depth of hydrophones varies from 8
m to 57.5 m (BroadSeis technology). Compared to the conventional flat streamer acquisition,
the BroadSeis data (Fig. 4.2) includes a broader frequency bandwidth, 2.5 — 155 Hz (Fig. 4.4),
and a higher signal to noise ratio for deep targets provided by the recording of low frequencies.
Moreover, the curved shape of the streamer helps to remove more efficiently the receiver ghosts
(http://www.cgg.com/).

In addition to the picks, CGG provided us the processed data for migration (Fig. 4.3) where
the maximum offset is 7.2 km, the multiples are eliminated and the first arrival muted. During
this processing the low frequencies (< 2.5 Hz) are boosted and some notches from frequency
spectrum are removed (Fig. 4.4). The other provided information by CGG are the well logs
(only include P-wave velocity), water depth which varies from 100 m to more than 1.2 km, and
a 2D TTI model updated by non-linear slope tomography (Fig. 4.5).

4.2 Adjoint slope tomography in practice

Our formulation for the adjoint slope tomography is based on picks in the unmigrated data
domain (two-way traveltimes and slopes at source and receiver positions) where we have di-
rectly access to the kinematic information and for each source-receiver pair there are several
picks. But, the provided picks by CGG are from depth migrated domain and therefore we need
some considerations before inserting them to our algorithm. In the following, we briefly review
the advantages and disadvantages of depth-migrated domain picking. Then, we explain how we
deal with these picks and finally we discuss some practical aspects and solution of adjoint slope
tomography for the real data.

4.2.1 Picks from depth-migrated domain

Formulation of the classic slope tomography and also our method is based on picking of
local coherent events in a pre-stack unmigrated domain. The main problems of picking in this
domain are the low signal to noise ratio of the coherent events and lack of control on the distri-
bution of the picks in depth (Lambaré, 2008; Chauris et al., 2002a; Billette et al., 2003; Lambaré
et al.,, 2004). These deficiencies result in erroneous picks, uneven subsurface illumination by
scatterers, and consequently poor reconstruction for subsurface parameters. Among the alter-
native picking approaches there are picking in depth-migrated domain (Chauris et al., 2002a;
Nguyen et al., 2008), picking in pre-stack time migrated (PreSTM) domain (LLambaré et al.,
2007) and picking in post-stack time domain (Neckludov et al., 2006; Lavaud et al., 2004).

Pre-stack depth migrated (PreSDM) domain (Fig. 4.6) is the most natural domain for ve-
locity model building (LLambaré, 2008). Thanks to the focused energy on CIGs (Fig. 4.7),
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Figure 4.1 — Location of 2D BroadSeis data from north-west of Australia continent, Carnarvon
basin. Length of the line is around 60 km.
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Figure 4.2 — Raw common-shot gathers after applying automatic gain control: shot number
1200 and 2400. Maximum offset is 8.2 km.
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Figure 4.3 — Common-shot gathers after preprocessing and automatic gain control: shot number
1200 and 2400. Maximum offset is 7.2 km.

picking local coherent events in CIGs provides more reliable information and denser sampling
of medium with a control on the pick distributions in depth. In pre-stack depth migrated cube,
the local coherent events are characterized with their positions (distance and depth), offset, and
slopes on common migrated offset gather and common image gather (Fig. 4.7) (Chauris et al.,
2002a). The slope in the common-offset domain represents the structural dip and the slope in
the common image gather is the residual move out. Chauris et al. (2002a,b) demonstrated the
direct link between local coherent events in the depth-migrated and unmigrated time domains.
Through demigration and migration one can extract the coherent event attributes in each of
these domains from the other. Demigration can be defined as the inverse of the migration pro-
cess where the reflection energy is back traced to the recording domain (time-offset domain)
(Santos et al., 2000). Therefore, as long as the subsurface parameters for migration and demi-
gration process are same, by applying demigration on the depth-migrated domain picks we can
retrieve the kinematic invariants (i.e. two-way traveltimes and slopes at the source and receiver
positions) (Guillaume et al., 2008).

In an ideal setting (e.g. a homogeneous medium without noise) demigration exactly retrieves
the observed kinematic in the seismic records. However, in real application due to the demigra-
tion/migration artefacts, noise and picking errors, perfect retrieval of the kinematic information,
in particular the source and receiver positions, is difficult. Therefore, the calculated kinematic
invariants from depth migrated picks can be contaminated with errors. Moreover, since in the
migration process the ties between arrival energies and their associated source-receiver is lost,
the retrieved positions for the sources and receives for each pick can differ from the true source
and receiver positions.
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Figure 4.4 — Frequency bandwidth for shot 1200. Red designates the bandwidth for raw
common-shot gathers (Fig. 4.2) and blue for processed one (Fig. 4.3).

As an alternative to demigration, Nguyen et al. (2008) proposed deriving the kinematic in-
variants for picks in depth migrated domain through the migration of attributes. Compared to
demigration, they showed migration of attributes results in a less erroneous kinematic invari-
ants. As another picking method, (Lambaré et al., 2007) introduced picking in pre-stack time
migrated domain where the demigration procedure is easier than pre-stack depth migration do-
main and there is no compromise on available kinematics.

4.2.2 Dealing with kinematic invariant from demigration

The provided picks by CGG are the output of a semi-automatic picking tool in PreSDM cube
and the kinematic invariants are calculated by demigration. As mentioned above, demigration
dedicates to each picked event a source-receiver pair which does not necessarily coincide with
the source-receiver pair of the real acquisition. Therefore, the retrieved source and receiver
positions are not regularly distributed (Fig. 4.8). Moreover, picks that should have been assigned
to a single source-receiver pair are now associated to specific source-receiver pairs. This issue
is not a problem for classic stereotomography, but it reduces dramatically the performance of
our algorithm. A part of our method efficiency is related to the number of required forward
modelling which is equal to N, + N, where N, and /N, stand for the number of distinct shot
and receiver gathers, respectively. In our approach we suppose for each source-receiver pair
there are more than one pick (which in the framework of picking in pre-stack time domain is
totally natural) and in results the number of specific sources-receivers is far less than total picks.
Therefore, the provided PreSDM picks, which implies the number of specific source-receiver
pairs is in the same range of picks number, makes application of our method costly.

In order to cope with this problem, we design an aggregation scheme for which we define a
hypothetical regular distribution of sources and receivers. In Fig. 4.8 we schematically present
the retrieved sources and receivers by demigration which do not respect any regular acquisition
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Figure 4.5 — 2D TTI model by CGG: a) v,, b) €, ¢) § and d) 6. The black line segments are the
covered depth by the wells. The white dashed line designates the seabed.

layout. We consider a maximum value for deviation from the hypothetical sources and receivers,
and then we explore the whole set of picks to identify those whose associated source-receiver
pair has a distance less than the maximum deviation from a hypothetical source-receiver pair.
These source-receiver pairs on the hypothetical acquisition are the new positions for the defined
sources and receivers by demigration. Density of this virtual acquisition defines the number of
picks we choose from all the PreSDM picks.

The total number of picked events by CGG is more than 2, 000, 000. Here in our aggrega-
tion scheme, we define a regular distribution of sources/receivers with 100 m interval, and we
choose the maximum deviation from hypothetical sources and receiver of 5 m. We do think this
deviation in the source and receiver positions is negligible at the scale of tomographic methods.
Consequently, there is around 550 unique positions for the sources and receivers. This scheme
results in more than 50, 000 picked event which it is approximately 2.5% of all the provided
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Figure 4.8 — Schematic sketch of source-receiver positioning by demigration. Within an ag-
gregation scheme on the retrieved sources and receivers by demigration, we cluster some of
them (green e) to a close source or receiver (red Bl and ) position on a regular distribution of
sources-receivers .

picks by CGG.

Fig. 4.9(a) shows distribution of offsets for all the picks provided by CGG. The maximum
offset is around 7.2 km and picking is performed approximately for every 150 m in the offset
dimension of PreSDM cube for a selected common image point. The histogram in Fig. 4.9(a)
is skewed left where over 51% of the picks have less than 1 km offset, 25% have an offset
between 1 and 2 km, 14% with offset between 2 and 3 km and only 10% include offsets more
than 3 km. Lack of picks from long offset reflections makes the reconstruction of epsilon
challenging and because of that here we only try to invert for the vertical velocity. Through
our aggregation scheme the distribution of selected picks is less skewed left (Fig. 4.9b) but we
lose some offsets (because of the offset interval of the original picks). A hierarchical inversion
which prioritises the contribution of picks according to their offsets is a tool to manage more
efficiently different offset ranges (Prieux et al., 2013; Billette, 1998). In this study we do not
consider any hierarchical inversion and we directly use the selected picks by our aggregation
scheme (Fig. 4.9b).

4.2.3 Implementation and solution of the adjoint slope tomography

As mentioned before, the inversion includes three steps: initialization of the scatterers and
subsurface models, localization and finally joint inversion of model parameters in a multi-scale
scheme. Here, we aim to update v, and scatterer positions while during inversion ¢, d and 6 are
fixed to CGG models (Fig. 4.5b-d). Here, the covariance matrix is defined by (o, 0, 0pr) =
(5 x 1073,1075,1075). In order to regularize the inversion, we apply a Gaussian smoothing
filter on gradient with respect to v, with a window length of 500 m in both directions.
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Figure 4.9 - Distribution of picks (scatterers) with respect to their source-receiver pair offsets
for a) all the picks from CGG and b) selected picks by our aggregation approach.

In order to define the initial position for each scatterer, we consider two rays initiated from
associated source and receiver such that they honour the observed slopes. By considering ho-
mogeneous background model, these rays are two straight lines whose total traveltime should
be the picked two-way traveltime. The intersection point of these rays defines the initial position
for the scatterer (details are in Appendix of Billette et al. (2003)). This implies that the initial
positions only depend on the observables and they are independent of the initial v, model that
we shall define. This initialization approach in case of complex geological structure for subsur-
face can not propose a reliable initial positions for all the scatterers. For example, if a scatterer
has observed source and receiver slopes of the same sign, this approach will not find any in-
tersection between the two straight rays. But, this issue seems less important for this dataset
in which there are not sharp dipping reflectors. Although, picking in depth migrated cube can
provide the initial position of the scatterers, we did not have access to this information.

Fig. 4.10(a) shows the initial positions of the scatterers inferred from the above-mentioned
approach. We consider the scatterers above seabed as noise and remove them from inversion. In
the shallow-right part there is a downward shift for the scatterers. This can be attributed to the
rapid velocity variation in this region while the initialization is based on the ray trajectories in
homogeneous media. Fig. 4.11 schematically illustrate this problem: we define the initial posi-
tion by observable supposing a homogeneous velocity on the background while the true velocity
is increasing with depth. This issue affects less those scatterers on the shallow-left part because
the homogeneous water above them is consistent with the assumption of the initialization.

We initialize the v, by a constant gradient velocity model (Fig. 4.10b), i.e. v = vg+a X Zgps,
where 2, is the depth from the seabed, vy = 1500 and @ = 0.5. The only reason for this choice
is based on the distribution of the scatters after localization step. A background velocity is
favourable in which after localization the scatterers are not pulled/pushed abnormally toward
top/bottom of the model. We choose a velocity-gradient background model because, compared
to a homogeneous background, it mitigates the move of the scatterers toward the top or bottom
of the model after the localization step. We limit the number of iterations in the localization
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Figure 4.10 — BroadSeis data application. Velocity model and scatterer positions after (a) ini-
tialization and (b) localization. White dashed curve shows the seabed.

step to 10 to prevent convergence of the localization step toward a local minimum, which could
result from the inaccuracy of the velocity-gradient background model. This stopping criterion
of iteration is estimated by trial and error. Fig. 4.10(b) shows the scatterer positions after local-
ization.

After localization we perform the joint inversion of v, and scatterer positions. We consider
six multi-scale steps with vertical and horizontal spline node intervals decreasing from 670 m
to 80 m and from 2000 m to 60 m, respectively. The total number of L-BFGS iterations is 230
(Fig.4.14). For scales 5 and 6 we use the wells information as a hard constraint to ensure a
correct velocity update at well locations. This constraint restricts the updated values to a range
the width of which is scaled to the distance from the well; the nodes far from the wells are
allowed to vary over a wider range and the nodes which are close to the wells vary within a
narrower range. This constraint is only considered for nodes located at a maximum distance
of 1 km from the wells. If we apply these local constraints in the initial scales the inversion
converges to a local minimum. In first scales, inversion updates low frequencies of subsurface
while wells include the high frequency and local information.

Fig. 4.12(a) and (c) show the final inverted velocity and scatterer positions by anisotropic
slope tomography, respectively. In order to have a more quantitative assessment, in Fig. 4.13
we compare the logs which are extracted every 5 km from our inverted velocity and the CGG
velocity model in Fig. 4.12. Due to lack of illumination near the end of the picked zone, we can
not accurately update the velocity before 5 km and after 50 km distances. Lack of scatterer also
affects the deep part of the model specifically after x = 35 km. The erroneous velocity leads
to an upward shift for the scatterer in these regions (Fig. 4.12c). However, the updated velocity
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Figure 4.11 - Initial position for a scatterer is calculated by the straight rays (black lines) only
based on the observables and this can push/pull the positions far from the true positions where
there is fast varying velocity in the background. Red curve is true ray paths on the true velocity
(schematic presentation).

model in general is close to the CGG velocity model and the low velocity zone at 2 — 3 km is
well recovered. In the following, we compare the CIGs computed by reverse time migration
(RTM) for the CGG and our anisotropic slope tomographic models.

4.3 RTM with slope tomographic model

As a quality control of the tomographic results, we perform a VTI reverse time migration
(RTM) of the BroadSeis data using the initial, CGG and our final slope tomography vertical ve-
locity models presented in Fig. 4.10 and Fig. 4.12(b-a), respectively, while for all the migrations
the Thomsen’s parameters are the provided model by CGG (Fig. 4.5)

Here we use TOYXxDAC-TIME (from SEISCOPE tools) to perform RTM. The goal is to
build the CIGs for the initial, CGG and the slope tomography vertical velocity model and com-
pare the flatness of the reflectors for two velocity models. In order to build the CIGs, we per-
formed several migrations for all the shots such that in each migration only a specific range of
offsets is considered. This results in a series of common-offset migrated images from which it is
easy to extract common-image gathers in the depth-offset domain at arbitrary surface positions.
Here the offset ranges are defined from 0.17 — 5 km with 150 m increment.

Fig. 4.15 presents the calculated CIGs and the migrated section from VTI reverse time mi-
gration with the initial vertical velocity. Non of the reflectors on the CIGs are flat (Fig. 4.15a)
and this means the initial vertical velocity model is far from the correct subsurface velocity. In
result, the migrated section (Fig. 4.15b) includes unfocused reflectors with wrong positioning.
Fig 4.16 shows a collection of CIGs calculated for the slope tomographic (top) and the CGG
vertical velocity models (bottom). Comparison of the calculated CIGs with the initial velocity
model (Fig. 4.15a) and those CIGs with adjoint slope tomography (Fig 4.16a), reveals clearly
the improvements with updated tomographic vertical velocity model. The CIGs for both CGG
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Figure 4.12 — BroadSeis data application. a) Final velocity model obtained by our anisotropic
slope tomography. b) CGG velocity model. ¢) Superimposition of the final updated scatterers
on our final velocity model (a). The white dash line delineates the sea bed.

and slope tomography velocity models represent acceptable and similar flatness for the reflec-
tors. In Fig 4.16 we draw some ellipsoids which highlight some major differences between two
CIG sets. However, both velocity models still need improvement to flatten some reflectors. This
might be a result from the fact that the Thomsen’s parameters have not been updated during the
inversion.

Fig. 4.17 shows the final depth migrated images obtained by stacking the different offset
contributions (0.17 — 7.2 km). In migrated section with slope tomographic velocity (Fig. 4.17a),
after the distances > 48 km and for the deep part with distances < 10 km, the erroneous veloc-
ities shift the reflectors upward. Some of the differences between the two migrated sections are
highlighted by two ellipsoids where we observe more continuous reflectors in the migrated sec-
tion with slope tomographic model. However, because of the repeated deep faulted structures,
the continuity in depth does not necessarily means a more accurate velocity model.
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Figure 4.13 — BroadSeis data application. Direct comparison between the CGG velocity model
(red) and the inverted velocity by anisotropic slope tomography (blue). The green line repre-
sents the initial velocity model.
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Figure 4.16 — BroadSeis data application. CIGs from VTI reverse time migration with the vertical velocity model from a) slope
tomography and b) CGG. The offset range for each CIG is 0.17 — 5. Green ellipsoid highlight some differences between two models.

The green ellipsoids show some improvements and the red ellipsoid a slight deterioration. Here CIGs start from 5 km to 50 km with
the interval of 1 km.
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4.3.1 More picks or not?

Do more picks help to improve the inverted velocity model? To answer this question we
performed some other tests on the provided picks. Selection of the picks within our aggregation
scheme plays an important role in the final updated model. More picks necessarily does not
improve the results. For real data sets, feeding the inversion with more picks can insert more
noise in the inversion. For the cases that we aim to find the best solution by a single run
of code (which is the case for the discussed results), according our experiences, we prefer to
give preference to the selection of the picks rather than their quantity. But, in case of some
consecutive implementations of the algorithm, one can use as many picks as possible and after
converging to a solution, perform depth migration and re-pick the depth migrated cube, then
redo the slope tomographic inversion for the new picks. In our real data set example we did not
try to improve the updated vertical velocity model by using such a technique.

4.4 Conclusion

We present application of anisotropic slope tomography on a 2D offshore data. The picking
is performed in depth migrated domain and the kinematic invariants are extracted by demi-
gration. Since the retrieved source and receiver positions by demigration are not respecting
a regular distribution, we design an aggregation scheme to cluster the them on a hypothetical
regular distribution. Lack of long-offset reflections prevents us from reconstruction of ¢ model,
and we update only vertical velocity. The updated slope tomographic method flattens well the
reflectors on CIGs which we extracted from RTM.
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Chapter 5

Conclusion and perspectives

5.1 General conclusion

I developed the "2D anisotropic adjoint slope tomography" approach as a new framework
for slope tomography based on a reformulation of the classic stereotomography (Billette, 1998;
Billette et al., 2003; Lambaré, 2008). In this method, I replace the ray tracing based forward
modelling engine of the classic formulation with a 2D TTI eikonal solver to obtain a well
sampled first-arrival traveltime map for complex anisotropic media and long-offset acquisitions.
In the inverse problem, I calculate the misfit function gradients through the adjoint state method
establishing a matrix-free framework for the inversion without explicit calculation of the Fréchet
derivative matrix.

Forward modelling: The eikonal equation is solved from the source and receiver positions
(descending propagation regime) which scales the overall computational cost of the method to
the number of distinct sources and receivers rather than scatterers. The strategy to solve the
2D TTI eikonal equation is based on the separation of the elliptic and anelliptic terms in which
resolution of the elliptic eikonal equation is achieved through the fast sweeping method while
the fixed point iterations update the solution of the elliptic eikonal equation using the anelliptic
term as a right-hand side. I also apply a factorization technique which efficiently removes
the singularity at the point source and improves considerably the precision of the solutions.
After resolution of the eikonal equation from the sources and receivers, a sampling operator
extracts the one-way traveltimes at the scatterer positions and build the two-way traveltimes.
In chapter 2 I assessed the accuracy of the proposed eikonal solver for different long-offset
models including the 2D TTI BP-salt model. Compared to the ray based slope tomographic
approaches, application of eikonal solvers in the forward modelling is more costly but we think
the descending propagation regime in our formulation partially compensates the extra cost.

Calculation of slopes at the source and receiver positions is based on the finite difference
approximation. These slopes are calculated from the neighbouring source and receiver trav-
eltime maps. The reciprocity between source-scatterer and receiver scatterer allow the finite
difference operator to sample the traveltime maps at the scatterer positions which are far from
the singular points of the traveltimes maps, i.e. the source and receiver positions. As long as
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there is no caustic in the traveltime maps, this simple and efficient approach results in enough
accurate slopes in smooth isotropic and anisotropic media.

Isotropic inverse problem: As a direct consequence of applying eikonal solvers in the for-
ward modelling, the model space definition in the adjoint slope tomography does not include
the take-off angles as the eikonal solvers consider propagations in all the directions. This leads
to a model space which consists of the scatterer positions and subsurface velocities. Moreover,
because the real source and receiver positions are known and can be implemented in the eikonal
solver, I do not need to consider them among the observables. Therefore, the data space includes
only the two-way traveltimes and the slopes at the sources and receivers. Considering a [s-norm
misfit function between the observables and modelled data, I apply the L-BFGS optimization
method to iteratively update the model parameters while mitigating the leakage between them
by taking into account the Hessian information in a cheap way. Moreover, this approach takes
advantage of a multi-scaling strategy, during which the subsurface velocity model is progres-
sively refined, to handle the ill-posedness of the inverse problem. I use the adjoint state method
to calculate the gradient of the cost function with respect to the model parameters. This re-
quires mainly resolution of two adjoint state equations which back-propagate the traveltime and
slope residuals from the scatterer positions toward the sources and receivers along the adjoint
ray tubes. This leads to two adjoint fields which build the sensitivity kernels of the gradient
with respect to the velocity. Gradient of misfit function with respect to the each scatterer po-
sition is derived by applying the spatial derivative of the sampling operator on the associated
source-receiver pair and their neighbouring traveltime maps. Different examples, including ve-
locity model estimation for the smooth marmousi model, assess the capability of the method in
velocity macro-model building.

Extension to TTI media: Extension of adjoint slope tomography to TTI media involves
considering the anisotropic properties of the subsurface among the model parameters. After
solving the TTI eikonal equation from the sources and receivers, the traveltimes and the slopes
can be achieved in the same way as isotropic formulation. The calculation of the misfit function
gradient with respect to model parameters, again mainly require to determine two adjoint fields.
I showed that, the sensitivity kernel of the subsurface parameters are the weighted summation
of these adjoint fields and the properties of these kernels (such as sensitivity to the horizontal
and vertical propagations) is directly linked to the definition of these weights. In the context
of Thomsen parametrization of the subsurface, I investigate the cross-talk between different
parameter classes. The sensitivity of vertical velocity has a full aperture sensitivity (i.e. sensi-
tivity to the all propagation directions) and § and € are mostly sensitive to the mid-range and
horizontal propagations, respectively. The leakage between the vertical velocity and 0 prevents
a reliable update for joint inversion of both parameters while this leakage between € and ver-
tical velocity is less significant. Updating e requires the long wavelength propagations and in
absence of such an acquisition (and prior information) the ambiguity between the horizontal
positioning of the scatterers and e is not resolvable. The leakage between the vertical velocity
and e can be better controlled if one uses a parametrization which decouples the sensitivity to
the vertical and horizontal propagations. However, the leakage between the scatterer positions
and the subsurface parameters plays a major role in the update of the subsurface parameters and
this should be controlled through regularization of the scatterer positions.
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Through a realistic synthetic example (TTI BP salt model), I showed that the adjoint slope
tomography, for the fixed values of tilted angle and ¢ during the inversion, accurately updates
the vertical velocity and retrieves a close estimation of the true € in the shallow part (where
I defined wide reflection angles for the scatterers). Moreover, a real data application shows
the potential of the proposed method in velocity macro-model building for the real acquisition
settings.

5.2 Perspectives

Here I mention the main perspectives for the future extensions of the adjoint slope tomogra-
phy which are under investigation. Therefore, I only address the key points of these extensions.
The applications and validations of the proposed extensions are among our future work-plans
and publications.

5.2.1 Regularization of the scatterer positions

During the joint inversion of the subsurface parameters in anisotropic adjoint slope tomog-
raphy, the updated parameters are considerably affected by the leakage between the scatterer
positions and subsurface parameters (compare Figs 3.39 and 3.41) and a regularization tech-
nique can be a tool to control these cross-talks. In the context of classic stereotomography,
Costa et al. (2008) proposed the structurally motivated smoothing constraint in the direction
of potential reflectors, and Barbosa et al. (2008) regularized the solutions by minimizing the
heterogeneity and anisotropy of the subsurface and maximizing the diffractor focusing.

Inspired by their suggestion of Barbosa et al. (2008) for maximizing the diffractor focusing,
here I propose regularization of the scatterer positions in the framework of Tikhonov regular-
ization (Tikhonov, 1963) for the picks from pre-stack depth migrated domain.

All the local coherent events associated with a specific reflector in a CIG belong to the same
CIP. Therefore, in adjoint slope tomography the desired inversion solution for the scatterer
positions is the one that all the scatterers with the same CIP are positioned close to each other.
This suggests regularizing the scatterer positions such that those with the same CIP are forced to
coincide. This requires recognizing all the picked event with the same CIP during the picking in
pre-stack depth migrated cube. This provides us with a powerful tool to control the positioning
of the scatterers which are related to the same CIP.

If Tindex the CIP locations with 7 as X;, the position of scatterer n, , associated with ith CIP
can be considered as X; ,,, .. By defining a suitable function, L, which measures the distribution
of the scatterers around their associated CIP, I can rewrite the adjoint slope tomographic misfit
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function (5.13) as
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where [ is the regularization parameter to be set. Since during the picking we do not have
access to the true CIP positions (since the migration velocity is not the true velocity) one can
consider the position of the local event with the shortest-offset as a floating position for the
associated CIP (similar to PreSDM reflection tomography where a floating datum is defined
for the reflectors, section 1.2.1) and define L as the /;-norm distance function (L(X;, xmw) =
(Xi — Xin,,)?) which measures the distance between the floating CIPs and their associated
scatterers. During the inversion this floating CIP positions update and allows for converging
toward the true positions.

This definition of the cost function modifies the expression of gradient with respect to the
scatterer positions as follow

Qn (
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Moreover, the distance between the scatterers and their floating CIP can be a reliable tool to
recognize the noisy scatterers and remove them from the inversion process; one can consider
a threshold for the maximum distance and filter out the scatterers with greater distance than
threshold. However, I should admit that finding the associated CIP for each local coherent is
not straightforward and may arise the debate over interpretative picking and its difficulties.

x’iyns,r

(5.3)

5.2.2 First-arrival adjoint slope tomography

Current developments in seismic acquisitions provides large-offset data sets and recording
refracted waves with large penetration depths. This promotes the idea of joint inversion of re-
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flection and refracted information in seismic imaging techniques (Korenaga et al., 2000; Prieux
et al., 2010; Zhou et al., 2015).

Our proposed slope tomographic approach is based on local coherent events associated with
reflected waves and this can be extended to incorporate also the first-arrival local coherent events
(which may include direct, diving and head waves events) to the inversion. The joint inversion
of first-arrival and reflected local coherent events has been introduced by Prieux et al. (2010)
in the framework of the classic stereotomography to build an initial velocity model for full
waveform inversion. They considered that the first-arrival picks are linked to some scatterers
with large scattering angles (> 130°). This allows them to use the same forward modelling
engine for both reflection and first-arrival traveltime and slope calculations. The refracted waves
may sample those parts of the subsurface with a deficit of reflection picks and compensate
the lack of reflection paths for the subsurface parameter estimations. Moreover, long offset
data with deep penetration for diving waves, provide more horizontal propagation paths for
retrieving € parameter in anisotropic media. Moreover, Gosselet et al. (2003, 2004); Gosselet
and Bégat (2009) introduce the idea of using the slope of transmission arrivals, as well as
their traveltime, for walk-away transmission stereotomography, borehole positioning and joint
inversion of stereotomographic picks and picks form borehole data.

In this section, I develop first-arrival adjoint slope tomography for TTI media in which one
can take advantage of traveltime and slopes of the first-arrivals in shot and receiver gathers to
update the subsurface parameters (Fig. 5.1). The finial goal is to implement this tool in the
anisotropic adjoint slope tomography and perform joint inversion of the first-arrival and the
reflection picks. This extension for adjoint slope tomography is quite interesting because in
the forward modelling by eikonal solvers the first-arrival traveltimes are calculated and there is
no extra calculation in the forward modelling if I want to perform joint inversion of the first-
arrival and reflection picks. I only need to solve some extra adjoint state equations which in the
following I shall discuss them. Here, I only explain the formulation of first-arrival adjoint slope
tomography for 2D TTI media; extension to the joint inversion scheme with reflection picks is
straightforward.

The first arrival traveltime tomography (FATT) based on the eikonal solvers and the adjoint
state method has been fully developed for isotropic and anisotropic media (Taillandier et al.,
2009; Waheed et al., 2016). Here, I extend these methods such that account for both traveltime
and slopes of the local events in the subsurface parameter reconstructions. Compared to the
conventional FATT methods, here the extra constraint from the slopes may mitigate more the
non-linearity of inverse problem.

Model and data space definition

In first-arrival adjoint slope tomography the data space d consists of

Ns
s=1

d = (TS,WpsapT) 7]~sz17 (54)

where T ,., ps and p, are the observed traveltime and slopes at the source and receiver positions
for a pair of local first-arrival event with central source and receiver s and r, respectively. Ny is
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Figure 5.1 — Local coherent events of first-arrival phases in a shot and receiver gather. Here the
labelled events are generated by diving waves. Each local coherent event is characterized with
its central source-receiver (s, ), traveltime (7} ,) and slopes at the source (p,) and receiver (p,)

positions.

the number of distinct shot gathers and N is the number of distinct receivers in the shot gather
s. Note that here for each source-receiver pair there is only one pair of picks and there is no
concept of scatterer in the physics of the wave propagations (Fig. 5.1).

Therefore, the model space includes only the velocity parameters
t
m = ({Ci,m}ﬁ:l%:p) ) (55)

where ¢; ,,, for i = 1 — 4 represent the cubic cardinal B-spline coefficients for the v,, €, and
tilted angle 6, respectively.

Forward modelling

Through a similar approach that I used in the anisotropic slope tomography, I solve the 2D
TTI eikonal equation from the sources and receiver positions

H(X, Vts(x)) =0, (5.6)

ts(xs) =0 (57)
and

H(x,Vt,(x)) =0, (5.8)

tr(xr) =0 5.9
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where ¢,(x) and ¢,(x) are the first-arrival traveltime maps originated from source s and receiver
r, respectively, and H stands for the Hamiltonian representation of 2D TTI eikonal equation
(eq. 3.84). After solving these equations for source s and receiver r, I calculate the first-arrival
traveltime T, for the pair (s, r) through

Ts,r = Qrs (ts) = Q5r (tT’)

1 (5.10)
:§<Qrs (tS) + er (tr‘))a

Here @), and (), are the sampling operators which extract the first-arrival traveltime at rth
receiver of shot gather s, and at sth source of receiver gather r, respectively. The equality (5.10)
is the direct consequence of applying the reciprocity rule between sources and receivers, and
it is written in the form of mean value only for consistency between the formulation in first-
arrival and reflection adjoin slope tomography. In order to calculate the slopes at the source
and receiver positions I use the same approach I applied in the adjoint slope tomography (sec-
tion 3.2.4) but with a slight modification. Considering the reciprocity between the source and
receiver, | use the following finite difference operator to calculate the horizontal component of
the slowness at the source and receiver

Ot (%)

Ds, = “or. ~ Qr, (ts1 —ts_1)/2As, (5.11)
8tr T
Pr, = % ~ Qs (tr41 — tr_1)/2AT. (5.12)

Here As and Ar are the source and receiver intervals, respectively. Since the finite dif-
ference operator is sampling the traveltime maps far from the singular points (i.e. source and
receiver positions) and the subsurface model is smooth, this results in accurate slope calcu-
lations. Here the main difference with the slope estimation in section 3.2.4 is the sampling
operator definition. In adjoint slope tomography the sampling operator samples the traveltime
maps at the scatterer positions while here sampling is directly applied at the source and receiver
positions. Note that, considering the reciprocity between the source and receiver, I can also cal-
culate the slopes at the source and receiver positions directly by applying the finite difference
operator on the t, and t, at the source s and receiver r positions, respectively.
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Figure 5.2 — Slope calculations for the first-arrival local coherent events. The horizontal com-
ponent of the slowness vector at the source and receiver position, (ps,, p..), are calculated using
the traveltime maps emitted from the neighbouring sources and receivers (based on the reci-
procity rule). The source/receiver intervals are Ar and As, respectively. The colors show each
slope is calculated through which neighbouring traveltimes. The arrows on the rays designate
the propagation directions.

Inverse problem

The l5-norm misfit function between the observed and calculated data is as follow

s
S Nl‘

C(m) = ZZ ST - )2

T9T51r1

+ _ZZ ps’l‘ p;)2

psslrl

+ 202 ZZ (pr(m) — p.)?, (5.13)

Pr pr=1 s=1

where O’% , 12) , and a are the elements of the covariance matrix, and the symbol % desig-

nates the observables. The subsurface parameters can be updated iteratively through the L-
BFGS method, similar to the model parameter updating in anisotropic adjoint slope tomogra-
phy (eq. 3.93). I use the adjoint state method to calculate the gradient of the misfit function
with respect to the subsurface parameters. Considering the procedure of gradient calculation in
section 3.3.3 as a guide line, I define the Lagrangian as
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L(m,u,u) = H(u,m)
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(5.14)

Here #(u, m) represent the misfit function, and the Lagrange multipliers or adjoint state vari-
ables and the associated state variables are gathered in vectors @ = (fis,, &5, &rys As, Apr) and
u = (T, Dps,, Pr., ts, t,.), respectively.

Zeroing the gradient of the Lagrangian with respect to the state variables results in the value
of adjoint state variables as follow
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and gradient of the Lagrangian with respect to t is results in
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Zeroing this equation leads to the following state equation
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and in a similar way I derive the state equation which results in the value of A,
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These state equations can be solved through the FSM, the same approach I used to solve the
adjoint equations (3.97)-(3.98). Interpretation of these equation is close to the adjoint slope
tomography; For adjoint files A; and A, the residual of the slopes and the traveltimes are back-
propagated from the receivers and sources toward the s and r positions, respectively. In our
future investigation I shall demonstrate the rule of these residual back-propagations. After cal-
culation of all the adjoint state variables, I can calculate the gradients through the following
expressions and update the subsurface parameters in a similar way as the adjoint slope tomog-
raphy,

Ve C = — é A (x) aHng(t;gx)) - é»( >3H§’g§(§§"”, (5.18)
Ve = — i M (x) aH(Qxézfj)(X)) - i A (%) aH(Qxézi’“)(X)) L (519)
T =~ LA PG S a0 D, 50
Vo C = — i: (%) 8H(2Xéev(f:)(x)) - i A (%) OH(x, Vi, (x)) (5.21)

2 00(x)

Extension to 3D

Chalard et al. (2000, 2002) introduced 3D classic stereotomography where the stereotomo-
graphic data set, theoretically, is build based on the traveltimes and the horizontal components
of the slowness vector at the source and receiver positions in the inline and crossline directions.
However, in many applications the large distance between the shot-lines makes the estimation
of the slope at the source position in the crossline direction imprecise (Lambaré, 2008).

In extension of the adjoint slope tomography to 3D data sets, the first concerns is the cal-
culation cost. For 2D data sets I stated that in our method the extra computational cost due to
solving the eikonal PDE instead of a system of ODEs in ray tracing can be compensated by
more limited number of simulations (N, + NN, versus N,.). But, I can not contend that this rea-
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soning is valid for 3D anisotropic data sets because of the computational cost of 3D version of
our eikonal solver. However, this computational cost is totally affordable and it is not a barrier
to 3D implementation of our method. Our formulation provides a straightforward scheme for
parallel implementation of the algorithm such that I can dedicate each core for calculation of
eikonal equation (or the adjoint state equation) of one source/receiver. For the current version
of our slope tomography code (in Fortran 90) I use the message passing interface (MPI) for
parallelism. This implementation is similar to the adjoint first-arrival traveltime tomography
which Noble et al. (2010) investigated its performance for a 3D application.

However, from computational cost point of view, recent developments in resolution of
eikonal equation (Han et al., 2017) and quartic equation solvers (Flocke, 2015) seems promising
where one can solve the anisotropic eikonal equation while avoiding some iterations over the
whole computational domain.

Parsimonious model space

Another interesting extension to the adjoint slope tomography is moving toward a parsimo-
nious model space in which the scatterer point positions are not among the model parameters.
For classic formulation this has been introduced by Chauris et al. (2002a) and then extended
as non-linear slope tomographic methods Guillaume et al. (2008); Lambaré et al. (2008); Adler
et al. (2008). By formulating the adjoint slope tomography based on the same framework as
Guillaume et al. (2008) one can remove the scatterer position from the model space of adjoint
slope tomography and avoid the leakage between the scatterer positions and the subsurface
parameters. This may mitigate the ill-posedness of the inversion.

Implementation of the truncated Newton method

One can use the truncated Newton method as the optimization approach in the adjoint slope
tomography. Compared to the L-BFGS method, this method provides a better approximation
of inverse Hessian effect and can result in a better estimation of the subsurface parameters.
In this method, one solves a Newton linear system through the matrix-free conjugate gradient
algorithm to find the model update. This requires to consider an external loop for iterative
update of the model parameters and an inner loop for model update calculation (see Métivier
et al., 2013, for the application of truncated Newton method in FWI). Thanks to the better
approximation of the Hessian, the computational cost of the inner loop can be compensated by
a better convergence for the external loop.
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Chapter 6

Appendix

6.1 Appendix A: State equation gradient with respect to trav-
eltime

Here we discuss calculate of the gradient of two last terms in Lagrangian (3.94) with respect
to state variables t, and t,.. We only derive the gradient with respect to t; and the other is similar.

Taking derivative of Lagrangian (3.94) with respect to the state variable t involves calcula-

tion of
O (X)H(x, Vis(x)))a

Ots(x)
For the sake of clarity and brevity we drop the spatial dependency of variables (A, C, E, R, B, ts, \s)
and we use the continues form of inner product. Considering Hamiltonian (3.86),
O(A\s(x)|H (x, Vts(x)))a / 0H (x, Vis(x))
Y
Ots(x) Q Ots(x)
O(RVts)
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dx
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(6.2)
where superscript ¢ denotes the transpose operator By is

By = A(RVt,). + E(RV1,).((RVL,).)?,

By = C(RVL,). + E(RVL,).((RVE,).)2. ©3)

The resulted vector of matricial product BR is the group velocity vector map U, for the waves
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which are propagating from source s. By using the integration by parts ' we can conclude

t t
/)\S(BR).de:/)\Sus-a(Vts) dXZ/Asus.ﬁdx+/v-(Asus)dx.
Q Q T

Ot Ot s o
(6.5)
Here vector 77 is the normal to the boundary I'. Therefore, eq. (6.2) can be summarized as
0 )\s x)|H X, Vts X
olr) 815( %) Cl)la _ 2(V - (As(x) Us))a + 2(As(x) Us.m)rp. (6.6)

Therefore the gradient of the Lagrangian (3.94) with respect to the state variable t, reads
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In a similar way we can calculate the gradient with respect to t,.

6.2 Appendix B: Calculation of state equations (3.97) and
(3.98)

In order to solve the equations (3.97) and (3.98) we use a similar approach used by Leung
and Qian (2006) and Taillandier et al. (2009). Here we solve only the equation (3.97) and the
other can be solved in a similar way.

We rewrite the equation (3.97) as

o) aBN) _

ox 0z ’ 6.8)

%
1. For vectorial filed ¥ and scalar field ¢, the integration by part reads

/gavﬂJr/@-w:/cp?ﬁ, (6.4)
Q Q N

_>
where ) is the domain which in ¢ and W are defined, and I in the boundary of this domain. 7 is the normal to
this boundary.
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where ) is equivalent to the A\; and the a and b are the group velocity in horizontal and vertical
direction, respectively. The right hand side term D stands for the three source terms in the right
hand side of eq. (3.97).

Leung and Qian (2006) considered a computational cell at (x;, z;), while ¢ and j repre-
sent the indexes for conservative discretization of subsurface parameters on a Cartesian grid
(Fig. 6.1). The importance of a conservative finite difference scheme lies in the fact that the
source terms in the right hand side of eqs (3.97) and (3.98) are defined on the grid points and
we need to respect the conservation property of equations (3.97) and (3.98). Therefore, we can
discretize the eq. (6.8) as

! 1A CL-l-A-l-)-i—i(

A:p( i+3.J H-QJ 1—=5,) 71— 5,7

b i 1

.Jj+35

ig+l — biﬁj_%)\m_%) =D. (6.9)
In order to find the value of A on the grid interfaces, A, .1 ; and A; ;. 1, we need to consider the
characteristics propagation. For instance, when a, +1 > 0 the characteristic which determine
the value of A goes from left hand side of the 1nterface to the right hand side and this suggests
the value of A, 1 115 = Aij, otherwise A, 1 115 = Ait1,; (Leung and Qian, 2006). Accordingly, we
can rewrite eq. (6.9) as

1
e Ny tass i) — (el A +az s Aig)
Az it +3 2+ 2 (6.10)
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By using the fast sweeping technique, the algorithm ensures coverage of all the characteristics.
But before that we need to calculate the value of a and b on the interfaces.

Compared to the adjoint first arrival traveltime tomography and isotropic adjoint slope to-
mography, where the group velocity is same as phase velocity, here we face more complex-
ity in calculation of a and b on the interfaces. In the isotopic case, a = V,t and b = V.t
which result in a straightforward calculation of a and b on interfaces: for example, a; 15 =
(Tit1; — T5,;)/ Az, where T; ; is the value of the traveltime map ¢ on grid point (z;, z;) and Az
is the grid interval in x direction.

But for TTI media the horizontal and vertical components of the group velocity depend on
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Figure 6.1 — Cartesian grid is discretized by using the conservative finite difference scheme.

both V.t and V,t. This implies calculation of the J,t on horizontal interfaces and V,t on
vertical interfaces.

Fig. 6.2 represents the finite difference stencils we use to calculate spatial gradient of travel-
time maps on the vertical and horizontal interfaces, I, and [, respectively. These stencils lead
us toward the approximations of V,t and V.t on the horizontal interfaces as

t(Gy) — 1(G3)

V.t = ,
Az (6.13)

o (t(Ge) +t(Gs)) — (t(Ga) + t(G1))

= 4Az ’

and on vertical interfaces as

vt (t(Ge) +t(G3)) — (H(G4) +H(G1))

’ 40w ’ (6.14)
V.t — t(Gs) — t(Ga)

Az '
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Figure 6.2 — The stencils which are used to extract the gradient of traveltimes on the vertical
and horizontal interfaces.
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6.3 Appendix C: Effect of source/receiver intervals on slope
estimation

Our estimation of slopes (horizontal component of the slowness vector) at the source and
receiver positions is based on a finite difference operator which samples the neighbouring trav-
eltime maps of the main source and receiver at the position of scatterers, eqs (3.90)-(3.91). In
order to assess the precision of these estimations, we consider the BP TTI model (Fig. 3.32) with
a regular distribution of sources and receivers on the surface. We choose one source-receiver
pair on the surface at = 7 and x = 10 km, respectively. We calculate the slopes at these
source and receiver position for a scatterers at (z, z) = (15,7) km while the source/receiver
intervals is 50 m. We consider these slope values as the reference values and by increasing the
source intervals and receiver intervals we calculate the deviations of recalculated slopes from
their reference values. Fig. 6.3 shows the absolute errors in percentage for the variation of
source/receiver intervals from 50 m to 500 m. Because of the subsurface model heterogeneities,
the error pattern for slopes at the source and receiver is slightly different but the absolute error
for both slopes even for 500 m interval is negligible. The main reason behind these observation
relates to the smoothness of the subsurface models and consequently the smoothness of trav-
eltime maps, where there is no caustics. As we discussed for the Marmousi example (section
3.2.5), in the presence of complex structures in the subsurface model and caustics in traveltime
maps, our estimation of two-way traveltimes and slopes is erroneous.

0.25

0.2

Absolute error (%)

0 100 200 300 400 500
Source/Receiver interval (m)

Figure 6.3 — Effect of source/receiver intervals on slope estimations. Diagram show the ab-
solute error in percentage for slope estimation at the source/receiver position respect to the
source/receiver intervals for BP TTI model (Fig. 3.32). Blue curve is for a source at x = 10 km
and the red curve for a receiver at + = 7 km. The corresponding scatterer is at (z, z) = (15,7)
km.
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6.4 Appendix D: Gradient validations

In this section, we validate the adjoint state method solution for the calculated gradients
with respect to the subsurface parameters against the finite difference method. We consider the
VTI subsurface models introduced in Fig. 3.22 as the true models. We place a single scatterer at
(x,z) = (10, 2.3) km which is sampled by a source-receiver pair with 4 km offset. The source-
receiver pair are at the depth of 500 m and the observables are built through the our forward
modelling engine. In the following the position of the scatterer is fixed.

In gradient calculation with the finite difference method, we set the model parameter under
question m equal to its true background value my (i.e. the associated true subsurface model
without anomaly), while other subsurface parameters are fixed to their true values. This results
in an initial value for the misfit function, C;. By perturbing the initial model mg with dm, at
each grid point, we calculate the value of misfit function C;(ém). Here ”i” designates the grid
point. Then, we derive the value of misfit function gradient with respect to the parameter m at
each grid point by

om '
Also, we calculate the gradient for this initial model through the adjoint state method. Figs 6.4-
6.6 show the direct comparison between the calculated gradient with finite difference method
and the adjoint state method for the subsurface parameters v,,¢,d. Two solutions are close
together and only at the shallow part because of the singular points for the source and receiver
positions, there are some mismatch between two solutions.

Vi, C = (6.15)

We repeat the previous validation process while the value for the background tilted angle
is 10 degree anti-clockwise. This means the model is TTI. Figs 6.7-6.9 show the gradient
and the direct comparisons between two methods. The non-zero titled angle alters the shape
of the gradients. Here, the sensitivity to the vertical and horizontal propagations should be
defined based on the tilted symmetry axis rotation. For example in this TTI model, the highest
sensitivity of e gradient is for the propagations which are perpendicular to the symmetry axis.
The effect of non zero tilted angle on the gradient of v, is emerged as a small trail on the bottom
of left side adjoint tube (Figs 6.7). The amplitude of € gradient at the bottom of right side adjoint
tube, where the propagation is perpendicular to the symmetry axis, is maximum (Fig. 6.8). On
the other hand, at this region the ¢ gradient is minimum (Fig. 6.9) which implies the sensitivity
to the vertical propagation should be almost zero. For all the gradients in TTI media the solution
of finite difference method and the adjoint state method are close together.
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Figure 6.4 — Gradient validation in a VTI medium. Gradient with respect to v, for one scatterer
(from the example in Fig. 3.22). Diagrams show the direct comparison of finite difference
method and the adjoint state method solutions across the dashed lines. Diagrams are numbered

respectively from top to bottom.
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Figure 6.5 — Gradient validation in a VTT medium. Gradient with respect to € for one scatterer
(from the example in Fig. 3.22). Diagrams show the direct comparison of finite difference
method and the adjoint state method solutions across the dashed lines. Diagrams are numbered
respectively from top to bottom.
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Figure 6.6 — Gradient validation in a VTI medium. Gradient with respect to ¢ for one scatterer
(from the example in Fig. 3.22). Diagrams show the direct comparison of finite difference
method and the adjoint state method solutions across the dashed lines. Diagrams are numbered
respectively from top to bottom.
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Figure 6.7 — Gradient validation in a TTI medium. Gradient with respect to v, for one scatterer
(from the example in Fig. 3.22 with non-zero titled angle). Diagrams show the direct compar-
ison of finite difference method and the adjoint state method solutions across the dashed lines.
Diagrams are numbered respectively from top to bottom.
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Figure 6.8 — Gradient validation in a TTI medium. Gradient with respect to € for one scatterer
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ison of finite difference method and the adjoin state method solutions across the dashed lines.
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