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grandi, une aventure qui nous forme, nous façonne et modifie profondément notre perception
du monde. Ce fleuve, aux eaux parfois paisibles, mais aussi tumultueuses par moment, requiert
toute notre force mais aussi celle de notre entourage. Je n’aurais pas facilement navigué jusqu’à
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que je tiens à remercier ici.

Tout d’abord, je voudrais chaleureusement remercier Romain et Ludovic, mes deux di-
recteurs de thèse. Vous qui m’avez découvert et suivi depuis le master, qui m’avez fait découvrir
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soutien. Merci aussi aux amis de licence, Jonathan Sekkat et William Moraglia. Vous avez
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à planter des géophones par 40 degrés dans du sol dur comme du béton, aux vacances à la
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ce que tu m’as donné.
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Abstract

Full-waveform inversion is a seismic imaging method known to yield high-resolution results
that go towards directly interpretable reconstructed models. Unfortunately, it suffers from
a flaw: the need for accurate initial models to converge toward meaningful reconstruction
of subsurface parameters. This limitation is due to the non-convexity of the least-squares
distance conventionally used as the distance measurement function, which translates into the
cycle-skipping issue that has been documented since the introduction of full-waveform inversion
itself. Thus, finding solutions to improve full-waveform inversion robustness to cycle-skipping
has been the subject of a large number of studies. From all the propositions made to improve
this method, one of the most documented is replacing the classical least-squares norm with
alternative misfit functions.

We first propose a review of multiple propositions of alternative misfit functions. We
explain which principles these methods are based on and illustrate how they are designed
to better handle kinematic mismatch than the least-squares misfit function. A set of carefully
designed synthetic benchmarking tests is then introduced to assess the behavior of a selection of
alternative misfit functions containing two optimal transport-based misfit functions, a wiener
filter based, an instantaneous enveloped based, and finally, a normalized integration based
misfit function. On these several canonical synthetic tests, each formulation is pushed to its
limits, allowing us to establish the pros and cons of each formulation.

This work can also be seen as an attempt to promote a more systematic cross-comparison
of alternative misfit functions on fair benchmarking setups, as we observed that alternative
misfit functions are often proposed on carefully designed synthetic setups that maximize their
benefits. This observation can be related, in our view, to the discrepancy between the number
of alternative formulations made and assessed on synthetic cases in the literature and actual
case studies performed with them on field data.

Finally, after selecting what appears as the most promising candidates - a graph-space
optimal transport-based misfit function - we compare it to the least-squares distance in a
case study based on the three-dimensional ocean bottom cable data from the Valhall field.
The motivation behind using this data set comes from the wide variety of studies already
performed with it. This allows us to work in a relatively controlled framework while facing
field data difficulties. The comparison is first performed starting from a reflection traveltime
tomography initial model used in previous studies. Then, a second comparison is performed
starting from a crude, linearly varying in-depth one-dimensional initial velocity model. This
last setup illustrates the robustness to cycle-skipping obtained through a change of the misfit
function inside the full-waveform inversion formalism. The encouraging and meaningful results
obtained from this case study demonstrate that cycle-skipping robustness of full-waveform
inversion can be drastically improved using the proposed graph-space optimal transport-based
misfit function.
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Résumé

L’inversion de forme d’onde complète est une méthode d’imagerie sismique permettant
d’obtenir des résultats à haute résolution pouvant même parfois être directement interprétés.
Malheureusement, cette méthode souffre d’un défaut : la nécessité d’avoir un modèle initial
suffisamment précis pour assurer la convergence de l’inversion vers une reconstruction réaliste
du sous-sol. Cette limitation est due à la non-convexité de la norme euclidienne qui est tradi-
tionnellement utilisée comme fonction de mesure de distance. Cette non-convexité se traduit
par le problème du saut ou ambiguité de phase, qui a été documenté depuis l’introduction
même de l’inversion de forme d’onde complète. C’est donc naturellement qu’un grand nom-
bre d’études ont été réalisées afin de trouver des solutions pour améliorer la robustesse au
problème du saut de phase. Parmi toutes les propositions faites pour améliorer cette méthode,
une des plus documentées est le remplacement de la fonction de mesure de distance par d’autres
fonctions alternatives.

Nous proposons d’abord une analyse de différentes alternatives pour remplacer la fonction
de mesure de distance traditionnellement utilisée. Les principes fondamentaux sur lesquels sont
basées ces alternatives sont introduits, en association avec une analyse de leurs avantages en
terme de robustesse au saut de phase. Une sélection de certaines de ces fonctions coût alterna-
tives est ensuite testée sur différents tests synthétiques soigneusement conçus pour évaluer leurs
comportements, poussant chacune des différentes formulations dans ses retranchements. Les
avantages et inconvénients de chacune des propositions sont établis grâce à l’analyse effectuée
sur ces différents tests. Une évaluation finale est effectuée afin de définir les formulations les
plus prometteuses pour une application sur données réelles.

Ce travail sur les fonctions coût alternatives s’inscrit dans la continuité d’une observation
que nous avons réalisée : la disparité entre le grand nombre de fonctions coût alternatives
proposées dans la litterature et le nombre reduit d’applications sur données réelles avec de
telles alternatives. En effet, trop souvent les fonctions coût alternatives sont proposées sur des
tests synthétiques soigneusement conçus pour mettre en avant leurs bénéfices de façon “fictive”.
Ce travail prône une comparaison juste et reproductible des fonctions coût alternatives.

Finalement, après avoir sélectionné la fonction coût qui nous paraissait la plus prometteuse –
le transport optimal du graphe – nous la comparons à la norme euclidienne dans une application
sur le jeu de données réelles de fond de mer du champ de Valhall. Le choix de ce jeu de données
est motivé par l’abondante littérature disponible, avec de nombreuses inversions de forme
d’onde complète déjà réalisées. Cela nous permet d’avoir plus de contrôle dans notre analyse.
La comparaison entre les deux fonctions coût est d’abord effectuée en partant du modèle initial
provenant d’une tomographie en réflexion, qui est traditionnellement utilisé avec ces données.
Puis, une deuxième comparaison est effectuée à partir d’un modèle initial mono-dimensionnel
variant linéairement avec la profondeur. Ce deuxième cas sert à illustrer l’amélioration de
la robustesse au saut de phase obtenue grâce au transport optimal du graphe. Les résultats
présentés dans cette étude sont très encourageants et démontrent bien que l’inversion de forme
d’onde complète peut être rendue plus résistante au saut de phase grâce à un changement de
fonction coût.
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General Introduction

Studying the Earth’s interior is a complex task, as only the surface is directly observable.
For a long time, the only information geologists could gather came from surface observations,
where only geological outcrop (visible exposure of bedrock or ancient surface deposits) can be
directly observed. Using these observations and some fundamental principles of geology (uni-
formitarianism, original horizontality, superposition, cross-cutting relationships and Walther’s
law), reconstruction of geological structures has been made possible, such as mountain chain
formation. Adding to these surface observations, the first few meters to kilometers could be
sparsely explored through drilling. This sparse information can help constrain the reconstruc-
tion of subsurface structures made from surface observations. Still, complex areas, or locations
with no outcrop, stayed out of reach, and understanding of such locations remains poor.

To gain knowledge where the eyes cannot see, we rely on one significant branch of physics:
geophysics - the physics of the Earth - a vast domain of study that includes the physics of
space, atmosphere, oceans, and the interior of the planet. Here, we narrow down our focus on
the Earth’s interior, to what the layperson thinks when he eared “geophysics”.

This variety of applications is also related to various geophysical methods that can be
distinguished: seismic, gravity, magnetic, electromagnetic, and electric. All these different
methods would correspond to different observables and are linked to physical properties of the
medium. Generally speaking, the idea is to rely on understanding and interpreting physical
observables that can be measured directly at or near the Earth’s surface. These observables are
influenced by the internal distribution of physical properties of the subsurface. By analyzing
these measurements, the physical properties of the Earth’s interior can be obtained, defining
the subsurface through the prism of some physical properties (be it wave velocities, density,
conductivity...). Then, through rocks physics, rocks or deposits and structures can be retrieved
(Telford et al., 1990).

An overview of seismic imaging

From these geophysical methods, one of the oldest is seismology. It has been at the origin
of major discovery on Earth’s interior structures. Using seismic waves traveling through the
Earth’s structure (Figure 1a), information of the physical properties is gathered along their
travel and can be interpreted (Figure 1b). One of the most famous first descriptions of an
internal structure of the Earth has been made by Mohorovičić in 1909 and is the Mohorovičić
discontinuity, known as Moho for short. The core of the Earth was discovered by Oldham in
1906 and correctly delineated by Gutenberg in 1912 from studying earthquake data.
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Figure 1: (a) Some of the possible ray paths for seismic waves passing through the Earth (from
Fowler et al., 1990). (b) Jeffreys-Bullen (J-B) travel-times curves for an earthquake focus at the
surface. Travel-times are represented as a function of epicentral distance. Each line represents
a given travel path through the Earth’s interior (after Bullen and Bolt, 1985).

The use of seismic waves or mechanical waves presents multiple advantages. First, they are
accurately observable and recorded at the surface of the Earth. Second, they can be generated
from the largest and most powerful events on Earth: earthquakes, and third, they contain one
of the shortest wavelengths of “geophyiscal waves” (Lay and Wallace, 1995), apart from the
electromagnetic waves, which are shorter but also present way shorter penetration depth. This
last point could potentially lead to high-resolution reconstruction.

Inside the family of seismic imaging methods, two main groups can be observed. The
first one relies on earthquakes as wave sources in a field known as emphseismology and is
often referred to as passive seismic tomography. This method has been applied from global
to regional scales and have brought significant insights on the Earth’s interior deep structures
(Aki et al., 1977; Romanowicz, 2003; Fichtner et al., 2009; Bedle and Lee, 2009; Tape et al.,
2010; Panning et al., 2010; French and Romanowicz, 2015; Bozdağ et al., 2016; Lei et al., 2020).

The second one uses active and controlled sources, such as explosions, air guns, vibroseis,
or hammer sources. It also differs by its acquisition geometries and targets, which are at the
local scales, from tens of meters to tens of kilometers, larger-scale applications being limited
by the energy that active sources can generate.
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Going high resolution with full-waveform inversion

Since seismic waves traveling through the Earth have relatively small wavelengths, the idea to
extract the maximum resolution out of them is tempting. In the ’80s, a high-resolution seismic
imaging method with the potential resolution of up to half the propagated wavelength was
proposed by Lailly (1983) and Tarantola (1984a). This method, referred to as full-waveform
inversion (FWI), has been proposed as an attempt to “bridge the gap” between high wavenum-
ber migration imaging principle (Claerbout, 1971) and low wavenumber approach of traveltime
tomography (Aki et al., 1974).

This new method is based on an iterative data fitting procedure that aims at minimizing a
residual between observed seismic data and synthetic seismograms obtained by solving the wave
equation in a first guess model of the target area (known as the starting model or initial model).
Unfortunately, the computational cost required in the early development years, even for modest
2D models, was often problematic for the available computer resources (Gauthier et al., 1986;
Cary and Chapman, 1988; Crase et al., 1990; Jin et al., 1991; Lambaré et al., 1992). Besides,
the datasets available at that time were mainly short offset acquisitions for active seismic,
and good initial models were not often available. This made field data applications of FWI
challenging. In recent years, thanks to the drastic improvement in computational power from
large high-performance computing (HPC) facilities, combined with the availability of large
offset wide angle wide azimuth seismic data, has made FWI an exciting method that yields
high-resolution reconstruction of the subsurface.

This method has been first applied in geophysical exploration, using active sources, with
either onshore (Figure 2a) or offshore acquisition (Figure 2b). The first application has been
mainly performed by the oil & gas industry to precisely characterize the subsurface for resources
exploitation on the scale of kilometers to tens of kilometers (Plessix and Perkins, 2009; Sirgue
et al., 2010; Plessix et al., 2012; Etienne et al., 2012; Warner et al., 2013; Vigh et al., 2014;
Operto et al., 2015; He et al., 2019c; Kamath et al., 2020). In the past years, impressive
results were obtained as HPC facilities get more powerful, unlocking higher frequency inversion
resulting in high-resolution results, as shown in Figure 3. Here, the improvement of resolution
that FWI procures over traveltime tomography or reflection tomography is impressive. By
yielding such high-resolution imaging, FWI starts to be directly interpretable without the need
for migrated images.

Smaller-scale applications also exist, for civil-engineering or archeological targets (Köhn
et al., 2018; Wittkamp et al., 2018; Smith et al., 2019; Irnaka et al., 2020). Again, FWI allows
retrieving a high-resolution model as shown in Figure 4 where a low-velocity anomaly highlights
the shape of fill-in materials used to level to the ground an historical trench.

Alternatively, FWI has been successfully applied to regional or global scales from the past
decade (Bedle and Lee, 2009; Fichtner et al., 2009; Panning et al., 2010; Tape et al., 2010;
French and Romanowicz, 2015; Bozdağ et al., 2016; Górszczyk et al., 2017; Tromp, 2019).
Using active sources at this scale is often unrealistic due to the amount of energy required to
propagate seismic waves over long distances. One can remember the peaceful nuclear explosion
“scientific experiement” realized during the cold war that yield active seismic data at large scale
using nuclear bomb as source (Sultanov et al., 1999; Pavlenkova and Pavlenkova, 2006). As
this could be less acceptable today, using earthquakes or ambient noise as passive sources are
often preferred. However, this requires precise knowledge of the source signature and position,
which can be difficult to obtain from small amplitude earthquakes or if the recording network
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(a) Onshore acquisition (b) Offshore acquisition

Figure 2: Schematic of an onshore and offshore setup in seismic exploration surveys (Energy
Information Australia).

Figure 3: Refraction/reflection FWI results at exploration scale. (a) correspond to the initial
model used to start FWI workflow. (b) final 25 Hz FWI results. From Dickinson et al. (2017).

is not dense enough. Despite this, excellent results are obtained using FWI at global scale, as
shown in Figure 5 with shear-wave-speed reconstruction results on the last GLAD-M25 global
FWI model. This model displays several notable features such as hotspots and subduction
slabs. In recent years, strong development of passive seismic has been made (Stehly et al.,
2006, 2009; Lu et al., 2018, 2020). These methods are based on ambient noise correlations
which use recordings of noise generated by wide spread multiple sources (such as ocean waves,
wind, human activity, micro-seismicity) to retrieve Green’s functions between receivers couples.
These Green’s functions can be translated into “virtual sources” that can be used for FWI.

All of these examples confirm that FWI is now a mature seismic technic that is able, when
it can achieve convergence, to yield breathtaking results that could be interpreted directly or
results in drastically improved migrated images.
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Figure 4: Small scale FWI results at 65 Hz. Here the target is the Ettlingen trench near
Karlsruhe, Germany. The low-velocity anomaly in the center corresponds to fill-in materials
used to level the ancient trench. From Irnaka, 2021.
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Figure 5: Example of global FWI for vertically polarized shear-wave-speed perturbations in
GLAD-M25 at 250 km depth (Lei et al., 2020). Remarkable hotspots are highlighted with
white arrow.

5



INTRODUCTION

Non convexity of full waveform inversion

Still, FWI suffers from a critical flaw in its conventional formulation: the non-convexity of
the least-squares norm used as a distance measurement function. This limitation has been
documented since the beginning of the FWI formalism and results in the so-called cycle-skipping
issue. In a simple way, cycle-skipping occurs when calculated data are shifted by more than half
a period compared to the observed data. This results in a condition to apply FWI: start from
a good enough initial model that predicts the data within half a period. If this requirement
is satisfied, FWI should converge toward the correct solution. If not, FWI suffers from cycle-
skipping and is led toward a local minimum.

Practically, solutions have been proposed to mitigate the cycle-skipping issue, and the vast
majority of FWI applications rely on three preliminary steps to ensure successful results at
exploration scales. The first step is to pick travel time from the data. This is a labor-intensive
task requiring human supervision, which is very time-consuming. From these picked travel
times, the second step is to build an initial model using traveltime tomography. Ideally, the
model should be as high-resolution as possible, for example, using stereotomography methods
(Billette and Lambaré, 1998). The last step is to build a multi-scale workflow for FWI, which
follows a frequency-continuation principle that results in inverting first for the lowest frequencies
available and then progressively introducing higher frequencies.

The requirement for initial models generated by tomography clearly illustrates the famous
“gap” in resolution between tomography and migration. A possible solution would be to make
travel-time tomography methods high-resolution. Unfortunately, getting higher wavenumber
content from traveltime tomography is not an easy task, and the methods suffer from intrinsic
limitation. Ideally, the solution would be to drag FWI toward low wavenumber content or even
entirely remove the need for initial models generated with traveltime tomography and only
relies on FWI.

This motivates the idea to reformulate FWI to make it more flexible, and “automatic”,
thus making it less dependent on the initial model quality. By changing its formulation and
reducing its non-convexity, the range of applications tackled with FWI can be increased while
reducing the uncertainties associated with complex workflows.

In an attempt to make FWI more flexible, two main families can be identified. The first
one relies on extension strategies. Here the goal is to artificially extend the research space
to mitigate the non-convexity, then progressively constrain the artificial degrees of freedom
to converge toward a non-relaxed formulation of FWI. The second one relies on replacing the
non-convex least-squares-based misfit function with alternative misfit functions that present
increased convexity. In the second family, many propositions have been introduced by the
FWI community.

In this thesis, the focus is made on the second family. We first want to systematically
compare alternative misfit functions coming from already published methods or newly proposed
solutions. It is crucial to keep in mind that replacing the least-squares norm is not an easy
task as it often translates into a loss of resolution power, increased complexity, and increased
computational cost. This has made the least-squares norm the most used misfit function
even if it suffers from a fatal flaw. To test if alternative misfit functions can improve FWI
robustness, we have selected a panel of five methods representing different ways of reformulating
the problem. One of the scientific contributions of this thesis is the benchmarking of alternative
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misfit functions in a systematic way, allowing us to exhibit their pros and cons.

Finally, we perform in-depth testing on one of the most promising solutions, a graph-space
optimal transport-based misfit function, on a field dataset starting from a 1D starting model
that is not based on prior inversion results. The second scientific contribution of this thesis
showed that robust FWI by misfit function replacement is possible and provides encouraging
results and that reformulating the original FWI problem is the way forward.

Outline of the manusctipt

Chapter 1 introduces FWI and the history behind it. An overview of the formulation of FWI
is performed with details on both the forward problem and the inverse problem. Details are
given on how to solve the inverse problem of FWI, with an overview of the different approaches
available and the introduction of the limitation of the most commonly used method.

Chapter 2 comes from a published paper in Geophysics journal (Pladys et al., 2021b). It
focuses on a subset of alternative misfit functions and presents several synthetic benchmarks
that are carefully designed to assess the capacity of a given misfit function. An in-depth analysis
of the pros and cons of each formulation is performed. The conclusion is drawn on the most
promising methods.

Chapter 3 comes from a submitted paper in Geophysics journal (Pladys et al., 2021a). We
take one of the best candidates of the previously tested misfit function, graph-space optimal
transport, and use it on a field data application. This application is performed in two parts.
First, using the initial model already used in the literature to assess graph-space optimal trans-
port capacity to perform similarly to the conventional L2 norm in a controlled environment.
Second, starting from a crude 1D initial model to introduce strong cycle-skipping and assess
the capacity of graph-space optimal transport in one of the most challenging cases.

Chapter 4 presents some explorations I performed during my years of research, with some ideas
of new alternative misfit functions and some workarounds developed for practical application.

Chapter 5 finally gives conclusion and perspectives of this manuscript.
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Full-waveform inversion
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1.1 A rapid overview of full-waveform inversion development

1.1 A rapid overview of full-waveform inversion development

In 1985, Claerbout’s analysis on seismic imaging methods shown there was a “gap” between
migration imaging principle and travel-time tomographic imaging principle (Figure 1.1). The
first family, relying on the migration principle, provides high-wavenumber content of the sub-
surface (which translates into small sharp details) but requires a good model of the Earth’s
interior to provide accurate results. The second family, travel-time tomography, focuses on re-
constructing a low-wavenumber model containing the overall kinematic of the Earth’s interior
that is not easily interpretable. As an attempt to bridge the “gap” between these two families,
full-waveform inversion (FWI) was first formulated by Lailly (1983) and Tarantola (1984b).

FWI is a seismic imaging method aiming at reconstructing high-resolution models (up to
half the shortest wavelength) of the mechanical properties of the subsurface (Devaney, 1984;
Pratt and Shipp, 1999; Plessix and Perkins, 2010). FWI relies on a fundamental principle:
wavefields traveling through the Earth’s interior gather pieces of information along their path
on medium physical parameters (such as P-wave velocity, S-wave velocity, density, attenuation
or anisotropy parameters). Therefore, the idea behind FWI is simple: match calculated seismic
data (computed by solving the wave equation numerically) to observed seismic data by itera-
tively updating a model of the Earth’s subsurface. This type of problem is called an “inverse
problem” as it boils down to estimate the parameters of partial derivative equations instead of
estimating its solution. This problem can also be seen as a data-fitting procedure.

As mentioned, the main interest of FWI is its high-resolution potential that could help filling
the “gap” in seismic imaging methods. We can analyze the wavenumber content of the gradient
of the misfit function used to update the model, for a given couple of source/receiver of a fixed
diffraction point in a homogeneous medium, in the plane wave approximation (Figure 1.2):

k =
2ω

c
cos

(
θ

2

)
, (1.1)

where k is the wavenumber modulus, ω the angular frequency of the monochromatic plane
waves, c the velocity, and θ the angle between the source and receiver rays to the diffraction
point. The dependency between the wavenumber content and the illumination angle is made
clear, with maximum wavenumber for zero degrees angle, meaning a reflection with zero offsets
between source and receiver rays (from Wu and Toksöz, 1987). This illustrates that FWI
resolution is constrained by three main factors. First, the most straightforward one is the
frequency content of the data used. Second, the wavenumber content at depth is lower as
velocity is generally higher (which translates into larger wavelengths). Third, structures at
depth are often constrained by small scattering angles. This is why it is important to have
various propagation regimes and various arrivals types originating at the same structure to
broaden the range of scattering angles (transmission, reflections and wide-angle reflections).
Ideally, with omnidirectional illumination of a structure, the resolution can theoretically be half
wavelength. Practically, optimal illumination conditions are never reached. It also exhibits the
need for broad frequency data with good quality low frequency to easily start inversion and
avoid cycle-skipping and high frequency to obtain high-resolution reconstruction.

Interestingly, when the FWI problem was formulated, the community missed two main
ingredients to ensure successful results. The first one is that it was introduced in the early
age of computational science. That led to serious difficulty solving the wave equation even in
limited simple 2D cases as computational power was fairly limited. The second one was the
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Figure 1.1: Shematic illustration of the accuracy and resolution of tomography, full-waveform
inversion and migration methods. The solid black line corresponds to the resolution gap be-
tween tomography and migration technics (as proposed by Claerbout, 1985). This gap is
supposed to be filled by full-waveform inversion (figure from Yao et al., 2020).
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Figure 1.2: Couple of source/receiver of a fixed diffraction point in a homogeneous medium.

availability of appropriate seismic data, and a better understanding of the type of data needed
to sufficiently constrain the problem (seismic data were mainly short-offset seismic reflection
surveys). That explained why FWI was difficult to apply (Gauthier et al., 1986; Cary and
Chapman, 1988; Crase et al., 1990; Jin et al., 1992; Lambaré et al., 1992). These limitations
(inappropriate data and computational power) slowed the development of the method, but,
in the ’90s, Pratt’s work brought the essential bricks that unleashed FWI understanding: the
formulation of a 2D frequency-domain solver that considerably lighten the computational cost
(Pratt, 1990; Pratt and Worthington, 1990; Pratt and Goulty, 1991; Pratt et al., 1996, 1998;
Pratt, 1999). By seeing FWI in terms of wavenumber covering and acquisition offset, he
showed the potential of FWI for crosshole acquisition with transmitted waves. This work was
essential to lay the foundation for the first field data applications in the years 2000 when surface
acquisition presenting sufficiently large offset coverage started to show up and finally unlock
FWI applications with meaningful updates at more than a few hundred meters.
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Historically, the method was born in the context of exploration (related to the oil & gas
industry). Since then, FWI has been continuously developed and improved, from 2D acoustic
mono-parameter (Ravaut et al., 2002, 2004; Sourbier et al., 2009), 3D visco-acoustic mono
or multi-parameters (Plessix, 2009; Malinowski and Operto, 2006; Sirgue et al., 2010; Plessix
et al., 2012; Warner et al., 2013; Operto et al., 2015; Górszczyk et al., 2017, 2021; Kamath
et al., 2020; Pladys et al., 2020) to 3D visco-elastic inversion (Zhu et al., 2015; Raknes et al.,
2015; Trinh et al., 2019b,c,a)

Meanwhile, rapidly after the introduction of FWI at exploration scale, global to regional
scale FWI from the academic community emerged, with groups from Caltech/Princeton (Tromp
et al., 2005; Liu and Archuleta, 2006; Tape et al., 2007; Bedle and Lee, 2009; Tape et al., 2010;
Bozdağ et al., 2016; Tromp, 2019), Berkeley (Panning et al., 2010; French and Romanowicz,
2015) and Munich/Utrecht/ETH (Fichtner et al., 2009; Fichtner and Trampert, 2011; Fichtner
et al., 2013).

More recently, smaller-scale approaches have emerged and have made drastic improvements
in the past years (Köhn et al., 2018; Wittkamp et al., 2018; Smith et al., 2019; Irnaka, 2021).
This remains a challenging topic as many difficulties are faced at this scale, such as propagation
of surface waves, poorly consolidated area, strong heterogeneities of mechanical properties in
the first tens to hundreds of meters.

Finally, the interest of FWI is now going beyond the scope of seismic waves, with successful
application on ground penetrating radar (GPR) (Klotzsche et al., 2010; Minet et al., 2010;
Klotzsche et al., 2012, 2013; Lavoué et al., 2014; Klotzsche et al., 2019; Giannakis et al., 2019),
or even in the medical imaging field that starts to use FWI (Guasch et al., 2020; Marty et al.,
2021). This proves that now FWI is a mature method used in a wide variety of scales, targeting
multiple imaging problems.

In the following, I introduce the physical and mathematical concepts related to FWI before
developing on the actual limitations of the conventional FWI formulation.

1.2 Formulation of FWI

Full-waveform inversion is formulated as a minimization of a function F measuring the distance
between observed (recorded) data dobs and synthetics data dcal[m] calculated in a discrete
physical model of the subsurface parameters m. These data, dobs and dcal[m], are extracted
from the wavefield at receivers’ locations. FWI aims to retrieve the model m from the observed
data, categorizing FWI into the inverse problem family. By taking into account the complete
signal information (all the phases and all the amplitudes), this method is supposed to provide
a high-resolution reconstruction of the subsurface model.

Mathematically, FWI can be formulated as finding the minimum of a misfit function f
defined as

min
m

f(m) = F (dcal[m], dobs) , (1.2)

where F is a generic function measuring the distance between dobs and dcal[m].

Under general notation, dcal[m] is obtained through the extraction of the values of wavefield
at the receivers location such that

dcal[m] = Ru[m] , (1.3)

11



FULL-WAVEFORM INVERSION

where R is an extraction operator and u[m] is the solution of the wave propagation problem

A[m]u = b , (1.4)

with A[m] a generic wave propagation operator (from acoustic to visco-elastic).

Several strategies can be used to solve eq. 1.2, but first, it is required to detail the forward
problem A[m] which is compulsory to obtain dcal[m]

1.2.1 The forward problem

One way of seeing the seismic waves is as optic rays based on a high-frequency approximation
(Červený, 2001; Chapman, 2004; Virieux and Lambaré, 2007). This would give access to the
traveltime, which leads to raypath connecting a source-receiver couple, that can be solved by
different methods (Zelt and Smith, 1992; Bishop et al., 1985; Le Meur et al., 1997; Popovici
and Sethian, 1998; Lelièvre et al., 2011; Vidale, 1990; Bretaudeau et al., 2014; Le Bouteiller
et al., 2019).

The second way, which is of interest here, is modeling the full seismic wavefield, referred
to as forward modeling. To do so, we consider the wave equation to approximate as close as
possible the real physics of seismic wave propagation in a given medium.

I will detail the elastodynamic equations in the following parts and derive the acoustic and
the anisotropic visco-acoustic modeling. These two modeling choices are motivated by their
usage in the FWI application performed in this thesis. The first one - acoustic - is the most
“basic” modeling we can think of. It only accounts for the pressure waves. The second one
introduces anisotropic effects and attenuation, while still only modeling for the pressure waves.
This approximation of the physics is important to keep in mind for field data application as
the Earth is elastic, and contains more complex anisotropy than the VTI approximation used
here. This, by definition, will never allow obtaining a perfect fit of the modeling to the field
data as we will miss a part of the physics. This could also lead to modification of physical
properties such as P-waves velocity to take into account other physical effects that is not taken
into account in the modeling, leading to the creation of non-physical updates. This issue is
commonly referred to as cross-talk (Operto et al., 2013), but that will not be the focus of this
work.

1.2.1.1 The elastodynamic equations

In the following, we follow Einstein convention (summation over repeated indices) for these
equations. Generally, to describe the elastodynamic system, we rely on the following Newton’s
law

ρ∂tvi = ∂jσij , (1.5)

and on Cauchy’s generalization to the Hooke’s law in tensorial form

σij = cijklεkl , (1.6)

where ρ is density, σ is the stress tensor, cijkl is the stiffness tensor, ε is the strain tensor
with i, j, k, l ∈ [x, y, z]. Strains are related to displacement vector u = (ux, uy, uz) through the
expression

εij =
1

2
(∂iuj + ∂jui) , (1.7)
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whose first time derivative is

ε̇ij =
1

2
(∂j u̇i + ∂iu̇j) =

1

2
(∂jvi + ∂ivj) . (1.8)

Simplification of the stiffness tensor can be obtained due to the symmetry as well as the unique
energy definition (Carcione, 2001, p. 55):

cijkl = cjikl = cijlk = cklij , (1.9)

which reduces the components to only 21.

We introduce the particle velocity vector as v = (vx, vy, vz)
T and the stress vector as

σ = (σxx, σyy, σzz, σyz, σxz, σxy)
T . We can now define the first time derivative for the Hooke’s

law as the following matrix expression:

∂t


σxx

σyy

σzz

σyz

σxz

σxy


︸ ︷︷ ︸
σ

=


c11 c12 c13 c14 c15 c16
· c22 c23 c24 c25 c26
· · c33 c34 c35 c36
· · · c44 c45 c46
· SYM · · c55 c56
· · · · · c66


︸ ︷︷ ︸

C


ε̇xx
ε̇yy
ε̇zz
2ε̇yz
2ε̇xz
2ε̇xy


︸ ︷︷ ︸

ε̇

=


c11 c12 c13 c14 c15 c16
· c22 c23 c24 c25 c26
· · c33 c34 c35 c36
· · · c44 c45 c46
· SYM · · c55 c56
· · · · · c66


︸ ︷︷ ︸

C


∂x 0 0
0 ∂y 0
0 0 ∂z
0 ∂z ∂y
∂z 0 ∂x
∂y ∂x 0


︸ ︷︷ ︸

D

vxvy
vz


︸ ︷︷ ︸

v

,

(1.10)

where we have introduced a differential operator D and the symmetric stiffness matrix C
using Voigt indexing, (11) → 1, (22) → 2, (33) → 3, (23) = (32) → 4, (13) = (31) → 5,
(12) = (21)→ 6.

1.2.1.2 Anisotropic VTI acoustic wave approximation

We can now simplify the stiffness matrix C depending on which type of anisotropy we want.
In the case of orthorhombic anisotropy, the stiffness matrix C reduces to

C =



c11 c12 c13 0 0 0
· c22 c23 0 0 0
· · c33 0 0 0
· · · c44 0 0
· SYM · · c55 0
· · · · · c66

 . (1.11)

The stiffness matrix C can be further simplified with a special case of orthorhombic
anisotropy known as VTI anisotropy. The simplification is obtained by assuming a symmet-
ric (x, y)-plane and setting σxx = σyy, σxz = σyz, εxx = εyy, εxz = εyz, yielding c11 = c22,
c13 = c23, c44 = c55. The resulting stiffness matrix becomes (Duveneck et al., 2008)

C =



c11 c12 c13 0 0 0
· c11 c13 0 0 0
· · c33 0 0 0
· · · c55 0 0
· SYM · · c55 0
· · · · · c66

 , (1.12)
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which now involves only 5 independent coefficients due to the relation c12 = c11 − 2c66.

Finally, to obtain the acoustic wave approximation in the presence of VTI anisotropy, we
force shear wave velocity on the symmetry axis to be zero in the elastic case in the sense that
c55 = c66 = 0, c12 = c11. Therefore only first 3 rows of C remains:

C =



c11 c11 c13 0 0 0
· c11 c13 0 0 0
· · c33 0 0 0
· · · 0 0 0
· SYM · · 0 0
· · · · · 0

 . (1.13)

To be rigorous, we can note that anisotropy does not exist in a pure acoustic regime. While
forcing shear velocity to be zero, it does not prevent the propagation of fictitious shear waves
(Alkhalifah, 1998).

The resulting VTI acoustic system is written as

ρ∂tvx = ∂xσxx

ρ∂tvy = ∂yσyy

ρ∂tvz = ∂zσzz

∂tσxx = c11(∂xvx + ∂yvy) + c13∂zvz

∂tσyy = c11(∂xvx + ∂yvy) + c13∂zvz

∂tσzz = c13(∂xvx + ∂yvy) + c33∂zvz .

(1.14)

Let us denote σxx = σyy := g, and σzz := q. The pressure is the averaged trace of diagonal
stress matrix:

p = −1

3

∑
i

σii = −1

3
(2g + q) . (1.15)

Finally, we can introduce Thomsen’s anisotropy parameters δ and ε as (Duveneck and
Bakker, 2011; Zhang et al., 2011):

c11 = ρV 2
p (1 + 2ε) = ρV 2

h

c13 = c33

√
1 + 2δ = ρV 2

p

√
1 + 2δ

c33 = ρV 2
p = κ ,

(1.16)

where κ is the bulk modulus while Vh = Vp
√

1 + 2ε denotes the horizontal velocity. Allowing
for the external sources, the VTI acoustic system 1.14 becomes

ρ∂tvx = ∂xg + fvx
ρ∂tvy = ∂yg + fvy
ρ∂tvz = ∂zq + fvz
∂tg = κ[(1 + 2ε)(∂xvx + ∂yvy) +

√
1 + 2δ∂zvz] + fσxx/yy

∂tq = κ[
√

1 + 2δ(∂xvx + ∂yvy) + ∂zvz] + fσzz .

(1.17)
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We can further simplify the system by setting ε and δ to zero in eq 1.17. This yields the
isotropic acoustic wave equation:

ρ∂tvx = −∂xp+ fvx
ρ∂tvy = −∂yp+ fvy
ρ∂tvz = −∂zp+ fvz
∂tp = −κ(∂xvx + ∂yvy + ∂zvz) + fp ,

(1.18)

where we have considered the pressure as defined in eq 1.15.

1.2.1.3 Anisotropic VTI viscoacoustic wave approximation

We considered before the propagation of waves in purely elastic solid. However, as waves
propagate through the Earth, the wavefront loses energy (through thermal loss, for instance).
This is called attenuation, and it is an important feature that should be taken into account.
This effect (reduction of amplitude over distance) has been observed and confirmed from a
wide range of experimental tests and field observations. Depending on the target, accounting
for attenuation can be crucial to obtain good results of FWI when applied to field data; see
Kamath et al. 2020 for instance.

In a first attempt to account for attenuation, constant-Q models were developed to approx-
imate seismic attenuation in seismic exploration and seismology. It is mathematically simple
to implement Q in the frequency domain. However, it is more complex in the time domain.

In order to simulate attenuation for time-domain modeling, the generalized Maxwell body
(GMB), which is equivalent to the superposition of several standard linear solid (SLS) mecha-
nisms, is used to approximate the constant Q over a specified frequency range.

The SLS mechanisms correspond to attenuation processes (e.g. interstitial atom relaxation,
grain boundary relaxation, thermoelasticity, the diffusional motion of dislocations and point
defects) that affect the relaxation time following the wave propagation. The general SLS
rheology explains these processes very well. Some of them can be modeled with one mechanism,
and others using several relaxation mechanisms.

A practical problem in superposing SLS mechanisms is determining the appropriate number
of mechanisms, providing the desired constant-Q behavior, and saving computational costs for
solving wave equations, particularly in 3D modeling. In general, three SLS mechanisms are
considered to be accurate enough for 3D simulations in geophysical prospecting and global
seismology study. Less there are SLS mechanisms, and fewer memory-variable equations have
to be solved, resulting in time-saving.

Now, let us introduce, for a 1D case, the rheology of generalized Maxwell body (GMB)
(Emmerich and Korn, 1987; Moczo and Kristek, 2005):{

∂tσ = Mu(ε̇−
∑L

`=1 Y`ξ`)

∂tξ` + ω`ξ` = ω`ε̇, ` = 1, 2, . . . , L ,
(1.19)

where Mu is the unrelaxed modulus, ξ` is the memory variable independent of the model
properties to delineate the historical energy dissipation associated with `-th circular frequency
ω` and the dimensionless anelastic coeffcients Y`. From eq 1.19, we may easily find that moving
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from elastics to viscoelastics is simply subtracting the weighted memory variables ξ` with the
strain term ε̇ in lossless elastic wave equation. By analogy with the VTI acoustic wave equation,
the VTI viscoacoustic system in 3D reads

∂t



σxx

σyy

σzz

σxy

σxz

σyz


︸ ︷︷ ︸
σ

=



c11 c11 c13 0 0 0

· c11 c13 0 0 0

· · c33 0 0 0

· · · 0 0 0

· SYM · · 0 0

· · · · · 0


︸ ︷︷ ︸

C



ε̇xx −
∑L

`=1 Y`ξ
xx
`

ε̇yy −
∑L

`=1 Y`ξ
yy
`

ε̇zz −
∑L

`=1 Y`ξ
zz
`

2ε̇xy −
∑L

`=1 Y`ξ
xy
`

2ε̇xz −
∑L

`=1 Y`ξ
xz
`

2ε̇yz −
∑L

`=1 Y`ξ
yz
`


︸ ︷︷ ︸

ε̇−
∑L

`=1 Y`ξ`

∂t

ξ
xx
`

ξyy`
ξzz`


︸ ︷︷ ︸
ξ

+ω`

ξ
xx
`

ξyy`
ξzz`


︸ ︷︷ ︸
ξ

= ω`

ε̇xxε̇yy
ε̇zz


︸ ︷︷ ︸
ε̇

` = 1, 2, . . . , L ,

(1.20)

where Y` := Y κ
` the shear modulus µ (and the corresponding anelastic coefficients) are forced

to be zero in the elastic case in order to perform the acoustic simplification. Allowing for the
Newton’s law in eq 1.5, the VTI viscoacoustic wave equation is now defined as

ρ∂tvx = ∂xσxx

ρ∂tvy = ∂yσyy

ρ∂tvz = ∂zσzz

∂tσxx = c11(∂xvx + ∂yvy) + c13∂zvz −
∑L

`=1 Y`[c11(ξxx` + ξyy` ) + c13ξ
zz
` ]

∂tσyy = c11(∂xvx + ∂yvy) + c13∂zvz −
∑L

`=1 Y`[c11(ξxx` + ξyy` ) + c13ξ
zz
` ]

∂tσzz = c13(∂xvx + ∂yvy) + c33∂zvz −
∑L

`=1 Y`[c13(ξxx` + ξyy` ) + c33ξ
zz
` ]

∂tξ
xx
` + ω`ξ

xx
` = ω`∂xvx, ` = 1, 2, . . . , L

∂tξ
yy
` + ω`ξ

yy
` = ω`∂yvy, ` = 1, 2, . . . , L

∂tξ
zz
` + ω`ξ

zz
` = ω`∂zvz, ` = 1, 2, . . . , L .

(1.21)

Similar to VTI acoustic case, based upon the notation in eq 1.15, the VTI viscoacoustic
wave equation including the external sources can then be expressed as

ρ∂tvx = ∂xg + fvx
ρ∂tvy = ∂yg + fvy
ρ∂tvz = ∂zq + fvz
∂tg = c11(∂xvx + ∂yvy) + c13∂zvz −

∑L
`=1 Y`[c11(ξxx` + ξyy` ) + c13ξ

zz
` ] + fg

∂tq = c13(∂xvx + ∂yvy) + c33∂zvz −
∑L

`=1 Y`[c13(ξxx` + ξyy` ) + c33ξ
zz
` ] + fq

∂t(ξ
xx
` + ξyy` ) + ω`(ξ

xx
` + ξyy` ) = ω`(∂xvx + ∂yvy), ` = 1, 2, . . . , L

∂tξ
zz
` + ω`ξ

zz
` = ω`∂zvz, ` = 1, 2, . . . , L .

(1.22)

Note that the memory variables in the symmetric plane (x, y), namely ξxx` and ξyy` , are summed
together as one quantity to reduce the volume of memory allocation in practical implementa-

16



1.2 Formulation of FWI

tion. With the notation ξxx` + ξyy` := ξg` , ξzz` := ξq` , system 1.22 becomes



ρ∂tvx = ∂xg + fvx
ρ∂tvy = ∂yg + fvy
ρ∂tvz = ∂zq + fvz
∂tg = c11(∂xvx + ∂yvy) + c13∂zvz −

∑L
`=1 Y`[c11ξ

g
` + c13ξ

q
` ] + fg

∂tq = c13(∂xvx + ∂yvy) + c33∂zvz −
∑L

`=1 Y`[c13ξ
g
` + c33ξ

q
` ] + fq

∂tξ
g
` = −ω`ξg` + ω`(∂xvx + ∂yvy), ` = 1, 2, . . . , L

∂tξ
q
` = −ω`ξq` + ω`∂zvz, ` = 1, 2, . . . , L .

(1.23)

1.2.1.4 Discretization and absorbing boundary coniditions

The wave equation is a linear partial differential equation and can be described and solved with
various schemes (Kelly et al., 1976; Marfurt, 1984; Virieux, 1984; Dablain, 1986; Levander, 1988;
Brossier et al., 2008). The choice of the schemes and the choice of discretization will influence
the numerical resolution in which the wavefield is resolved.

One of the most popular methods used to solve the wave equation relies on finite-difference
schemes. The main advantages of this method are the good scalability, effectiveness, and
simplicity of implementation.

As this manuscript focuses on more robust FWI, and as the applications will be performed
on marine field data, the excellent scalability of finite-difference approaches will be needed
to tackle large 3D field data. Therefore, this work relies on using a code based on finite-
difference, based on staggered-grid methods (Virieux, 1986; Levander, 1988). The discretization
is performed with fourth-order in space and second-order in time. To localize sources and
receivers that do not directly fall on the finite-difference grid, we rely on Hicks interpolation
(Hicks, 2002). This allows recasting the position on the grid using windowed sinc functions.

Finally, artificial reflections generated at the boundary are mitigated by modifying the
equations at a continuous level. In this work, we rely on absorbing boundary conditions, more
precisely, perfectly matched layers (Bérenger, 1994) for 2D acoustic FWI. For 3D visco-acoustic,
we rely on “sponge” absorbing boundaries as PML would be challenging to implement in this
case (Cerjan et al., 1985).

1.2.2 Solution to the FWI problem

Solving the minimization problem of FWI can be done in two ways. As developed later on in
this manuscript, the misfit function conventionally used for FWI - the least-squares norm - is
non-convex and presents local minima. Therefore, one of the first ideas that would come to the
mind would be relying on global optimization to solve the FWI problem. This would ensure
convergence toward the global minimum. The second idea that can be used is to rely on local
optimization. Details of the two different approaches will be introduced in the following, with
their advantages and disadvantages.
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1.2.2.1 Global solution to the FWI problem

This solution was explored in the early years of FWI formulation (Sen and Stoffa, 1991; Stoffa
and Sen, 1991) but also more recently (Tran and Hiltunen, 2011; Datta and Sen, 2016; Aleardi
and Mazzotti, 2016; Mazzotti et al., 2016; Sajeva et al., 2017).

Global optimization method aims at finding the global minima or maxima of a continous
function (here a misfit function). The function can possibly be non-convex.

f [m] : Ω ⊂ Rn → R , (1.24)

with Ω is the (not necessarily convex) solution space, discretized over n parameters.

By handling potentially non-convex misfit function, global optimization methods can nat-
urally deal with local minima in Ω. Therefore these methods naturally allow tackling the
ill-posed inverse problem that FWI represents. Global solutions aim to explore the solution
space Ω to evaluate all possible minima (or maxima) and find the global one. This could be
illustrated in the example shown in Figure 1.3, global optimization method would allow ex-
ploring the solution space Ω entirely and find the possible solutions (here, the red dots) while
avoiding the local minimum represented by the blue dot.

The main disadvantage of global search approaches is the difficulty faced when tackling
problems with a large number of degrees of freedom. Recent applications using Hamiltonian
Markov-Chain Monte-Carlo (H-MCMC) tackle problems with up to thousands of degrees of
freedom (Fichtner et al., 2018a,b; Gebraad and Fichtner, 2018; Gebraad et al., 2020). The
issue is that even small 2D synthetic studies correspond to tens to hundreds of thousands of
degrees of freedom. This is known as the “curse of dimensionality”. Indeed, the computational
cost of this method is directly linked with the solution space Ω, which is directly related to
the number of degrees of freedom representing the model. Realistically, and considering the
trend of moving toward high-frequency 3D FWI application, global optimization seems too
computationally intensive to be used. Despite this issue, the method remains of interest for
FWI as it could be used for uncertainty estimation (Martin et al., 2012; Bardsley et al., 2014;
Biswas and Sen, 2017; Sajeva et al., 2017; Thurin, 2020) and low-frequency inversion.

1.2.2.2 Local solution to the FWI problem

For problem space larger than 101 to 103, the solution used to solve the FWI inverse problem
relies on local optimization techniques. This method aims at finding the closest minimum for
a given starting point, using local information provided by the misfit function (such as the
gradient and curvature).

This highlights a crucial parameter: the choice of initial model m0 used to start the inver-
sion. This initial model m0 defines a subspace A ⊂ Ω, in which the misfit function is minimized.
This drastically reduces the number of potential solutions but also implies that only the closest
minimum is reached. Therefore a good enough initial model is needed to allow convergence of
the scheme toward the global minimum if the misfit function used is not globally convex.

The formalism consists in iteratively minimizing the discrepency between observed and
synthetic data by building the following sequence of models

mk+1 = mk + αk∆mk , (1.25)
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Figure 1.3: Representation of misfit function f [m] : Ω ⊂ R2 → R presenting three local minima,
two of which are global and denoted by a red dot and a third one denoted by a blue dot. From
Thurin (2020).

where m0 the initial model, α is the step length, ∆m is the model update (which corresponds
to the descent direction) and k the index of the current iteration.

At each iteration k, both the step length α and the direction of descent ∆m are updated
to provide a better data fit

f [mk+1] < f [mk] , (1.26)

The steplength α should satisfy the Wolfe criterion (Wolfe, 1969) which are

1. Sufficient decrease

f [m+ α∆m] ≤ f [m] + c1α∇f [m]T∆m, (1.27)

where ∇f [m] the gradient. Practicaly c1 is set to 10−4 in practice.

2. Curvature condition

∇f [m+ α∆m]T∆m ≥ c2∇f [m]T∆m, (1.28)

with c2 = 0.9 in practice.

Satisfying the Wolfe conditions ensures the convergence towards the nearest local minimum
(Nocedal and Wright, 2006).

To build the model update ∆mk, we usually rely on an approximate solution of the Newton
equation

H[m]∆m = −∇f [m] , (1.29)

where H[m] is the Hessian operator, the matrix of second-order derivatives of the function
f [m]. As the computational cost of inverting for the Hessian operator is too high, we rely on
an approximation P :

P [m] ' H[m]−1 . (1.30)
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If the approximation P is the identity, we have what is refered to as steepest-descent direction,
which simply corresponds to taking the opposite of the gradient to as model update

∆m = −∇f [m] . (1.31)

This steepest-descent algorithm is known to be slow and exhibits convergence difficulties even
on elementary problems.

To avoid this issue, we rely on quasi-Newton methods that build an approximation of
the inverse Hessian for P . The most famous of this method is called l-BFGS and build the
approximation through the stored gradient and model values (Nocedal, 1980; Nocedal and
Wright, 2006). This method will be the one used in this thesis.

1.2.2.3 Gradient computation

From the description of the quasi-Newton scheme, we see that in practice the critical quantity
to compute is the gradient of f [m]. In this section, we explain how we can compute it. We
define the number of sources (shots) as Ns (with s a subscript referring to shot number) and
the number of receivers as Nr. We assume that the number of receivers is the same for each
shot.

First, we consider the case of the least-squares norm:

min
m

f [m] =

Ns∑
s=1

F (dcal,s[m], dobs,s) , (1.32)

with

F (dcal,s, dobs,s) =

Nr∑
r=1

∫ T

0
|dcal,s[m](xr, t)− dobs,s(xr, t)|2dt (1.33)

def
= ||dcal,s − dobs,s||2 . (1.34)

We remind that

dcal,s[m] = Rus[m] , (1.35)

and us[m] solution of

A(m)us = bs . (1.36)

For convenience, we now consider a simple case with Ns = 1. For a perturbation dm we
have

f [m+ dm] =
1

2
‖dcal(m+ dm)− dobs‖2

1

2
‖dcal(m)− dobs + J(m)dm+ o(‖dm‖2)‖2

, (1.37)

where

J(m) =
∂dcal
∂m

=


∂(dcal)1
∂m1

∂(dcal)1
∂m2

. . .
∂(dcal)2
∂m1

∂(dcal)2
∂m2

. . .
...

 (1.38)
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is the Jacobian matrix. It can be used to re-write f [m+ dm] as

f [m+ dm] =
1

2
‖dcal(m)− dobs‖2 + 〈dcal − dobs, J(m)dm〉+ o(‖dm‖2)

1

2
‖dcal(m)− dobs‖2 +

〈
J(m)T (dcal − dobs) , dm

〉
+ o(‖dm‖2)

. (1.39)

Therefore

f(m+ dm)− f(m) =
〈
J(m)T (dcal − dobs), dm

〉
+ o(‖dm‖2) , (1.40)

and

∇f(m) = J(m)T (dcal − dobs) . (1.41)

This corresponds to the “direct” method to obtain the gradient. Unfortunately, this method
relies on a Jacobian matrix which is computationally too intensive to compute or too large to
be stored (I/O storage is too slow).

Therefore, we rely on the adjoint-state approach (Plessix, 2006). This method relies on
using the Lagrangian functional. The main goal of the adjoint state method is to compute the
gradient of a functional, f [m], where f depends on u(m), without explicitly computing the
Jacobian matrix J .

We introduce the Lagrangian operator in the case of Ns = 1 with an arbitrary distance
measurement function F :

L(m,u, dcal, λ, µ) = F (dcal, dobs) + 〈A(m)u− b, λ〉+ 〈dcal −Ru, µ〉 . (1.42)

Let ū(m) be the solution of the forward problem for a given m (eq 1.36). Similarly, if dcal is
extracted from ū(m), we denote it by d̄cal(m) (eq 1.35). We thus have

L(m, ū(m), d̄cal(m), λ, µ) = F (d̄cal(m), dobs) = f [m] . (1.43)

Therefore, by deriving the previous equation with respect to the model parameter m we
obtain an expression of the gradient of f [m] as:

∂L(m, ū(m), d̄cal(m), λ, µ)

∂m
= ∇f [m] . (1.44)

Using the chain rule on the Lagrangian, we obtain(
∂A(m)

∂m
ū(m), λ

)
+
∂L(m, ū(m), d̄cal(m), λ, µ)

∂u

∂ū(m)

∂m
+
∂L(m, ū(m), d̄cal(m), λ, µ)

∂dcal

∂d̄cal(m)

∂m
= ∇f [m] .

(1.45)

We can identify in ∂ū(m)
∂m and ∂d̄cal(m)

∂m operators similar to the Jacobian one. As we do not
want to compute such operators (it was to avoid them that we introduce the Lagrangian), we
define λ and µ such as

∂L(m, ū(m), d̄cal(m), λ, µ)

∂u
= 0 , (1.46)

∂L(m, ū(m), d̄cal(m), λ, µ)

∂dcal
= 0 . (1.47)
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To obtain λ and µ that satisfies the two latter equations, we express the derivatives of the
Lagrangian with respect to u and dcal using first order Taylor devlopments. We have

∂L(m, ū(m), d̄cal(m), λ, µ)

∂u
= A(m)Tλ−RTµ , (1.48)

and similarly

∂L(m, ū(m), d̄cal(m), λ, µ)

∂dcal
=

∂F

∂dcal
− µ . (1.49)

This provides an equivalent to the system 1.46 as:

A(m)Tλ−RTµ = 0 (1.50)

∂F

∂dcal
− µ = 0 , (1.51)

which can be rewritten as

A(m)Tλ = RTµ (1.52)

µ =
∂F

∂dcal
, (1.53)

with the index T representing transpose. From the two latter equations, we can now extract
conditions to cancel the terms in the gradient expression 1.45 which are:

1. µ is the adjoint source, which is just the derivative with respect to dcal of the distance
measurement function F

2. λ is the solution of an adjoint equation assocaited with the operator A(m)T with a source
term equal to RTµ

This finally allows to have the expresion of the gradient relying only on the correlation part
as 〈

∂A

∂m
u, λ

〉
= ∇f [m] , (1.54)

with λ the adjoint field

A(m)Tλ = −RT ∂F

∂dcal
. (1.55)

A very interesting property of this method is that a change in the misfit function only
translates into a modification of the source term used for the adjoint field back-propagated
from the receivers.

The gradient computation requires solving two wave propagation problems: one incident
field and one adjoint field. This translates into a reduction of the computational cost compared
to forming or storing the Jacobian matrix.
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1.3 Non-convexity in FWI

1.3.1 Non-convexity and cycle skipping limitations

1.3.1.1 The least-squares norm misfit function

Since the introduction of the FWI formalism in the ’80s, the least-squares norm - referred to
as the L2 norm - has been traditionally used as the “default” norm to measure the distances
between the observed data and the calculated data (Tarantola, 1984a, 1988; Nolet, 1987).

Let us remind the formulation of the L2 norm already introduced in eq 1.33 for an isolated
traces such as Nr = Ns = 1

FL2(dcal, dobs) =
1

2

T∫
0

|dcal(t)− dobs(t)|2dt . (1.56)

As demonstrated earlier, FWI formalism is based on the adjoint theory, requiring an adjoint
source associated with the misfit function. For the L2 norm, the adjoint source S is defined as

SL2(t) =
∂FL2

∂dcal(t)
(1.57)

=
∂

∂dcal(t)

[
0.5× (dcal(t)− dobs(t))2

]
. (1.58)

By using the chain rule, we obtain the adjoint source

SL2(t) = 0.5× 2× (dcal(t)− dobs(t))×
∂(dcal(t)− dobs(t))

∂dcal(t)
(1.59)

= dcal(t)− dobs(t) . (1.60)

In the case of the L2 norm, the obtained adjoint source is simply the difference between dcal
and dobs . This is obviously straightforward to implement, it is not affected by any stability
condition and associated computational cost is close to zero.

The L2 misfit function presents several advantages, such as noise robustness and “usage”
of the complete signal information. This explains why it is still widely used, and it is still
the “default” choice for field data application. The main limitation of the L2 norm is its
lack of convexity for time-delays, leading to cycle-skipping being one of its most substantial
weaknesses.

1.3.1.2 The cycle-skipping limitation

The L2 distance measure is inherently affected by the phase ambiguity, known as cycle-skipping,
which appears when the synthetic data are shifted by more than half a period compared to
the observed ones (Figure 1.4). Unfortunately, finding perfectly convex misfit functions is
challenging, resulting in FWI being strongly non-linear when based on a non-convex misfit
function (such as the least-square norm conventionally used). This leads to the common issue
of converging toward a non geologically informative local minimum, an issue that has been
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faced since the beginning of FWI applications (Gauthier et al., 1986), and which translates
into an erroneous reconstruction of the velocity model (Virieux and Operto, 2009). This non-
convexity with respect to time-shifts link with Claerbout’s “gap” between seismic imaging
methods. Indeed, if the misfit function could be made perfectly convex, it would allow starting
from a low-wavenumber initial model and iteratively build high-wavenumber updates, thereby
bridging the gap.

The non-convexity of the L2 misfit function with respect to time-shifts can be illustrated
easily in a straightforward and schematic example based on time-shifted Ricker wavelets. Let us
introduce a reference signal composed of one Ricker wavelet in the center, seen as the observed
data. Then, a second signal is created from a shifted in time version of the reference signal
(with a time-shift going from −1.5 to 1.5 s). The distance between the reference signal and
the calculated signal is then obtained using the L2 norm. Results are presented in Figure 1.5.
In this example, it can be observed that from time-shift superiors to ±0.12 s, the L2 norm
is not convex and presents local minimum and a flat part for time-shift superior to ±0.4 s.
This non-convex behavior of the L2 norm for time shift superiors to half the signal period
corresponds to the so-called cycle-skipping issue. As FWI relies on local optimization schemes
to be solved, converging toward a local minimum implies an erroneous reconstructed VP model,
with no possibilities to improve it.

Practically, the origin of time shifts between observed and calculated data can be easily
tracked down to erroneous low wavenumber content in the model, which generally relates to the
quality of the initial model. What could be referred to as a “good” initial model will predict the
data within less than half a period, allowing the L2-based FWI scheme to converge toward the
global minimum. A degradation in the initial model’s quality with erroneous low-wavenumber
background velocities will likely translate into cycle-skipped arrivals, leading to artifacts during
the reconstruction of the VP model. This illustrates the need for a good initial model already

n n + 1n – 1

n

Time (s )

n + 1nn – 1

T /2 T /2

n + 1n – 1

Figure 1.4: Schematic example of the cycle-skipping/phase-ambiguity issue on sinusoidal sig-
nals. As soon as the initial shift is larger than half a period, the signal’s fit using a least-squares
distance is performed up to one or several phase shifts. One may try to fit the n + 1 dashed
wriggle of the top signal with the n continuous wriggle of the middle signal moving in the
wrong direction. The bottom dashed signal predicts the n wriggle in less than a half-period
leading to a correct updating direction (from Virieux and Operto, 2009).
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Figure 1.5: Simple time-shifted Ricker wavelet (4 Hz) test for L2 misfit function. (a) presen-
tation of the setup, with reference signal (seen as dobs ) in solid black, and shifted signal in
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Figure 1.6: FWI schematic example for cycle skipping: (a) true model with spherical inclusion,
(b) homogeneous initial model 1, (c) homogeneous initial model 2.

inside the global valley when starting the FWI process.

The link between the initial model “quality” and correct FWI reconstruction can be eas-
ily illustrated, as shown in a canonical test based on a spherical inclusion with a cross-hole
acquisition (sources on the left, receivers on the right). The target is a simple square model
of 1 by 1 km, of homogeneous VP = 1300 m.s−1 , with a spherical inclusion in the center of
100 m radius with VP = 1700 m.s−1 (Figure 1.6 (a)). Two initial models are used, both being
completely homogenous VP , with one at the correct background velocity of the true model
(1300 m.s−1 ), while the second one is at 1700 m.s−1 (respectively (b) and (c) in Figure 1.6).
The data are generated with acoustic modeling using a Ricker wavelet with a central frequency
of 3 Hz. The difference between dobs and the two dcal (one for each initial model) is presented
in Figure 1.7. It clearly shows that the 2nd initial model, containing a faster VP , makes the
signal arrive “too soon” compared to the observed data, creating out of phases arrivals by
more than half a period. The results obtained with FWI starting from each initial model are
presented in Figure 1.8. With no surprise, the reconstruction is correct for initial model 1,
while results from initial model 2 present strong high-velocity artifacts, with no reconstruction
of the spherical inclusion and no correct background velocity. This exhibits the limitation of
L2 based FWI for inaccurate initial model.
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Figure 1.7: FWI schematic example for cycle skipping: traces for a source-receiver couple at
z = 500 m for dobs (solid black), dcal in the initial model (dashed black) and dcal in final
reconstructed VP model (solid red). (a) correspond to initial model 1, (b) to initial model 2.
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Figure 1.8: FWI schematic example for cycle skipping: reconstructed VP models using FWI
starting from (a) homogeneous intial model 1, (b) homogeneous initial model 2.

1.3.2 Classical approaches

The ideas developed here are solutions to successfully apply L2-based FWI, relying on data
and initial models available. This is often the combination of the folllowing elements.

1.3.2.1 Starting from a good initial model

The first condition to avoid convergence toward a local minimum is to start FWI from an
initial model m0, which is inside the global minimum basin of attraction. Traditionally, FWI
relies on using a good enough initial model that contains a correct approximation of the low
wavenumber content of the model. Usually, such models come from reflection tomography or
stereotomography (Lambaré, 2008). Unfortunately, these methods are based on travel-time
or reflected events picking, which is a time-consuming task that requires extensive human
expertise. Moreover, picking can introduce errors and uncertainties which will be propagated
through FWI. This again links to the famous “gap” as we attempt to bring higher wavenumber
content from tomography methods.

1.3.2.2 Data hierarchy

Complementary to the requirement of a good initial model, it is often required to select
“smartly” the data for inversion, following an approach known as data hierarchy (Bunks et al.,
1995; Pratt, 1999; Shipp and Singh, 2002; Wang and Rao, 2009; Brossier et al., 2009). As
low-frequency data are less subject to cycle-skipping (as illustrated in Figure 1.9), the idea is
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Figure 1.9: Same 1D setup as Figure 1.5, but this time comparing the influence of frequency
on the convexity. (a) 0.5 Hz Ricker wavelet, (b) 2 Hz Ricker wavelet, (c) 4 Hz Ricker wavelet.
(d) L2 misfit function values with respect to time-shifts for the three different frequency cases.
The width of the basin of attraction of the misfit function is enlarged for lower frequencies.

Figure 1.10: Illustration of frequency-continuation approach used in FWI; here, on a shallow
near-surface target of 30 m (from Irnaka, 2021). FWI is started on a 3 to 25 Hz frequency
band, then higher frequency are progressively introduced with an upper limit of 45 Hz then
finally 65 Hz. A clear improvement in resolution (smaller wavenumber content) is observed for
higher frequency data.

to start the inversion using the lowest available frequencies while restricting higher frequency.
Then, higher frequencies are progressively introduced following a multi-scale approach as shown
in Figure 1.10 (Sirgue and Pratt, 2004).

Another level of data hierarchy consists of restricting the temporal/offset selection of the
data to reduce the number of propagated wavelengths interpreted. By doing so, the shallow
part of the reconstructed models can be recovered first, while later on, deeper updates are
progressively introduced (Shipp and Singh, 2002; Brossier et al., 2009; Sears et al., 2010; Kamei
et al., 2013; Górszczyk et al., 2017). We use this strategy for the field-data application in this
thesis, and an illustration can be found in Figure 3.11. Practically, these two levels of data
hierarchy are often used together to obtained successful FWI applications on field data, no
matter what other methods are used to tackle the non-linearity of FWI.
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1.3.3 Reformulating the FWI problem

Nonetheless, even if the conditions details previously should allow successful FWI applications,
they are not easy to gather or can even be insufficient to tackle some specific cases (such as
sub-salt imaging). Therefore, finding other solutions to mitigate the non-linearity of FWI has
been the motivation for a large number of studies in the past decades. Two main lines of
investigation can be identified, which both boil down to reformulating the FWI problem.

1.3.3.1 Extension strategies

One way of seeing the non-linearity of FWI is that FWI is based on a reduced-space approach
used to solve the PDE-constrained optimization problem, which is non-linear. Therefore, to
mitigate this non-linearity, adding artificial degrees of freedom to the problem has been pro-
posed. This corresponds to the first line of investigation and regroups methods often referred
to as “extension strategies”. The philosophy behind this is to artificially introduce supple-
mentary degrees of freedom to the FWI problem in the hope to match data in early iterations
(and therefore reduce cycle-skipping sensitivity). To ensure convergence, these artificial de-
grees of freedom are constrained to converge to zero to recover a correct and physical velocity
reconstruction.

These methods have been historically developed with model-based extension, known as
migration velocity analysis (MVA) methods (Symes, 2008). MVA is based on scale separation
assumption: subsurface parameters can be decomposed into two parts, a smooth macro-velocity
background model and a sharp high-wavenumber reflectivity model. Using this scale separation,
MVA introduces artificial degrees of freedom in the reflectivity model. The goal is to update
the macro-velocity model to focus the energy of the extended reflectivity model at zero in
the artificial dimension. Mathematical analysis shows that in a transmission regime, the new
extended problem of FWI asymptotically converges toward a travel-time tomography problem
known to be convex. Unfortunately, MVA suffers from two main drawbacks. The first one
relates to the high computational cost of building extended reflectivity hypercubes. The second
one corresponds to a more fundamental difficulty and is related to the difficulty faced by MVA
to handle properly complex data with multi-arrival and multiple reflections (Cocher et al.,
2017).

More recently, as an attempt to solves the issue affecting MVA, a new class of extension
strategies has emerged, with a different way of introducing artificial degrees of freedom, for
example, at the source level with source extension strategy. These methods are referred to
as matched source waveform inversion (MSWI) (Huang et al., 2018a,b). These technics have
shown promising results in 2D synthetic cases using frequency-domain FWI. Still, their imple-
mentation for time-domain FWI is under development (Wang et al., 2016; Aghamiry et al.,
2020). The reason behind the preference for frequency-domain FWI for MSWI boils down to
the fact that MSWI requires the solution of a square wave propagation problem that is easily
obtained through the harmonic wave equation based on a direct solver, which is much more
difficult to obtain for time-domain time-stepping algorithms. This represents a disincentive to
3D field data application as time-domain FWI remains the methods of choice for this kind of
targets (frequency-domain FWI is for now limited to moderate-size targets as there is a lack of
scalability of the direct solvers used to solve harmonic equations, see Li et al. (2020) for a recent
review on the status of direct solvers to solve large scale harmonic wave equation problems).
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MSWI methods can be seen as an equivalent of a class of methods that have been previ-
ously introduced to FWI: wavefield reconstruction inversion (WRI) method (van Leeuwen and
Herrmann, 2013, 2016; Aghamiry et al., 2019). A parallel can also be drawn with deconvolution
approaches, with one of the most documented ones being adaptive waveform inversion (AWI)
by Warner and Guasch (2016), which can be recast as an MSWI technique. This is interesting
as AWI can also be seen as an alternative misfit function (which will be the second line of
investigation for reformulation of the FWI problem), indicating that the distinction between
the two families is not as straightforward as one could think.

Finally, we can note that another type of extension strategy can be made with the extension
being made at the receiver location (Métivier and Brossier, 2020). This new formulation
bypasses the needs for square wave propagation operators and is therefore directly applicable
to time-domain FWI with reasonable computational cost. This method has, however, not yet
been tested on field data so far.

1.3.3.2 Alternative misfit functions

Another way of seeing the non-linearity of FWI relates to how the data is interpreted. As
low-wavenumber content of the initial model mainly generates kinematic shifts in the data
(time-shifts), the non-convexity of the least-squares (L2 ) misfit function with respect to time-
shifts partially explains the non-linearity of FWI (Jannane et al., 1989). This non-convexity
with respect to time-shifts of the L2 norm is the cause of the well-documented cycle-skipping
issue.

Hence, the second line of investigation to mitigate the non-linearity of FWI is to reformulate
FWI by replacing the L2 misfit function used to compare the observed and calculated data
with a more convex alternative. This idea is at the origin of a large variety of more-convex
alternative misfit functions that have been proposed in the literature. This will be the subject
of the analysis performed in the next chapter.
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2.1 Introduction

abstract

Full waveform inversion, a high-resolution seismic imaging method, is known to require suf-
ficiently accurate initial models to converge toward meaningful estimations of the subsurface
mechanical properties. This limitation is due to the non-convexity of the least-squares distance
with respect to kinematic mismatch. We propose a comparison of five misfit functions promoted
recently to mitigate this issue: adaptive waveform inversion, instantaneous envelope, normal-
ized integration, and two methods based on optimal transport. We explain which principles
these methods are based on and illustrate how they are designed to better handle kinematic
mismatch than a least-squares misfit function. By doing so, we can exhibit specific limitations
of these methods in canonical cases. We further assess the interest of these five approaches for
application to field data based on a synthetic Marmousi case study. We illustrate how adap-
tive waveform inversion and the two methods based on optimal transport possess interesting
properties, making them appealing strategies applicable to field data. Another outcome is the
definition of generic tools to compare misfit functions for full-waveform inversion.

2.1 Introduction

Full waveform inversion (FWI) is a high-resolution seismic imaging method dedicated to recon-
structing the mechanical properties of the subsurface (Devaney, 1984; Pratt and Shipp, 1999;
Plessix and Perkins, 2010; Raknes et al., 2015; Górszczyk et al., 2017). It is formulated as an
iterative process based on minimizing a function measuring the misfit between observed and
calculated data over a space of model parameters describing the subsurface. The resolution
improvement FWI can procure, compared with standard tomography methods, is used to sig-
nificantly improve depth-migration images or even produce directly interpretable quantitative
estimates of the subsurface mechanical properties (Shen et al., 2018). FWI is applied at mul-
tiple scales, from global and regional scales in seismology to exploration scale for the oil &
gas industry, and even, more recently, at near-surface scale for geotechnical applications. A
thorough review of FWI and its applications can be found in Virieux et al. (2017).

FWI suffers from a significant shortcoming in its classical formulation: the non-convexity
of the least-squares (L2 ) misfit function on which it is conventionally based.

This non-convexity of the misfit function is an issue because the iterative process on which
is based FWI is a local optimization algorithm. Standard size for realistic applications makes
global optimization strategies beyond modern high-performance computing platforms current
and predictable capabilities. Therefore, if the initial model used is too far away from the global
minimum, FWI converges toward a potentially non geologically informative local minimum.
This constraint leads to the need for an accurate enough initial model to ensure convergence
toward the global minimum of the misfit function.

In a physical sense, the non-convexity of the L2 misfit function is associated with a phe-
nomenon known as cycle-skipping. It appears when the calculated data are shifted (in time)
from more than half a period (corresponding to the signal dominant frequency) compared to
the observed data. If the time-shift between observed and calculated data is larger than half
a period, the minimization of the L2 norm between the two signals will “skip” a phase and
align the two signals on the closest phase (hence the name, cycle-skipping). This ambiguity
translates into an erroneous reconstruction of the velocity model (Virieux and Operto, 2009).
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This limitation of FWI has been documented since its origin (Gauthier et al., 1986). To
address this limitation in practical cases, the workflow generally relies on data hierarchy (Bunks
et al., 1995; Pratt, 1999; Shipp and Singh, 2002; Wang and Rao, 2009; Brossier et al., 2009).
The historical approach consists in interpreting first the lowest frequency available (around
2 to 4 Hz for seismic exploration targets), then progressively introducing higher frequency
data, following a multi-scale approach (Sirgue and Pratt, 2004). The lowest frequencies are, by
definition, less subject to cycle-skipping. The second level of data hierarchy can then be defined
by playing on temporal and/or offset selection of the data. The idea is to reduce the number of
propagated wavelengths that are interpreted simultaneously, hence reducing the risk of cycle-
skipping. In practice, this second level corresponds to first reconstructing the near-surface and
progressively introducing deeper updates referred to as layer stripping approach.

Successful practical applications at the exploration scale often rely on the conjunction of
these approaches as well as the design of an accurate initial starting model, obtained, for in-
stance, through reflection tomography or stereotomography (Lambaré, 2008). Nonetheless, the
conditions detailed previously to obtain a satisfactory FWI result are not always gathered. For
instance, low-frequency data around 2 to 4 Hz are not always available or of sufficient quality.
Moreover, obtaining low-frequency can increase the cost of acquisition, or can sometimes not
be physically possible, or can even compromise the quality of the high frequency needed to
obtain a very high resolution. Accurate initial model building can also be a time-consuming
and challenging task requiring strong human expertise as it generally relies on tomography
methods based on travel-time or reflected event picking. It also relies on prior information
coming from geology or well logs; all of these require human expertise. This makes FWI less
robust and reduces its range in terms of applications.

Mitigating the sensitivity to initial model quality has been the motivation for a large number
of studies in the past decades. Two main lines of investigations can be identified, both leading
to the reformulation of the conventional least-squares FWI problem.

Considering the first line, we regroup methods that can be cast under the frame of “ex-
tension strategies”. It is not our purpose to give an extensive overview of these methods here,
but we try to sketch their main ingredients. The philosophy of extension strategies consists in
introducing supplementary degrees of freedom to the FWI problem, which can match the data
in the early iterations of the FWI process to avoid cycle-skipping. Relaxing iteratively the use
of these artificial degrees of freedom should lead to a correct subsurface model estimation.

Historically, these methods derive from migration velocity analysis (MVA) (Symes, 2008).
MVA relies on the scale separation assumption. The subsurface parameters to recover are
decomposed as a smooth macro-velocity model and a high wavenumber content reflectivity
model. Artificial degrees of freedom are introduced at the reflectivity level by introducing an
extra dimension on offset, subsurface offset, or time-lag. The MVA problem is formulated as the
iterative update of the macro-velocity model to focus the energy of the “extended” reflectivity
model at zero in the artificial dimension. These methods have benefited from in-depth math-
ematical research work, leading to a clear understanding of their foundations, thanks to the
theory of pseudo-differential operators. However, their application to field data is still limited,
mainly because of two issues. First, the repeated construction of high-dimensional reflectivity
cubes is computationally demanding. Second, the macro-velocity model construction through
MVA is complicated as soon as complex data with multi-pathing and multiple reflections are
considered.
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More recently, another class of extension strategies has emerged. As opposed to model space
extension, the artificial degrees of freedom are introduced at the source level, following a source
extension strategy (Huang et al., 2018a; van Leeuwen and Herrmann, 2013). These methods
have shown interesting promises in 2D synthetic case studies. However, their application to
3D field data seems still limited, mainly because of the difficulty of applying these methods
in the time-domain. Current solutions either rely on relatively crude approximations (Wang
et al., 2016) or on a sophisticated iterative solution, which increases the computational cost of
the approach significantly (Aghamiry et al., 2020).

The second investigation line relies on reformulating the FWI problem using an alterna-
tive measure of the distance between observed and calculated data, namely a different misfit
function. A large variety of approaches have been proposed on this framework. The first
proposed along this line is to use cross-correlation measurements (Luo and Schuster, 1991),
a strategy later revisited by van Leeuwen and Mulder (2010). The idea behind this is that
cross-correlation should give access to the time-shifts between synthetic and observed traces.
A misfit function based on the minimization of these time-shifts, resembling a tomography
misfit function, should thus be less prone to cycle-skipping. The original approach of Luo and
Schuster (1991) was labeled as “wave equation tomography” strategy.

However, when seismic traces contain multiple seismic events, the cross-correlation measure-
ment might fail to give a correct estimation of a potential time-shift. This is why deconvolution
based approaches have been later promoted, first by Luo and Sava (2011), then improved by
Warner and Guasch (2016). The latter approach has been labeled as “adaptive waveform
inversion” (AWI) and is based on a normalized deconvolution of the synthetic and observed
seismic traces. It has shown very interesting properties both on synthetic and field data. The
deconvolution of the traces yields a Wiener filter, which is then normalized and serves as an
input for the misfit function. The misfit function penalizes the energy of the filter away from a
bandpass Dirac filter, which would have been obtained in the correct subsurface model. Note
that AWI shares some similarities with the extended source approach and can indeed be re-
cast in the frame of these methods (Huang et al., 2018a). This indicates that the separation
between extended methods and misfit function reformulation methods is not as watertight as
one could think. Nevertheless, it is useful to draw a landscape of the investigations around the
cycle-skipping issue in FWI.

Another family of misfit function modifications relies on transforming the signal itself prior
to comparison through a least-squares distance. Extracting the instantaneous phase and enve-
lope (Fichtner et al., 2008; Bozdağ et al., 2011) has been successfully used in seismology. The
goal of the instantaneous phase is to avoid amplitude prediction issues, as earthquake source
and receiver calibration are significant challenges in seismology. The use of the envelope to mit-
igate the cycle-skipping issue has also been developed in the framework of seismic exploration
(Wu et al., 2014). An interesting alternative consists of using a normalized integration of the
signal, namely the cumulative distribution of the traces. This approach has been promoted by
Donno et al. (2013).

Finally, optimal transport distances have also been promoted to derive alternative misfit
functions for FWI. The motivation is to benefit from the convexity of the optimal transport
distance with respect to translation and dilation, which provides a misfit function convex with
respect to time-shifts, this being a good proxy for convexity with respect to seismic velocities
(Engquist and Froese, 2014; Métivier et al., 2018). The main difficulty in applying optimal
transport in the framework of FWI is that the optimal transport theory is developed to compare
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probability distributions, therefore positive functions with the same total integral. Seismic data
do not fulfill this assumption.

To overcome this difficulty, different options have been promoted. For instance, one can
rely on a prior transformation of the signal, such as extraction of positive and negative parts,
squaring the data, affine scaling, exponential transform, softmax transform (Engquist and
Froese, 2014; Qiu et al., 2017; Yang et al., 2018b; Yang and Engquist, 2018). This has been
shown effective in some synthetic cases. However, relevant seismic information might be lost
in the process of these transformations.

One solution is to rely on a specific optimal transport distance, which can be extended to
comparing non-positive data. This is the Kantorovich-Rubinstein optimal transport (KROT)
approach, which has been promoted in Métivier et al. (2016c,a,b), and which has been suc-
cessfully applied to 3D synthetic elastic data (He et al., 2019b) as well as to field data (Poncet
et al., 2018; Messud and Sedova, 2019; Sedova et al., 2019). One interest of this approach is
its ability to account for lateral coherency in 2D or 3D shot gathers. One shortcoming is that,
even if the valley of attraction is wider, compared with the L2 approach, the convexity property
of the optimal transport distance with respect to time-shifts is lost.

Another option has been promoted more recently. Considering each discrete seismic traces
as point clouds and computing the optimal transport distance between synthetic and observed
points clouds provide a new distance measurement. This specific optimal transport problem
can be cast as a linear assignment problem, for which efficient solvers exist, for point clouds
containing a few hundred to thousands of points, a situation we encounter for realistic scale
exploration case studies (Métivier et al., 2018, 2019). The benefit of this graph-space optimal
transport (GSOT) strategy is its ability to recover the convexity with respect to time-shifts.
Compared with the KROT approach, GSOT is a trace-by-trace strategy that does not make it
possible to account for lateral coherency. GSOT has been successfully applied to 3D synthetic
and field data (He et al., 2019a; Pladys et al., 2019; Li et al., 2019; Górszczyk et al., 2019).

As can be seen, numerous investigations motivated by the inherent ill-posedness of the
FWI problem have been lead in parallel. To our knowledge, no cross-comparison has been
proposed so far, which is undoubtedly a lack. The first motivation of this study is to start
developing tools that could be used to benchmark different FWI strategies. However, beyond
a simple comparison of FWI strategies, we would like to highlight specific characteristics that
an ideal misfit function should satisfy to render the FWI problem less ill-posed. Cycle-skipping
is certainly an issue, but we also show that other criteria than robustness with respect to
cycle-skipping should be considered, such as:

• sensitivity to the signal polarity;

• applicability in the framework of complex/multi-arrival data;

• number of tuning parameters and sensitivity to these parameters;

• sensitivity to wrong amplitude prediction and inaccurate wavelet estimation.

To illustrate these properties, we select a series of synthetic case studies of increasing complex-
ity, from time-shifted Ricker traces to a realistic Marmousi II case study (not in inverse crime
settings). We restrict our attention to five misfit functions, which have been promoted recently
and have shown promising results: adaptive waveform inversion (AWI), instantaneous envelope
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(IE), normalized integration method (NIM), KROT, and GSOT. We consider extended space
strategies out of the scope of this study to keep it reasonably simple, and also because, as stated
before, we consider that alternative misfit strategies have shown more promising results than
extended space strategies so far in terms of practical applications. The tests that we develop
here could, however, be used to benchmark extended space strategies also.

2.2 General FWI framework and misfit function formulation

The comparison between misfit functions is made simple by the FWI formalism (reviewed in the
following section), more precisely by the adjoint state strategy used to compute the gradient at
each iteration of the minimization loop. However, let us recall the main result: a modification
of the misfit function results only in modifying the adjoint source. Therefore, implementing
different misfit functions in the same FWI code can be done directly by isolating misfit function
evaluation and adjoint source computation in different subroutines.

2.2.1 General framework

The FWI problem can be written as

min
m

f [m] = F (dcal[m], dobs) , (2.1)

where the subsurface parameters are denoted by m, dobs is the observed data, dcal[m] is the
synthetic data, and F is a generic function measuring the misfit between dobs and dcal. Under
general notation, dcal[m] is obtained through the extraction of the values of wavefield at the
receivers location such that

dcal[m] = Ru[m] , (2.2)

where R is an extraction operator and u[m] is the solution of the wave propagation problem

A[m]u = b , (2.3)

with A[m] a generic wave propagation operator (from acoustic to visco-elastic).

The solution of the minimization problem 2.1 is computed through local optimization fol-
lowing the iteration

mk+1 = mk + αk∆mk (2.4)

starting from an initial guess m0. In eq. 2.4, αk is the steplength, which should satisfy the
Wolfe criterion (Nocedal and Wright, 2006), and ∆mk is the descent direction, given by

∆mk = −P [mk]∇f [mk] , (2.5)

where ∇f(mk) is the gradient of the misfit function f [m] and P [mk] a preconditioner approx-
imating the inverse Hessian operator

P [mk] ' H[mk]
−1, H[mk] = ∇2f [mk]. (2.6)

Following the adjoint state strategy (Plessix, 2006), the gradient is given by

∇f [m] =

(
∂A

∂m
u, λ

)
, (2.7)
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where (., .) is the Euclidean scalar product in the wavefield space, and λ is the adjoint field,
solution of the adjoint equation

A(m)Tλ = s , (2.8)

where s is the generic adjoint source, given by

s = −RT
(
∂F

∂dcal

)
. (2.9)

Note that in the case of the L2 norm, we recover immediately that

s = −RT (Ru[m]− dobs) , (2.10)

i.e. the adjoint source is equal to the residual (difference between observed and calculated
data).

Next, we review the formulas for the five misfit functions selected in this study, as well
as their corresponding adjoint sources. For convenience, we will introduce the distance mea-
surement function associated with each strategy for a single source/receiver couple, except for
the KROT strategy. The calculated and observed data will be denoted by dcal(t) and dobs(t)
unless stated otherwise. Except for KROT, the final misfit function is built as a sum over each
source/receiver couple of this distance measurement function, and by linearity, the resulting
adjoint source is also obtained by summation.

2.2.2 Adaptive waveform inversion

We give here the AWI formalism. We have

FAWI(dcal, dobs) =

∫ T

0
|P(τ)w(τ)|2 dτ∫ T

0
|w(τ)|2 dτ

, (2.11)

where w(t) is the Wiener filter which either transforms the calculated dcal(t) into the observed
data dobs(t) (forward AWI) or the opposite way around (reverse AWI). Both implementations
are discussed in Warner and Guasch (2016). Also, the computation of w(t) can be implemented
either in the time-domain or the frequency-domain. In both cases, a water level ε is required
to stabilize the deconvolution operation.

The role of the function P(τ) is to penalize energy at non-zero time lag. There are several
possibilities to define this penalty function. Here we focus only on a Gaussian formulation
defined as

P(τ) = e−τ
2/σ2

, (2.12)

where σ is a tuning parameter controlling the width of the Gaussian function away from 0
time-lag. This σ tuning parameter is defined in seconds and corresponds to the maximum
expected time-shift between the observed and calculated data.

In the case of a frequency-domain reverse AWI implementation, the adjoint source for a
single-trace reads

∂FAWI

∂dcal
=

∫
dτ (P(τ)− 2F (dcal, dobs))w(τ)p(t+ τ)∫

dτ w2(τ)
, (2.13)
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where

p(t) ≈
∫

dω
d̂obs(ω)eiωt

d̂∗obs(ω)d̂obs(ω) + ε
, (2.14)

with ε defined as

ε = (max
ω
|dobs(ω)|)ζ . (2.15)

In eq. 2.15, ζ is a user-defined damping ratio, ranging from 10−2 to 10−5 in our experiment.
A large ζ will help when trying to tackle large time-shift, with a “smoothing/regularizing”
effect. Large ζ is also required if there is noise on the data. A smaller ζ will help preserve
small features present in the signal. In terms of computational cost, the overhead associated
with the computation of the Wiener filter is negligible, and the AWI strategy can be easily
implemented.

2.2.3 Instantaneous envelope

The separation of the phase and envelope information of the signal relies on the use of the
analytical function defined as follows. For a given time signal d(t), the analytical signal d̃(t) is
defined as

d̃(t) = d(t) + iH[d(t)] , (2.16)

where H is the Hilbert function which can be defined in the time domain as

H[d(t)] =
1

π
P

+∞∫
−∞

d(τ)

t− τ
dτ , (2.17)

where P stands for the Cauchy principal value. Practically, we do not use the time formulation
of the Hilbert function, but rather a frequency domain formulation that gives us the analytical
signal in a three-step approach (Marple, 1999):

• Compute the Fourier transform of d(t) using an FFT

• Change the negative frequency to zeros

• Compute the inverse Fourier transform

This directly gives us access to the analytical signal and, by extension, to the Hilbert transform
by taking its imaginary part

H[d(t)] = I[d̃(t)] . (2.18)

The analytical signal allows to separate the signal as the combinaison of the instantaneous
phase φ(t) and the instantaneous envelope E(t):

d̃(t) = E(t)eiφ(t) . (2.19)

Thus, the intantaneous enveloppe E(t) can be simply defined as:

E(t) =

√
R[d̃(t)]2 + I[d̃(t)]2 . (2.20)
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We can define a new distance-measurement function using instantaneous envelope as

FIE(dcal, dobs) =
1

2

T∫
0

|Ecal(t)− Eobs(t)|2dt , (2.21)

where Ecal and Eobs are instantaneous envelopes of the calculated and observed data respec-
tively. Following Bozdağ et al. (2011), the adjoint source is defined as:

∂FIE
∂dcal

=
(Ecal(t)− Eobs)dcal(t)

Ecal(t) + ε

−H
(

(Ecal(t)− Eobs)H(dcal(t))

Ecal(t) + ε

)
,

(2.22)

with ε a water level defined as
ε = (max

t
Eobs(t))ζ. (2.23)

Contrary to AWI, in the following experiments, ζ is fixed and taken at ζ = 10−5 for IE. We
have verified that the results with IE are not sensitive to this choice.

The instantaneous envelope misfit formulation is straightforward to implement thanks to
the algorithm from Marple (1999). No tuning parameter is required, and the computation cost
overhead is negligible.

2.2.4 Normalized Integration Method

Donno et al. (2013) consider the least-squares difference between the cumulative distributions
Qobs and Qcal. For a given time signal d(t), its normalized cumulative distribution Q(t) is
defined by

Q(t) =

∫ t

0
d(τ)2dτ∫ T

0
d(τ)2dτ

. (2.24)

The NIM misfit function thus relies on the distance measurement

FNIM (dcal, dobs) =
1

2

∫ T

0
|Qcal(τ)−Qobs(τ)|2dτ , (2.25)

where Qcal(t) and Qobs(t) are the cumulative distributions associated with dcal(t) and dobs(t)
respectively.

The corresponding adjoint source is

∂FNIM
∂dcal

(t) =
2dcal(t)∫ T
0 Qcal(t)

(∫ T

t
(Qcal(τ)−Qobs(τ))dτ

−
∫ T

0
Qcal(τ)(Qcal(τ)−Qobs(τ))dτ

)
.

(2.26)

The NIM implementation is straightforward and does not require any tuning parameters.
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2.2.5 Kantorovich-Rubinstein optimal transport distance

In the frame of the KROT approach, we consider the data as a function of both time and
receiver position, such that we denote the calculated and observed data as dcal(xr, t) and
dobs(xr, t) respectively.

The KROT is based on a particular instance of optimal transport distance, namely the
1-Wasserstein distance. It can be applied to non-positive data, provided mass conservation is
satisfied i.e. ∫

xr

∫ T

0
dcal(xr, t)dxrdt =

∫
xr

∫ T

0
dobs(xr, t)dxrdt . (2.27)

For a given shot in seismic data, this corresponds to the summation over each trace of the
mean value in time of the trace. We consider this mean value is equal to 0 (this is the zero-
frequency noise, which is usually removed from the data prior to inversion). Therefore the
mass conservation assumption is satisfied for seismic data.

On this basis, the KROT distance can be written as

FKROT (dcal, dobs) = max
ϕ∈Lip1

∫
xr

∫ T

0
ϕ(xr, t)

(
dcal(xr, t)

− dobs(xr, t)
)
dxrdt ,

(2.28)

where Lip1 is the set of 1-Lipschitz functions for the `1 distance

Lip1 =
{
ϕ(xr, t), |ϕ(xr, t)− ϕ(x′r, t

′)| < |xr − x′r|+ |t− t′|
}
. (2.29)

The adjoint source is then given by

∂FKROT
∂dcal

= ϕ(xr, t), (2.30)

where

ϕ(xr, t) = arg max
ϕ∈Lip1

∫
xr

∫ T

0
ϕ(xr, t) (dcal(xr, t)− dobs(xr, t)) dxrdt . (2.31)

Compared with previous misfit functions, the final misfit is obtained here by summation over
shot gather, and not a summation over source/receiver couples (not a trace-by-trace approach).

From the above equations, we see that the computation of the KROT misfit function and
its corresponding adjoint source requires solving a constrained maximization problem per shot
gather. Details on how to solve this problem are given in Métivier et al. (2016c). The proximal
splitting algorithm ADMM is used (Combettes and Pesquet, 2011) and the resulting algorithm
has complexity in O(N logN), where N = Nr × Nt with Nr the number of receivers and Nt

the number of time samples. Compared with the previous misfit functions, the computational
cost overhead is non-negligible. Tuning parameters will be associated with a prior scaling of
the data to make its maximum amplitude close to 1, and the number of iterations required to
solve the constrained maximization problem.
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2.2.6 Graph space optimal transport distance

Let (ti, d(ti), i = 1, . . . , N) be the discrete graph of the time function d(t). This discrete graph
is a point cloud containing N points. The GSOT distance measurement is formulated as

FGSOT (dcal, dobs) = min
σ∈S(N)

N∑
i=1

ciσ(i), (2.32)

where cij is the L2 distance between the points of the discrete graph of dcal and dobs, namely

cij = |ti − tj |2 + η2|dcal(ti)− dobs(tj)|2, (2.33)

and S(N) is the ensemble of permutations of (1 . . . N). The function FGSOT corresponds to
the 2-Wasserstein distance between the discrete graph of the calculated trace dcal(t) and the
observed trace dobs(t).

The scaling parameter η in eq. 2.33 controls the convexity of the misfit function fGSOT with
respect to time-shifts. In practice, we define it as

η =
τ

A
, (2.34)

where τ is a user-defined parameter corresponding to the maximum expected time-shift between
observed and calculated data in the initial model, and A is the maximum amplitude discrepancy
between observed and calculated data.

The adjoint source of the misfit function fGSOT [m] is computed from ∂fGSOT
∂cal

using the
adjoint-state strategy. We prove in Métivier et al. (2019) the following equality: denoting σ∗

the minimizer in eq. 2.32, we have

∂fGSOT
∂cal

= 2
(
dcal − dσ

∗
obs

)
, (2.35)

where
dσ

∗
obs(ti) = dobs(tσ∗(i)) . (2.36)

In this sense, the GSOT approach can be viewed as a generalization of the L2 distance: the
adjoint source is equal to the difference between calculated and observed data at time samples
connected by the optimal assignment σ∗. Similarly, as the KROT approach, the solution of
the problem 2.32 provides the information to compute both the misfit function and the adjoint
source.

The numerical algorithm used to solve the linear assignment problem 2.32 is the auction
algorithm (Bertsekas and Castanon, 1989). For problems involving less than 1000 points, the
auction algorithm is very efficient. In seismic exploration, Nyquist sampling yields traces con-
taining a number of points within this order of magnitude. Consequently, we have designed an
efficient numerical strategy, yielding lower computational overhead than the KROT approach.
On 3D field data application, we observe 15 to 20% computation time increase for gradient
computation on the lowest frequency bands compared with classical L2 . This computational
cost overhead decreases when the frequency band increases as the total complexity of the GSOT
problem is O(ω3), while the complexity of the wave propagation solver is in O(ω4). For more
details, the reader can refer to Métivier et al. (2019).
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Compared with previous approaches, the computational cost overhead is comparable with
AWI, IE, and NIM while being lower than KROT. In terms of implementation, as for KROT,
the solution of the assignment problem requires specific solvers, which makes the GSOT im-
plementation less trivial than for AWI, IE, or NIM. In terms of tuning parameters, the more
important parameter is the parameter τ , which controls the convexity of GSOT misfit function
with respect to time-shifts.

2.3 A simple convexity analysis based on time-shifted Ricker
wavelets

We start by investigating the convexity of the proposed misfit functions with respect to time-
shifts. We fix a reference signal composed of one Ricker wavelet in the center, seen as the
observed data. The calculated data is the same Ricker wavelet, shifted in time with a time-
shift going from −1.5 s to 1.5 s. We compute the distance between the reference signal and
the calculated signal using the five selected misfit functions, depending on the input time-shift.
Results are presented in Figure 2.1.

The results obtained here with alternative misfit functions might not reflect the performance
of the algorithms with total accuracy, both in terms of computational efficiency and inversion
results. Algorithms might not have been implemented in the most optimal way or in the way
the original authors intended. Subtle choices of tuning parameters might improve the inversion
results in some cases. However, the primary purpose of this comparison is to seek to understand
how the data is interpreted within each of these strategies and how this affects the inversion
results in each case. We intend to provide the reader with sufficient material to infer the main
properties and philosophy behind the compared methods.

Let us first analyze the results obtained with L2 waveform misfit, the reference for FWI.
As expected, L2 misfit displays a narrow basin of attraction, with local minima and a flat part
for time-shift superior to 0.4 s. The local minimum appears when the time-shift is larger than
0.12 s, which corresponds to half the Ricker wavelet period. This validates that the L2 misfit
function presents low robustness for shifted-patterns, leading to cycle-skipping when signals
are shifted by more than half a period. In such cases, L2 misfit function does not guarantee
convergence toward the global minimum.

We can now compare the selected alternative misfit functions to the L2 misfit. From
the obtained results, we can define two groups. The first one contains GSOT, AWI, and
NIM, characterized by a large basin of attraction. The second group contains IE and KROT,
characterized by a “slightly” larger basin of attraction than L2 , but not as wide as the first
group members.

Understanding why the first group members exhibit the convexity property is essential.
Starting with GSOT, if the input parameters τ is correctly set to the maximum expected time-
shift of 1.5 s, the convexity to shifted-patterns is expected as there is a direct link between the
τ parameters and the width of the basin of attraction as shown in Métivier et al. (2019).

The same convexity property is observed with AWI. With σ set to 1.5 s, the results are
satisfying with a large basin of attraction. Similarly as the τ parameter from GSOT, σ directly
controls the convexity to shifted-patterns. Note that we use ζ = 10−5 in this analysis as we
predict signal with machine precision.
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Finally, to understand the robustness of the NIM approach, we display in Figure 2.2 the
quantities Qobs and Qcal (for three time-shifts, −1.5 s, −0.1 s and in-phase). This makes visible
the drastic modification of the signal shape induced by NIM. The NIM cost function boils down
to be the area under the curve delimited by Qobs−Qcal. We see clearly that this area increases
with time-shifts, illustrating the convexity to shifted patterns observed with NIM.

Moving to the second group, to understand why the IE misfit only slightly increases the
width of the valley of attraction compared with L2 , we display in Figure 2.3 the quantities Eobs
and Ecal. Here we can observe the increase of temporal support of the signal induced by the
envelope. This “broader” temporal support of the instantaneous envelope directly translates
into the increase of the width of the valley of attraction as IE relies on a L2 norm between Eobs
and Ecal.

Finally, we present in Figure 2.4 the function ϕ(t) solution of the maximization problem
defined in eq. 2.31, which defines the KROT distance, together with the residuals dobs(t) −
dcal(t). We can observe that when Ricker wavelets start to overlap at −0.3 s, we obtain a
convexity that classical L2 cannot achieve. This can be understood by looking at the function
ϕ(t) [dobs(t)− dcal(t)]. The area below the curve defined by this function corresponds to the
KROT misfit function. This area remains constant as long as the two signals do not overlap
and monotonically decrease as soon as the two signals overlap, reaching 0 at 0 time-shift.

On a second test, presented in Figure 2.5, we introduce a second Ricker wavelet that
remains in phase. This test aims at validating the robustness to cycle-skipping when multiple
arrivals are considered. From the results obtained, we observe that all misfit functions behave
similarly as on the previous test except for AWI. In this case, the shape of the misfit function
seems affected by oscillations near 0 time-shift, reducing the effective convexity to the one of
classical L2 formulation. This seems to be related to one of the potential issues of deconvolution
based misfit function: the sensitivity to cross-talks between multiple events. To analyze this
sensitivity of AWI to multi-arrivals, we display the Wiener filters together with the penalty
function and the combination of both (Figure 2.6). In test B (where one wavelet is always
in-phase), the Wiener filter presents a strong peak at 0 time-lag due to the in-phase arrivals.
Because of finite frequency effect, it is not a Dirac delta function but a bandpass Dirac delta
function. The oscillations of the bandpass delta function combine in a destructive/constructive
manner when the two time-shift peaks (one for each Ricker wavelet) get closer to each other.
These interferences are at the origin of the local minima observed.
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Figure 2.1: Comparison of several misfit functions in a simple 1D case for one shifted arrival.
The arrival is set to be a Ricker wavelet with a central frequency of 4 Hz. (a) represents the
signal used for the test (with only one arrival at the center). The fixed reference signal is
displayed in continuous black. The shifted signal is displayed in dotted black (here for +1.5 s).
(b) represents the normalized misfit function values with respect to the time-shift (from −1.5 s
to 1.5 s).
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Figure 2.2: (a) quantities Qobs and Qcal for three time-shifts (−1.5 s in green, −0.1 s in blue
and “in phase” in dashed red). (b) the area under the curve for Qobs − Qcal for the three
time-shifts.
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Figure 2.3: Eobs and Ecal for three time-shifts (−0.5 s, −0.2 s and in phase).
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Figure 2.4: Detail for ϕ(t) from KROT. (a) the setup with dobs (in black) and dcal for two
time-shifts (−0.3 s in red and −0.15 s in blue). (b) shape of L2 and KROT misfit function
with respect to time-shifts, red and blue cross represent the positions of the two time-shifts
selected. (c) and (d) respectively display ϕ(t) and dobs − dcal for the two time-shifts of −0.3 s
and −0.15 s. (e) the area under the curve for ϕ(t)(dobs− dcal) quantity for the two time-shifts.
This last quantity is used to get the misfit function value after time integration.
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Figure 2.5: Same as Figure 2.1 but with two Ricker wavelets with one shifted (left) and one in
phase (right).
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Figure 2.6: AWI analysis with two setups: test A and test B. (a) test A both wavelets shift,
(b) test B only the left wavelet is shifted, the right one being always in phase (similarly
to Figure 2.5). (c) shape of AWI misfit function with respect to time-shift in both cases.
The Wiener filters presented under are shown for a time-shift of −0.5 s (black cross on the
misfit). (d) Wiener filters (w(t)) and the Gaussian penalty function P(t). (e) the Wiener filters
multiplied by the penalty function.
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2.4 FWI tests on two canonical examples

This section attempts to assess the pros and cons of the selected alternative misfit functions
on two schematic FWI tests, focusing on a different aspect of the information contained in a
dataset. The first test focuses only on transmission with a cross-hole acquisition. The second
test focuses mainly on reflection information. These two tests can be seen as a way of assessing if
the proposed misfit function can improve the FWI robustness (cycle-skipping in transmission in
the first test) while preserving the ability to correctly interpret reflection information (reflector
positioning and imaging in the second test)

Both tests are performed in 2D using our 2D/3D time-domain acoustic modeling and in-
version code in inverse crime settings (observed and calculated data are computed on the same
grid, without noise introduced in the data). Besides, we use a constant density model and
invert only for the P-wave velocity model. In both cases, the l-BFGS algorithm is used to min-
imize the misfit function, with FWI stopping criterion being a line search failure. The source
wavelet is a Ricker wavelet with a central frequency fref = 3 Hz. The gradient is smoothed
using a Gaussian filter with horizontal and vertical correlation lengths equal to 0.3 times the
local wavelength

λloc(x, z) = 0.3
vP (x, z)

fref
. (2.37)

2.4.1 FWI Test 1: transmission configuration

2.4.1.1 Case study presentation

This first case study focuses on transmitted energy. The exact model is defined as a square
of 1000 m sides with homogeneous VP = 1300 m.s−1 containing a spherical inclusion of 100 m
radius in the center with VP = 1700 m.s−1 (Figure 2.7). The acquisition mimics a crosshole
setting, with 96 sources on the left side of the model and 256 receivers on the right side.
The spacing is 10 m between sources and 3.8 m between receivers. The boundaries are all
set to absorbing layers (Bérenger, 1994) to avoid reflections and only focus on transmitted
events. The relatively strong contrast between the background and the anomaly generates an
identifiable diffraction pattern in the data. In this experiment, no preconditioning is applied
to the gradient. The lower and upper VP bound constraints are respectively set to 1000 and
2500 m.s−1 .

We introduce three starting homogeneous models (Figure 2.7). The first is at the true model
background velocity (1300 m.s−1 ). The second is at VP = 1700 m.s−1 , setting a challenging
FWI problem as the starting model is as fast as the inclusion. The third case is even more
challenging, with a starting homogeneous VP model at 1900 m.s−1 .

FWI results are presented in Figure 2.8 with reconstructed VP at the final iteration. Fig-
ure 2.9 presents traces for a single source-receiver couple representing the shortest path through
the spherical inclusion (straight horizontal path at 500 m depth). Traces are extracted from
data generated in the true model, initial model, and final reconstructed model for all misfit
functions.
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2.4.1.2 Results from initial model 1

We start the analysis with the “reference” initial model. As shown in Figure 2.9, this model
does not generate cycle-skipping (arrivals in the true model are less than half a period away
from the arrivals in the initial model). The objective is to retrieve the high-velocity spherical
inclusion in the center of the model. As expected, the L2 misfit function produces a correct
result: the inclusion is retrieved correctly, and the final data are in phase with the true data.
The vertical resolution is higher than the horizontal resolution as expected from the cross-hole
configuration. This has a lateral smoothing effect on the reconstructed anomaly, which explains
why its peak amplitude (around 1500 m.s−1 ) is lower than the amplitude of the true anomaly.
The five selected misfit functions produce equivalently good results in this configuration. In
all cases, the spherical anomaly is reconstructed with a similar resolution, and the data fit is
equivalent. In terms of parameter settings, we choose here τ = 0.2 s for GSOT and σ = 0.2 s
for AWI, a choice motivated by the absence of cycle-skipping. For AWI, we use ζ = 10−2 in
this transmission test (for all three models) to maximize the kinematic effects of AWI that
work better when ζ is relatively high, which acts as a regularization effect.

2.4.1.3 Results from initial model 2

As can be observed in Figure 2.9, the second initial model generates clear cycle-skipping in
the data. In this case, we expect the L2 misfit function to fail in reconstructing the anomaly.
Indeed, the L2 fails to converge and reaches the boundary set for the inversion. The final
synthetic trace does not match the observed trace. It is interesting to observe that four of the
five selected misfit functions succeed in reconstructing the background and the anomaly and
produce final synthetic traces in phase with the observed trace in this already quite challenging
test. The only alternative misfit function that fails is KROT, which could be expected from
the previous section (weak increase of robustness to cycle-skipping). AWI, IE, NIM and GSOT
show that the increase in convexity procured by these formulations is enough here to make
convergence achievable. The data-fit obtained with these methods is good in this case. In
terms of tuning parameters, τ and σ are increased to 0.35 s for GSOT and AWI, according to
the time-shift between the reference and the initial traces in the initial model.

2.4.1.4 Results from initial model 3

Finally, the initial model 3 generates an even more substantial cycle-skipping effect than model
2 (Figure 2.9). L2 and KROT still fail to converge to the correct model, as it was already the
case starting from model 2.

IE starts to exhibit diagonal cycle-skipping artifacts associated with the longest
source/receiver paths in this more challenging setting. This is expected from the time-shift
convexity analysis performed before: IE robustness to cycle-skipping is limited. AWI also
starts to exhibit artifacts close from the acquisition, while central anomaly is correctly re-
constructed (with σ = 0.6 s). NIM and GSOT (with τ increased to 0.6 s) achieve a relatively
satisfactory reconstruction of the background and anomaly, similar to the results obtained from
the previous background models.
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Figure 2.7: FWI Test 1: (a) true model, (b) initial model 1 with VP = 1300 m.s−1 , (c) initial
model 2 with VP = 1700 m.s−1 and (d) initial model 3 with VP = 1900 m.s−1 .
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Figure 2.8: FWI Test 1: VP results from FWI. First line corresponds to initial model 1,
second line to initial model 2 and third line to initial model 3. Each column corresponds to
reconstructed VP model from FWI using respectively L2 (a-c), AWI (d-f), IE (g-i), NIM (j-l),
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third column to initial model 3. Each line corresponds to reconstructed VP model from FWI
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2.4.2 FWI Test 2: reflection configuration

2.4.2.1 Case study presentation

This second case study focuses on reflected energy. We consider two different true models,
composed of a homogeneous background at 1500 m.s−1 and a velocity layer 100 m thick at 300 m
depth (Figure 2.10). In the first case, the velocity of the layer is set to 1600 m.s−1 , while in the
second case, the velocity of the layer is set to 1400 m.s−1 . The starting model is homogeneous at
the correct background velocity of 1500 m.s−1 (Figure 2.10). The surface acquisition comprises
96 sources and 512 receivers located close to the surface at 42 m depth. The spacing is 20 m
between sources and 3.8 m between receivers. We implement PML absorbing conditions on
the bottom and lateral sides of the medium to mimic a medium of infinite extension in these
directions and a free surface condition on the top of the model. A simple linear in-depth
preconditioner is also applied to compensate for geometrical spreading effects and accelerate
the convergence. The lower and upper VP boundaries for the inversion are respectively set to
1200 m.s−1 and 1800 m.s−1 .

This test analyzes how the reflected data is interpreted by FWI depending on the choice of
misfit function. The difference between the two exact models is only the sign of the velocity
change at the layer level: in one case, velocity increases; in the second case, it decreases. This
induces a change of polarity of the reflected wave, as clearly visible in Figure 2.11. We want
to identify how the different misfit functions are sensitive to this change of polarity.

49



ON CYCLE-SKIPPING AND MISFIT FUNCTIONS MODIFICATION FOR FULL-WAVE
INVERSION: COMPARISON OF FIVE RECENT APPROACHES

2.4.2.2 Results analysis

The reconstructed models are presented in Figure 2.12. Traces from the observed and synthetic
data in the initial and final models for zero offset couple (source and receiver at the same
position) located in the middle of the acquisition are presented in Figure 2.13. For visualization
purposes, we cropped over the reflection after the first arrival.

The L2 results are coherent with the expectation, with a correct reconstruction of the layer
in both cases. The L2 norm is sensitive to amplitude variation and polarity and is expected
to interpret reflected events correctly. As the background velocity is known, there is no cycle-
skipping in the initial model for the two target models. The data fit in both cases is perfect.

Together with L2 misfit function, results obtained with IE, KROT, and GSOT are equiv-
alently correct. This is expected from KROT and GSOT, which should behave similarly as
L2 when cycle-skipping does not occur. GSOT relies on τ = 0.2 s in this experiment. This
is somehow more surprising from IE, as one could think that the polarity of reflected events
might be lost in the envelope extraction process. However, this is not true in this case but
might be due to the inverse crime settings we are using. There is indeed a subtle change in the
envelope of the observed data between model 1 (positive layer) and model 2 (negative layer)
(Figure 2.14), which is enough to guide the inversion in the right direction. However, this is
probably possible only because the first arrival is correctly predicted. Small inaccuracies in
predicting the first arrival might be enough to impede a correct reconstruction using IE.

The results obtained with NIM are less satisfactory. In particular, the reconstruction of the
negative layer is altered by strong positive artifacts beneath the layer. In the opposite case,
negative artifacts also pollute the reconstruction of the positive layer, although the strength of
these artifacts seems weaker. Analyzing the data fit shows that NIM has difficulties reproducing
the reflection pattern in both cases (Figure 2.13). Spurious oscillations appear, which can
be associated with the positive artifacts observed on the model reconstruction. This lack
of sensitivity to the polarity is somehow expected. From NIM formulation, Qobs should be
more or less the same independently of model 1 or model 2 being used. This is illustrated in
Figure 2.14, where Qobs(t) is presented for both models (positive and negative layers). We can
observe that the difference between the two true models leads to a very marginal modification
of Qobs compared to Qcal. This is likely the explanation of the difficulties faced by NIM in
interpreting the reflected waves correctly.

Finally, the results obtained with AWI are incorrect for both the negative and positive VP
anomaly. From observing the data, we can see that the direct waves exhibit a clear dominance in
amplitude over the reflected events. Therefore, we expect the Wiener filter to be dominated by
the direct waves and only show a small imprint of the reflected waves that are of small amplitude
(≈ 1% of peak amplitude). This is illustrated by the Wiener filter shown in Figure 2.15 for
both positive and negative layer models. They indeed present a main event around 0 lag,
corresponding to the in-phase direct wave. Around 0.3 s, the imprint of reflected events is
very weak but still visible in the Wiener filters. This motivates us to use a large σ = 1 s
to maximize the information coming from the small reflected waves, together with a small
ζ = 10−5. However, these settings do not make it possible to obtain satisfactory results with
AWI. To have a deeper understanding of why AWI fails to reconstruct a proper VP model in
this case, we perform a sensitivity analysis of the misfit function with respect to the value of VP
in the layer. We compute the AWI misfit value (and L2 misfit value for reference) between dobs
and dcal(VP ). Here dobs corresponds to a shot gather in the center of the acquisition generated

50



2.4 FWI tests on two canonical examples

in the true model. dcal(VP ) corresponds to data generated in different models similar to the
true model, with as only varying parameter the layer velocity (ranging from ±100 m.s−1 around
the layer velocity of the true model). The results of this analysis are presented in Figure 2.16.
The L2 results are coherent with the expectation: the misfit function is convex with respect
to the variation of the layer velocity and presents a minimum when the velocity of the layer
used to generated dcal(VP ) is similar to the one of the true model used to generate dobs, so
respectively 1400 and 1600 m.s−1 . For AWI, we observed that the minimum is not aligned
with the correct velocity (1440 m.s−1 in the first case, 1610 m.s−1 in the second). This exhibits
the loss of sensitivity of AWI in this case, explaining the failure of convergence of the FWI.
Only reducing the σ below 0.04 s would make AWI behaves more like L2 and converge to a
result similar to the one of NIM. We do not think such a parameterization is interesting as it
prevents the advantages introduced by AWI, which is improved convexity, and still introduces
artifacts in the reconstructed model and computational overhead compared to L2 .

This second FWI test is a good illustration of the potential limitation that an alternative
misfit function mainly focused on resolving time-shift could introduce. Here AWI and NIM
have difficulties providing satisfactory results when the main arrival is correctly predicted. The
point to point approaches that classical L2 procures is here the “reference”, making possible
to fit the small perturbation properly following the main arrivals. AWI and NIM being more
kinematic oriented, it is not surprising that this setup is challenging for such formulations.
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Figure 2.10: FWI Test 2: (a) Homogeneous initial model (VP = 1500 m.s−1 ). (b) True model
with a negative VP anomaly, (c) true model with a positive VP anomaly.
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Figure 2.12: FWI Test 2: FWI layer benchmark results. Left column corresponds to a neg-
ative VP anomaly while the right column to positive VP . The subfigures under respectively
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2.5 Marmousi case study: toward a more realistic case study

2.5.1 Common framework

We design a synthetic case study using the Marmousi II P-wave velocity model (Figure 2.17)
(Martin et al., 2006) to continue our analysis on a more realistic FWI configuration. We use a
fixed spread surface acquisition model with 128 sources and 169 receivers. The source spacing
is 132 m, and the receiver spacing is 100 m. The data is generated with a 4 Hz centered Ricker
wavelet high-pass filtered to remove energy below 2 Hz (wavelet is visible in Figure 2.24). The
recording time is set to 7 s. PML absorbing layers are used on the bottom and lateral sides
of the model to mimic a medium of infinite extension in these directions, while a free surface
condition is applied on top.

In the first case, referred to as “inverse crime inversion”, we model the data in the constant
density acoustic approximation and use the same grid for modeling and inversion to remain in
the inverse crime settings. The mesh spacing is 25 m in this case.

In the second case, referred to as “more realistic inversion”, we use the variable density
Marmousi II model and a refined 10 m grid to generate the data. White noise bandpassed
between 2 Hz and 10 Hz is added to the data to reach a signal to noise ratio of 15%. The
inversion is done on a 25 m grid, using a density model derived from the initial VP model
through Gardner’s law (Gardner et al., 1974) (Figure 2.18). A wavelet estimation is done
before inversion. Performing the inversion in this more realistic framework, away from the
usual inverse crime settings, makes it possible to assess the effects of incorrect amplitude
prediction on the different misfit functions and better judge their usability toward field data
applications.

The optimization is performed using the l-BFGS algorithm. The regularization of the
gradient is defined as 0.3 of the local wavelength. Pseudo-hessian preconditioning is used (Choi
and Shin, 2008; Yang et al., 2018a). The lower and upper VP boundaries for the inversion are
respectively set to 1000 m.s−1 and 5200 m.s−1 . Inversion is performed without any frequency
continuation approaches or other multi-scale strategies for all the misfit functions considered
(including L2 ).

2.5.2 Inverse crime inversion

2.5.2.1 Case study description

We rely here on two starting models. The first one, called S500 (Figure 2.17 c), is derived from
the true VP model using a Gaussian smoothing with a correlation length of 500 m. This starting
model preserves the long wavenumber content of the true model. The second one is a linearly
increasing vertical 1D (Figure 2.17 d) model, ramping from 1500 m.s−1 at seabed to 4500 m.s−1

at depth. This initial model does not contain long-wavelength structures inherited from the
true model. The data-fit obtained through this initial model (Figure 2.19 b) is affected by
cycle-skipping. In comparison, the data-fit obtained with S500 is globally better (Figure 2.19
a), with more in-phase arrivals (especially on 0 to 3 km offset diving waves).
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Figure 2.17: Test 3.a: (a) True Marmousi II model. (b) S250 initial model, (c) S500 initial
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Figure 2.18: Test 3.a: Density model obtained from VP using Gardner’s law for: (a) True
Marmousi II model, (b) S250 initial model and (c) S500 initial model.

2.5.2.2 Results starting from S500 initial model

Reconstructed VP results for all the selected misfit functions are presented in the left column
of Figure 2.20. The associated data-fit obtained after FWI are presented in Figure 2.21 (for a
common shot gather in the middle of the acquisition).

In this model, the L2 results give, at first order, a good reconstruction of the Marmousi
model. However, we can observe on the left part that the horizontal layers are not correctly
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reconstructed and present an up-shift (0 < x < 3 km), associated with a low-velocity anomaly
on the shallow left part of the model (around x = 1 and z = 0.8 km). This corresponds to the
part where strong reflections are generated. Because the background velocity is incorrectly pre-
dicted in the early iterations, the arrivals corresponding to these reflections are cycle-skipped.
As we illustrated earlier, L2 misfit function being unable to tackle cycle-skipping effects, FWI
cannot update the medium correctly to fit these arrivals.

AWI provides a clear improvement over classical L2 : the horizontal layers are correctly
positioned on the left part. The central part at depth (8 < x < 13 km, (z > 2 km) is improved
compared to L2 , with better contrast and more lateral coherency in the layers structure.
Moreover, the low-velocity anomaly on the shallow left part of the model is removed. These
results are obtained with σ = 0.25 s and ζ = 10−5.

IE also improves the reconstructed model. The relatively small improvement in cycle-
skipping robustness introduced by the envelope is enough to mitigate the artifacts on the
left part of the model (0 < x < 3 km) and flattens the layers compared to the L2 result.
One drawback is the slight degradation in the reconstruction of the central part at depth
(9 < x < 13 km, z > 2 km). Still, such a simple formulation is enough to improve the FWI
workflow over the classical L2 in this case.

The case of NIM misfit is interesting. Here, we can see that it fails to converge, producing
an erroneous reconstructed model. This illustrates the limitation of NIM when applied to more
realistic cases where the data contains multiple arrivals, multiple phases, and potentially mixed
phases. Integrating all these pieces of information into a single observable (the cumulative
distribution) does not make it possible to reconstruct the subsurface velocity. As we can see
in the data-fit, NIM can also not fit the vast majority of the signal.

The KROT misfit function, as AWI and IE, can prevent the appearance of the left side
artifacts observed with the L2 reconstruction (0 < x < 3 km). As for IE, the relatively small
improvement in terms of attraction valley width provided by KROT is sufficient to improve the
results significantly. Besides, KROT can account for the lateral coherency of the data, which
might also help stabilize the inversion.

Finally, GSOT also produces a significant improvement over the L2 result, with almost no
artifacts on the reconstructed model. We use τ = 0.25 s, similarly to AWI parameterization.
This illustrates that GSOT, as AWI, while being able to significantly enlarge the valley of
attraction of the misfit function on simple convexity cases, can also be used in a more realistic
framework that mixes transmitted and reflected energy with relatively complex multi-arrival
data.

Regarding the data-fit, excepted for NIM, all the misfit functions can provide a good data-fit
in this case.

2.5.2.3 Results starting from 1D initial model

Reconstructed models from the 1D initial model are presented in the right column of Fig-
ure 2.20. The associated data-fit obtained after FWI are presented in Figure 2.22.

Starting from this initial model, strong artifacts appear on the L2 results. We observe
long-wavelength low-velocity anomalies on both left and right parts of the models typical of
cycle-skipping induced artifacts. The data-fit analysis confirms this observation: only early
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arrivals in the near offset are correctly fitted. Diving waves arriving at larger offsets on the left
(5 s and −7.5 km offset) and right parts (4 s and 6 km offset) of the gather are cycle-skipped.

Without any surprise, NIM cannot provide a meaningful estimate of the VP model, as it is
already the case starting from the S500 initial model.

As the 1D initial model generates large time-shifts, and since both IE and KROT are only
marginally improving cycle-skipping robustness, it is not surprising to observe artifacts on the
associated reconstructed VP models. IE results present strong artifacts, mainly on the left part
of the model (0 < x < 7 km), while the shallow right part (11 < x < 16 km, x <= 2 km)
presents an improved reconstruction compared to L2 . This is confirmed by the data-fit, where
all the arrivals on the right part (offset between 1 and 8 km) are correctly predicted, whereas
data-fit on the left part (offset between −8 and 0 km) is degradated compared to L2 data-fit.
Conversely, KROT provides a more accurate reconstruction in the left part of the model. The
strong low-velocity anomalies observed in the left part (0 < x < 7 km) of the L2 and IE
reconstructions are reduced and appear only in the deep part of the model (z > 2 km). This
is consistent with the data-fit, where we see that using KROT, the long offset diving waves for
negative offsets of the shot gather are correctly fitted.

AWI manages to provide a clear improvement over classical L2 , mainly on the center
part of the model (5 < x < 14 km), while some artifacts on both sides of the reconstructed
model are still present. These parts are more difficult to reconstruct as they are illuminated
by waves traveling along the longest paths of the medium, increasing cycle-skipping risk. We
set σ = 0.6 s to try to capture as large as possible time-shifts. To get the best results possible,
we used ζ = 10−2 to obtain the helping smoothing effect required to tackle large time-shifts
introduced by this initial model. The data-fit obtained with AWI is good, with only some
out-of-phase arrivals for late diving waves (around −8 to −6 km offset).

Using GSOT, the reconstructed VP model also presents a clear improvement over classical
L2 . We use τ = 0.6 s in this case. At the first order, most of the artifacts are removed.
Still, some artifacts are present close to the edges (0 < x < 1 and 15 < x < 17 km), which is
expected from the lack of illumination in these parts. Some other artifacts are visible in the
center part of the structure at depth (10 < x < 12 km and 2 < z < 3.5 km). The data-fit
appears to be good, with no out of phase arrivals for all offsets.

2.5.2.4 Error reduction analysis

Besides this qualitative analysis of the results, we can provide quantitative comparisons by
analyzing the data error and model error evolution along with iterations. We use here the
following relative L1 model error definition

Err(VP ) =
100

M

M∑
i=1

|VP,i − V true
P,i |

V true
P,i

(2.38)

where V true
P is the true model, M the number of points in the model and i denotes one pixel

of the grid used to describe the models at the discrete level.

For the second experiment only (1D initial model), we present the evolution of

• the convergence rate (misfit error with respect to the iterations);
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• the L2 convergence rate (L2 error with respect to the iterations);

• the model convergence rate (model error with respect to the iterations);

• the model vs. data convergence rate (model error with respect to the misfit error).

For model error, we truncate the model by 1 km on the left and right sides and 625 m at depth
to remove the model areas that are not well illuminated.

For alternative misfit function definition, the L2-based convergence rate is interesting as
moving away from L2 local minima should be made visible by an increase of the L2 error
with respect to the iterations. Also, the fourth item is interesting, as, ideally, we look for a
monotonic decrease of the model error with respect to the misfit error. Besides, to improve the
readability, we have excluded from these figures the results corresponding to NIM. The method
does not produce reliable results in both cases.

The error reduction analysis is shown in Figure 2.23. First, we observe that KROT and
AWI present a relatively slow convergence rate on the cost evolution, while IE and GSOT have
a faster convergence rate. L2 convergence is in between. KROT follows more or less the same
as the L2 misfit function. This is somehow expected, as the valley of attraction of KROT is
expected to be similar to the one of the L2 misfit function. Note, however, that in the early
iterations, KROT displays a small increase of the L2 error, which clearly states that the two
misfit functions follow a different minimization path. IE, AWI, and GSOT display another
trend: the L2 error is increased in the first iterations before being strongly decreased in a
second stage. The substantial decrease of the L2 error appears the latest for AWI (after 100
iterations) and the earliest for GSOT (after 30 iterations). GSOT achieves the smallest L2

misfit, followed by AWI and KROT. The model convergence rate classifies the misfit functions
into two groups: one that does not reduce model error compared to the starting point, with
L2 , IE, and KROT; and a second group that decreases the model error with AWI and GSOT.
In the second group, only GSOT provides a constant decrease with respect to the iterations,
while AWI start to increases the model error until 100 iterations, followed by a decrease. The
final reduction of model error obtained with KROT and IE are smaller than the one attained
by the L2 , still, this does not explicitly compared to better interpretable results overall. AWI
and GSOT obtain the best reduction of model error. Finally, looking at the model vs. data
convergence, only GSOT provides a quasi-monotonic decrease. For all the others, the model
error starts by increasing with the reduction of the misfit.

2.5.3 A more realistic inversion

2.5.3.1 Case study description

Similar to the previous inverse crime inversion, we perform FWI starting from two different
initial models. The first one is derived from the true Marmousi model using a lighter Gaussian
smoothing, referred to as the S250 model with a correlation length of 250 m (Figure 2.17 b).
The second one is the S500 model already used in the inverse crime settings (Figure 2.17 c).
We did not re-use the 1D initial model as it proves to be too difficult for any alternative misfit
functions to provide convergence in this more realistic case. Not predicting the data to machine
precision generates a more challenging benchmark.
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Figure 2.19: Test 3.a: Common shot gather (CSG) for field data overlapped by synthetic data
in (a) S500 initial model, and (b) 1D initial model. Field data in black and white, overlapped
by red to blue synthetic data with transparency. Red and white visible mean out of phase,
black and blue mean in phase.

The wavelet used for FWI is obtained through a source estimation in the initial model
based on short offset (100 m) only to decouple the influence of the initial VP model as much
as possible. The obtained inverted wavelet is presented in Figure 2.24. We can observe that
the inverted wavelet is close to the true wavelet, but some noticeable amplitude and waveform
differences are visible. These amplitude effects are induced by the use of a “true” density model
for the data generation compared to Gardner’s one (Figure 2.18) used for wavelet estimation
and to the white noise added to the data.

The data-fits for these two initial models are presented in (a) of Figures 2.26 and 2.27. As
expected, the data-fit is better using S250 initial model, while the data-fit generated with S500
initial model displays more out of phase arrivals.

We compare the results obtained using L2 , AWI, IE, KROT, and GSOT misfit functions.
We do not include NIM results here, as we have already shown how the method fails to produce
meaningful results in the previous inverse crime settings. A maximum of 500 FWI iterations
is performed for both initial models.
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Figure 2.20: Test 3.a: Inverse crime FWI final reconstructed VP model for Marmousi. Left
column corresponds to S500 initial model, right column to 1D initial model. The lines respec-
tively correspond to the final reconstructed VP model using L2 (a,b), AWI (c,d), IE (e,f), NIM
(g,h), KROT (i,j) and GSOT (k,l).

2.5.3.2 Results starting from S250 initial model

Starting from the S250 initial model (Figure 2.25 left column), the main expected difference
with the previous “inverse crime” setup is an inaccurate amplitude prediction (which would
be the case if considering field data). Data-fits are presented in Figure 2.27. Classical L2 can
provide an acceptable result. Good reconstruction in the well-illuminated area is achieved, with
no visible artifacts in the center part and only a small low-velocity artifact visible at x = 2 km
z = 0.8 km and a high-velocity artifact at x = 16 km z = 1 km. The data-fit obtained with L2

is quite satisfying with most of the arrivals in phase.

This time, IE results are clearly degraded compared to the classical L2 one. The recon-
structed VP model is tainted with high wavenumber oscillation and strong artifacts. This is an
indication that the IE approach is sensitive to a correct amplitude prediction. This validates
the interest of a more realistic framework, making us able to detect this kind of limitation.
The data-fit presents many out-of-phase arrivals, coherent with the small artifacts present
everywhere in the reconstructed VP .

Again, AWI improves over the L2 results. We use a relatively small σ = 0.2 s here as
the maximum time-shifts expected are relatively small with this good initial model. We used
ζ = 10−2 as noise requires a relatively large amount of damping, moreover as illustrated before,
a larger damping value helps when facing challenging FWI setups. The deep center part is
improved with a more coherent deep-layer structure. The left (x = 2 km and z = 0.8 km) and
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Figure 2.21: Test 3.a: Overlapped common shot gathers for synthetic data in the final recon-
structed VP model starting from S500 initial model vs field data. Each subfigure corresponds
to misfit function, with L2 (a), AWI (b), IE (c), NIM (d), KROT (e), and GSOT (f).

right (x = 16 km z = 1 km) side artifacts present in L2 results are also partially mitigated.
Surprisingly, the data-fit obtained with AWI is poor for large offset arrivals (from −8 km to
−3 km and 3 to 8 km). This degradation of the data-fit is slightly counter-intuitive and does
not correlate with the improvement of the reconstructed VP model observed.

Finally, KROT and GSOT reconstructed models both present similar improvement com-
pared to the L2 one. We can observe an increase in terms of high wavenumber content.
Interestingly, the deep center part (9 < x < 13 km, z > 2 km), which is the main target of
interest of the Marmousi model (an anticlinal structure) is more resolved using KROT and
GSOT compared to L2 . For GSOT, we use τ = 0.2 s in this case. The data-fit obtained with
both methods is good, with almost all arrivals in phase. Only some first arrivals between −4
to −2 km offset are still not well explained. The GSOT data-fit appears to be slightly better
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Figure 2.22: Test 3.a: Same as Figure 2.21 but starting from 1D initial model.

than the KROT one.

2.5.3.3 Results starting from S500 initial model

Starting from the S500 model, reconstructed VP results are presented in Figure 2.25 right
column, while data-fit are presented in Figure 2.27.

Here, the classical L2 fails to reconstruct a meaningful VP model. Many artifacts are
present on the model that may come in part from cycle-skipping. This would prevent any
interpretation of the reconstructed model. The data-fit present out-of-phase arrivals, even if
the majority would appear to be in-phase. This again illustrates potential convergence toward
a local minimum that makes possible to fit the data with non-meaningful VP updates.

With no surprise, IE fails to reconstruct a meaningful VP estimate. The reconstructed VP
model suffers from many artifacts. The data-fit is clearly degraded compared to L2 , which is
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Figure 2.23: Test 3.a: Costs evolution in the inverse crime Marmousi for 1D initial model. (a)
evolution of cost functions over iterations, (b) true L2 cost evolution over iterations, (c) model
error reduction over iterations and finaly (d) model error vs. the data error reduction.

likely explained by the difficulty faced by IE in tackling wrong amplitude predictions compared
to classical L2 .

AWI reconstructed model produces here an improvement over L2 or IE, with the central part
and right part of the Marmousi model more or less retrieved. However, significant artifacts are
present in the left part of the model (1 < x < 6 km) associated with an erroneous reconstruction
of the central part at depth (9 < x < 13 km, z > 2 km). Here we increase σ to 0.4 s, and keep
ζ = 10−2. The data-fit is degraded with out of phase arrivals for offsets between −8 to −3 km
as well as between 2 to 8 km.

KROT produces satisfactory results here. This is interesting as KROT only marginally
improves cycle-skipping robustness. Here, it manages to perform well in this complexified case.
This is a good indication that the difficulties induced in this more realistic inversion are not only
cycle-skipping but also amplitude mismatch (due to density) and noise. As KROT introduces
lateral coherency and has a regularizing effect on noise, it is not surprising to observe a better
behavior in this case. The data-fit obtained with KROT is good with almost all arrivals in
phase, except for some transmitted waves from −3 to −1 km offset and some long offset arrivals
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around −8 to −7 km.

Finally, GSOT provides a good reconstructed VP model. The central part (9 < x < 13 km,
z > 2 km) is well reconstructed. The layers show more lateral coherency compared with KROT.
Furthermore, left side artifacts are reduced compared to KROT. Again and similarly to AWI,
τ is increased to 0.4 s to account for the larger time-shifts introduced by the degraded initial
model. The data-fit is also good, with improvement over the KROT for the long offset arrivals
around −8 to −7 km.

2.5.3.4 Error reduction analysis

A similar analysis for the different misfit functions is presented for this inverse crime inversion
of Marmousi. The model error is calculated in a similar zone as in the previous experiment.

Starting from the S500 initial model (Figure 2.28), we observe that KROT and AWI present
again a relatively slow convergence rate (AWI being the slower), while L2 , IE and GSOT have
a faster convergence rate. The L2 data-error is again interesting, with GSOT and KROT
performing the most substantial reduction of L2 data error (with an initial jump to pass a
L2 local minimum for GSOT at the first iteration). While IE increases the cost drastically
for the first two iterations, it then fails to reduce the data error. We can note that KROT is
not following L2 misfit function behavior anymore compared to the inverse crime Marmousi
case. Regarding AWI, we can observe that it starts to increase the L2 data error until 20
iterations, then rapidly reduce for 10 iterations, to finish with a constant increase afterward.
This time, the model error displays a strong increase for L2 and IE misfit functions, which
is coherent with the artifacts present in the reconstructed VP models. AWI is also increasing
the model error as it is also affected by artifacts, but less drastically than L2 and IE, which is
visible on the reconstructed VP model. KROT and GSOT manage to decrease the model error
continuously. Looking at the model vs. data convergence, only KROT and GSOT present
monotonic behavior, while L2 , IE, and AWI are increasing the model error.

2.5.3.5 Computational cost

The computational overhead induced by the alternative misfit function selected in this review
varies from +2 to +30% compared to L2 misfit. These values are coherent with the values
documented in the literature. The key feature here is that even a +30% computational overhead
is not a blocking feature and is affordable with modern computing facilities. For us, the key
feature is the “physical” performance of the misfit function that translates into an improvement
of FWI robustness.
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Figure 2.25: Test 3.b: More realistic FWI final reconstructed VP model for Marmousi. Left
column corresponds to S250 initial model, right column to S500 initial model. The lines
respectively correspond to the final reconstructed VP model using L2 (a,b), AWI (c,d), IE
(e,f), KROT (g,h) and GSOT (i,j).
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Figure 2.26: Test 3.b: Overlapped common shot gathers for synthetic data in the final re-
constructed VP model starting from S250 initial model vs field data. (a) corresponds to the
data-fit in the S250 initial model. Then, each subfigure corresponds to misift function, with
L2 (b), AWI (c), IE (d), KROT (e), and GSOT (f).
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Figure 2.27: Test 3.b: Same as Figure 2.26 but starting from S500 initial model.
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Figure 2.28: Test 3.b: Costs evolution in the more realistic Marmousi for S500 initial model.
(a) evolution of cost functions over iterations, (b) true L2 cost evolution over iterations, (c)
model error reduction over iterations and finaly (d) model error vs. the data error reduction.
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2.6 Discussion

Among the five misfit functions compared here, namely NIM, IE, AWI, KROT, GSOT, three
of them show a significant improvement in convexity with respect to a time-shift: NIM, AWI,
and GSOT. However, when applied to a realistic case (Marmousi), NIM fails to produce a
meaningful VP estimate. Conversely, for AWI, while difficulties are identified on schematic
examples, including multiple arrivals (a situation known to be problematic for correlation and
deconvolution approaches), satisfactory results are obtained when applied to the Marmousi
case, both within and without the inverse crime settings. GSOT also appears as an interesting
strategy, providing satisfactory results in all the tests performed here.

Interestingly, while IE and KROT show less robustness to strong cycle-skipping, the small
increase in the valley of attraction they provide is sufficient to enhance the velocity recon-
struction in the Marmousi test in inverse crime settings. However, IE fails when it comes to
non-inverse crime settings, that is when noise corrupts the data, and amplitude prediction can-
not be guaranteed anymore. On the contrary, KROT reveals relatively robust to these settings,
probably benefiting from its ability to account for the lateral continuity of events in shot-gather
representation and for the robustness of optimal transport based distances with respect to the
presence of noise (Engquist et al., 2016).

From the experiment performed in this article, KROT, AWI, and GSOT appear as an in-
teresting alternative to the least-squares distance from the perspective of field data application.
In cases where no strong cycle-skipping is expected, KROT should perform well, and this is
supported by several field data applications already performed on exploration data (Messud
and Sedova, 2019; Sedova et al., 2019; Carotti et al., 2020). The computational cost of KROT
is relatively higher than that of AWI and GSOT; however, its ability to account for the lateral
coherency of the data in shot-gather panels makes it an appealing strategy. For 3D data cubes,
cutting it into 2D slices and summing over the slices is a good compromise. To deal with larger
kinematics inaccuracy, AWI and GSOT should be preferred options. AWI has already been
successfully applied to field data (Warner and Guasch, 2015; Ravaut et al., 2017; Debens et al.,
2017; Roth et al., 2018; Guasch et al., 2019; Warner et al., 2019). We, however, show here that
it could suffer from some limitations in the case of complex data containing multiple arrivals.
GSOT has been mostly applied to synthetic data by now (He et al., 2019a; Provenzano et al.,
2020a). Nevertheless, field data applications are ongoing (Pladys et al., 2020; Górszczyk et al.,
2020).

2.7 Conclusion

This article is dedicated to comparing misfit function reformulation for FWI, which aims at
mitigating cycle-skipping. The first result drawn is that the link between cycle-skipping and
the non-convexity with respect to time-shifts of the least-squares distance is evident from the
different tests we provide. However, when no such cycle-skipping occurs (sufficiently accurate
initial model), least-squares FWI performs well, even for complex data including multiple
phases, mixed phases, noise, and when amplitude prediction cannot be performed accurately
(as is the case for field data). Therefore, efficient reformulation of the FWI misfit function
should not rely only on a better convexity to time-shifts to replace the least-squares norm
advantageously but should also exhibit robustness with respect to these settings, which are
always met on field data applications.
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Robust FWI with graph space
optimal transport: application to 3D
OBC Valhall data
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3.1 Introduction

abstract

Improving full-waveform inversion to make it more robust to cycle-skipping has been the subject
of a large number of studies. From the several families of approaches developed, one of the
most documented consists in modifying the least-squares distance defining the discrepancy
between observed and calculated data. From all the propositions made to improve and replace
the least-squares distance, only a few of them have been applied to field data. One of the
methods proposed recently, the graph space optimal transport distance, presents appealing
properties for field data applications. This study compares it with the least-squares distance
in an analysis performed on the three-dimensional ocean bottom cable data from the Valhall
field. This data has already been at the heart of several full-waveform inversion studies, making
it a good candidate to evaluate the properties of this new misfit function. We first perform
this comparison starting the inversion from the reflection traveltime tomography model used in
previous studies. We then perform a second comparison from a crude, linearly varying in-depth
one-dimensional velocity model. Starting from this model, least-squares-based full-waveform
inversion fails to provide a meaningful estimate of the pressure-wave velocity model due to cycle
skipping. We illustrate how the graph-space optimal transport-based full-waveform inversion
mitigates this issue. A meaningful estimate of the pressure-wave velocity model is obtained in
the zone sampled by both diving and reflected waves, down to almost two kilometers depth.
To our knowledge, this is the first application of a graph space optimal transport-based full-
waveform inversion to three-dimensional field data.

3.1 Introduction

Full waveform inversion (FWI) is a seismic imaging method aiming at reconstructing high-
resolution models (up to half the shortest wavelength) of the mechanical properties of the
subsurface (Devaney, 1984; Pratt and Shipp, 1999; Plessix and Perkins, 2010; Raknes et al.,
2015; Górszczyk et al., 2017). The method is an iterative process based on minimizing a misfit
function between observed and calculated data over a space of model parameters describing
the subsurface. The improvement of resolution that FWI provides over standard tomography
methods makes it possible to significantly improve depth-migration images or directly produce
interpretable images of the subsurface physical properties. This method is used at multiple
scales; from global and regional scales (Fichtner et al., 2010; Tape et al., 2010; Bozdağ et al.,
2016) to seismic exploration targets for oil & gas industry (Plessix and Perkins, 2010; Stopin
et al., 2014; Operto et al., 2015) and even near-surface scale (Bretaudeau et al., 2013; Groos
et al., 2014; Schäfer et al., 2013; Irnaka et al., 2019). A thorough review of FWI and its
applications is given in Virieux et al. (2017).

As powerful as this method is, it suffers from a significant shortcoming in its classical formu-
lation: the non-convexity with respect to time-shifts of the least-squares (L2 ) misfit function
used to calculate the distance between observed and synthetic data. This non-convexity of the
misfit function is an issue as the iterative process used in FWI is based on local-optimization
algorithms. This leads to the so-called cycle-skipping issue. This limitation of FWI in its
classical formulation has been documented since FWI has been introduced (Gauthier et al.,
1986), and it has been of great interest to overcome it.

A large amount of studies has been published, proposing different approaches. One of
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the historical approaches to overcome this limitation in practical cases is to rely on a data
hierarchy workflow (Bunks et al., 1995; Pratt, 1999; Shipp and Singh, 2002; Wang and Rao,
2009; Brossier et al., 2009). This approach consists in interpreting first the lowest frequency
available, generally 2 − 4 Hz for seismic exploration targets, then progressively introducing
higher frequency data following a multi-scale approach (Sirgue and Pratt, 2004). A second
level of data-hierarchy can be defined by modifying the temporal and/or offset selection of
the data used during inversion. The idea is to reduce the number of propagated wavelengths
that are interpreted simultaneously. Current industrial applications generally rely on these two
levels of data hierarchy, combined with a robust starting model, obtained, for instance, through
reflection traveltime tomography or stereotomography (Lambaré, 2008).

Nonetheless, the conditions to apply this workflow are not always satisfied. For instance,
low-frequency data around 2 − 4 Hz are not always available or of sufficient quality. More-
over, obtaining low frequency increases the cost of the acquisition and can also compromise the
quality of the high frequency needed to obtain high-resolution model reconstructions. Accu-
rate initial model building can also be a time-consuming and challenging task requiring strong
human expertise as it generally requires accurate traveltime and/or reflected event picking. Be-
sides, prior information coming from geology and well logs are often needed. These constraints
make FWI less robust and reduce its potential range in terms of applications.

Several methods have been introduced to improve robustness to cycle-skipping. The first
group can be named as “extension strategies” and relies on introducing supplementary degrees
of freedom to the FWI problem (Symes, 2008, 2015; Huang et al., 2018a; van Leeuwen and
Herrmann, 2013; Wang et al., 2016; Aghamiry et al., 2020), which can be used to artificially
match the data at early iterations of the FWI process, avoiding cycle-skipping.

The second group consists in reformulating the FWI problem using an alternative measure
of the distance between the observed and calculated data, namely a different misfit function.
Numerous approaches have been proposed, such as cross-correlation (Luo and Schuster, 1991;
van Leeuwen and Mulder, 2010) and deconvolution based misfit function (Luo and Sava, 2011;
Warner and Guasch, 2016), or by modifying the signal itself, making the L2 norm between
this new observable more convex with, for instance, instantaneous envelope (Fichtner et al.,
2008; Bozdağ et al., 2011). We want to keep in mind that replacing the L2 norm is not an easy
task, as, despite its simplicity, the L2 misfit presents excellent and interesting properties. First,
it is robust to Gaussian noise. Second, it presents an excellent resolution power, translating
into high-resolution reconstruction that FWI is well known for. Third, it is straightforward to
implement and the computational cost of the misfit function evaluation is negligible compared
to most of the proposed alternative misfit functions. These advantages have made the L2 misfit
the “state of the art” for FWI at exploration scales and could explain why L2 is still widely
used even if many alternative misfit functions have been proposed to mitigate the cycle-skipping
issue.

Indeed, there is a discrepancy between the many propositions for alternative misfit func-
tions compared to the number of actual field data applications. We think that this discrepancy
could be explained by the - often not deeply discussed - intrinsic limitations of these alterna-
tive formulations. For instance, cross-correlation-based misfit functions might have difficulties
handling complex data, including missing arrivals or multiples. Deconvolution-based strate-
gies require a penalization/weighting function, which can be difficult to set. Such settings
are often case-dependent, making FWI less of an automated process. Instantaneous envelope
intrinsically modifies the signal shape and discards information coming from the phase (which
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is essential to interpret the polarity of reflected events in the data correctly).

A new class of misfit functions based on optimal transport (OT) has been introduced
recently. The motivation is to benefit from the convexity of the optimal transport distance with
respect to translation and dilation, which provides a misfit function convex with respect to time
and amplitude shifts, a good proxy towards convexity with respect to velocities perturbations
(Engquist and Froese, 2014; Métivier et al., 2018). Another important motivation to use OT
as a misfit function is the ability to take into account the coherency of the seismic signal in an
adequate space, be it a common shot or receivers gather. However, OT can only be applied
to positive quantities and cannot be directly applied to seismic traces. To circumvent this
difficulty, three main strategies have been developed.

The first one proposes to bring back the problem to the comparison of positive quantities
by modifying the signal before solving the OT problem (Engquist and Froese, 2014; Qiu et al.,
2017; Yang et al., 2018b; Yang and Engquist, 2018). A nonlinear transform is applied to
the data in a trace-by-trace framework to transform each of them as probability measures.
However, modifying the signal and altering the polarity information might be detrimental to a
stable and satisfactory reconstruction of the subsurface mechanical properties.

The second one relies on the dual formulation of a specific instance of optimal transport
distance, namely the 1-Wasserstein distance (Métivier et al., 2016a,b,c). This formulation can
be naturally extended to the comparison of signed data. It benefits from its ability to be
applied directly to 2D and 3D data, taking into account the coherency of the seismogram in
the receiver and/or sources direction. However, even if the attraction valley to the global
minimum is enlarged compared with the least-squares approach, the application of the 1-
Wasserstein distance to signed data loses the convexity with respect to time-shift, which was
the original motivation to use OT in the framework of FWI (see Métivier et al., 2018 for a
review on different OT formulations). This strategy has been successfully applied to several
field datasets (Poncet et al., 2018; Messud and Sedova, 2019; Sedova et al., 2019; Carotti et al.,
2020; Hermant et al., 2020).

Finally, the third one considers each discrete seismic trace as point clouds and computes
the optimal transport distance between point clouds associated with synthetic and observed
traces. This method is called the graph space optimal transport (GSOT) and presents the
main characteristic of preserving the convexity with respect to time shifts (Métivier et al.,
2018, 2019). GSOT has already been successfully applied to 3D synthetic and field data (He
et al., 2019a; Pladys et al., 2019; Li et al., 2019; Górszczyk et al., 2019) and is a promising
candidate to tackle cycle-skipping on field datasets.

Therefore, this study focuses on applying the GSOT strategy against the classical L2 misfit
on a 3D OBC dataset from the North Sea, the Valhall field data. This dataset has been one of
the first used to make proof of concept of the resolution power that FWI can bring on field data
as shown in Sirgue et al. (2010). Since then, this dataset has been used several times for FWI
application (Prieux et al., 2011; Gholami et al., 2013; Prieux et al., 2013; Operto and Miniussi,
2018; Kamath et al., 2020). This dataset can been seen as a “calibrated reference” for testing
FWI formulations, such as frequency-domain FWI in Operto et al. (2015) or in time-domain
with attenuation in Kamath et al. (2020). Here, we are using this dataset to compare the
GSOT misfit function to the conventional L2 norm through a time-domain 3D visco-acoustic
VTI FWI.

To make this comparison, we first consider a canonical case where the initial model is the
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same as the one used in the aforementioned studies, which is derived from reflection tomography.
This initial model ensures FWI converges toward a plausible estimation of the subsurface using
conventional L2 misfit function.

Then, we introduce a very “crude” initial model in which calculated data are shifted by more
than one cycle compared to observed data, which is the typical case scenario for cycle-skipping.
We show how L2-based FWI fails from this “crude” starting model, whereas GSOT-based FWI
manages to correctly interpret data to provide a plausible reconstruction of the subsurface
(down to almost 2 km depth, which corresponds to the zone of the data sampled by both
diving and reflected waves). This constitutes one of the first applications of the graph-space
optimal transport misfit function to 3D field data at the exploration scale.

The paper is organized as follows. In the next section, we present the modeling and inver-
sion algorithm used for our FWI application. Then we detail the global methodology of GSOT
for FWI. This is followed by a presentation of the Valhall field application, from the geological
situation to the initial model and dataset presentation. We detail our FWI workflow and ana-
lyze the results in two cases: from the reflection traveltime tomography initial model and then
from a 1D initial model. Results are then discussed, followed by conclusion and perspectives,
which are given in a final Section.

3.2 Methodology

3.2.1 Modeling

This study is performed in the frame of 3D time-domain FWI. We rely on the anisotropic visco-
acoustic time-domain modeling and inversion algorithm developed by Yang et al. (2018a), based
on the following partial differential equations:



ρ∂tvx = ∂xg

ρ∂tvy = ∂yg

ρ∂tvz = ∂zq

∂tg = c11(∂xvx + ∂yvy) + c13∂zvz −
∑L

`=1 Y`[c11ξ
g
` + c13ξ

q
` ]

∂tq = c13(∂xvx + ∂yvy) + c33∂zvz −
∑L

`=1 Y`[c13ξ
g
` + c33ξ

q
` ]

∂tξ
g
` = −ω`ξ

g
` + ω`(∂xvx + ∂yvy), ` = 1, 2, . . . , L

∂tξ
q
` = −ω`ξ

q
` + ω`∂zvz, ` = 1, 2, . . . , L .

(3.1)

In system 3.1, c11, c13, and c33 are the stiffness tensor coefficients, ρ is the density, vx, vy,
vz are the horizontal and vertical displacement velocities respectively, while g and q are related
to the normal stress components σxx, σyy and σzz through

g = σxx = σyy

q = σzz .
(3.2)

This simplification is due to the VTI approximation. Similarly, the memory variables ξq` and
ξg` are related to the memory variables ξxx, ξyy and ξzz associated with the normal stress
components through

ξg` = ξxx + ξyy

ξq` = ξzz .
(3.3)
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These memory variables are used to model the viscosity of the medium following the gen-
eralized Maxwell body theory. Each represents one relaxation mechanism. We use three re-
laxation mechanisms to approximate a constant attenuation within the considered frequency
band (L=3). The variables Y` are therefore calibrated depending on the target quality factor
representing the attenuation in the considered media. This calibration is done through the
solution of a least-squares problem. The details of this calibration can be found in Yang et al.
(2016a) for instance.

In the VTI approximation, the stiffness tensor coefficients are related to the vertical P-wave
velocity, the density, and the Thomsen anisotropy parameters ε and δ through

c11 = ρV 2
P (1 + 2ε)

c33 = ρV 2
P

c13 = ρV 2
P (1 + 2δ) .

(3.4)

The discretization of this system of partial differential equations is performed using a fourth-
order in space and second-order in time staggered grid finite-difference method (Virieux, 1986;
Levander, 1988).

A flat free surface condition is applied on top of the model to represent the water/air
interface. Sponge layers (Cerjan et al., 1985) are applied on the other faces of the model to
mimic a medium of infinite extensions in these directions. This numerical method is preferred
over the use of perfectly matched layers (PML, Bérenger, 1994) both because of the anisotropy,
which might cause PML instabilities, as well as the presence of attenuation and relaxation
mechanisms, which complexifies the PML implementation.

Finally, windowed sync interpolation is used to simulate source and receivers off-grid points
accurately (Hicks, 2002).

3.2.2 Inversion

3.2.2.1 General formulation

FWI is an iterative process which relies on the minimization of a misfit function. Classically,
it is the L2 misfit function defined as follows

fL2 [m] =
∑
s

∑
r

h
(
dcal[m](xr, t;xs), dobs(xr, t;xs)

)
, (3.5)

where

h(d1(t), d2(t)) =
1

2

∫ T

t=0
|d1(t)− d2(t)|2dt . (3.6)

The observed and synthetic trace calculated in model m, associated with source xs and receiver
xr, are denoted by dobs(xr, t;xs) and dcal[m](xr, t;xs) respectively.

To solve this minimization problem, we rely on a local optimization scheme. We use a pre-
conditioned quasi-Newton l-BFGS algorithm (Nocedal, 1980), implemented in the SEISCOPE
optimization toolbox (Métivier and Brossier, 2016).

We compute the gradient following the adjoint state method (Plessix, 2006). This method
makes it possible to easily replace the L2 norm as a change of the misfit function only translates
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to a modification of its associated adjoint-source to obtain the gradient. See Yang et al. (2018a)
for a review. Since the method relies on reverse time propagation of the wavefield, which
is numerically unstable with attenuation, our code relies on the checkpoint-assisted reverse
forward simulation (CARFS) strategy proposed by Yang et al. (2016b) to provide a stable and
yet efficient implementation for large scale problems with attenuation.

The preconditioner we use is the wavefield preconditioner presented in Kamath et al. (2020)
An anisotropic non-stationary Gaussian smoothing is also applied to the gradient. Inversions
are performed for P-wave velocities (VP ) only.

3.2.2.2 Optimal transport for FWI

Optimal transport (OT) distances are derived from the OT theory introduced by the French
mathematician Gaspard Monge more than two centuries ago (Monge, 1781). More precisely,
they rely on the OT relaxation proposed by Kantorovich (1942). The distances, also called
Wasserstein distances, have an intrinsic property of particular interest for the definition of
inverse problems: they are convex with respect to translation and dilation of the compared
quantities. This convexity with respect to translation has been, in particular, the motivation
to introduce it in the framework of FWI to obtain a distance measurement convex with respect
to time-shifts (Engquist and Froese, 2014). However, OT distances are defined for comparing
probability distributions, which are by definition positive and normalized. So this new distance
cannot be directly applied to seismic data, which is oscillatory (a generalization of OT to signed
distribution is still an open question from a mathematical point of view, see Ambrosio et al.
(2011) and Mainini (2012) for instance.

This study focuses on a recent proposition made to apply OT to seismic data: the graph
space optimal transport (GSOT) strategy, proposed in Métivier et al. (2019).

This formulation of OT distance should preserve the signal unmodified while also preserving
the convexity to shifted patterns. It relies on the idea of comparing the discrete graph of the
data rather than the data itself: each 1D trace in time becomes a point cloud of Dirac delta
functions (of amplitude 1) in a 2D space made of the time dimension, and a new amplitude
dimension. This transformation does not affect the signal shape but makes it possible to deal
with positive mass (the Dirac delta functions). Thus the OT distance can be applied directly.

The corresponding misfit function is formulated as

fGSOT [m] =
∑
s

∑
r

h
(
dcal[m](xr, t;xs), dobs(xr, t;xs)

)
, (3.7)

where this time

h(d1, d2) = min
σ∈S(Nt)

Nt∑
i=1

ciσ(i)(d1, d2) . (3.8)

S(Nt) denotes the ensemble of permutations of {1, . . . , Nt}, and cij the L2 distance between
the discrete points of the graph (ti, d1(ti)) and (tj , d2(tj)):

cij(d1, d2) = |ti − tj |2 + η2|d1(ti)− d2(tj)|2 . (3.9)

The function h corresponds to the 2-Wasserstein distance between the discrete graph of the
“calculated” trace d1(t) and the “observed” trace d2(t).
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The scaling parameter η controls the convexity of the misfit function fGSOT with respect
to time shifts. In practice, we define it as

η =
τ

A
, (3.10)

where τ is a user-defined parameter corresponding to the maximum expected time shift between
observed and calculated data in the initial model, and A is the maximum peak amplitude
difference between observed and calculated data. This ensures the convexity of the GSOT
distance for time up to approximately τ .

The final cost function we use for the purpose of FWI application with Ns shots containing
Nr receivers is defined as:

min
m

fGSOT [m] =

Ns∑
s=1

Nr∑
r=1

ws,rh
(
ds,rcal[m], ds,robs

)
, (3.11)

where ws,r is a trace-by-trace weighting factor, typically used to restore the AVO trend in the
data. This trend is removed from the trace-by-trace GSOT approach, as the amplitude of each
trace is treated separately through the normalization factor η.

The adjoint source of the misfit function fGSOT [m] is computed from ∂h
∂cal

using the adjoint-
state strategy (Plessix, 2006). The following result is proved in Métivier et al. (2019). Denoting
σ∗ the minimizer in eq. 3.7, we have

∂h

∂cal
= 2

(
dcal − dσ

∗
obs

)
, (3.12)

where
dσ

∗
obs(ti) = dobs(tσ∗(i)) . (3.13)

The GSOT approach can thus be viewed as a generalization of the L2 distance: The ad-
joint source is equal to the difference between calculated and observed data at time samples
connected by the optimal assignment σ∗. The solution of the problem eq. 3.7 provides the
information to compute both the misfit function and the adjoint source.

To solve eq. 3.7 efficiently, we use the auction algorithm (Bertsekas and Castanon, 1989),
dedicated to the solution of linear sum assignment problems such as eq. 3.7. Despite a rela-
tively high computational complexity in O(N3

t ), it is quite efficient for small instances of such
problems. Resampling the data close to the Nyquist frequency (at the exploration scale, under
acoustic approximation, traces are often around few hundreds of time steps after resampling)
yields such small-scale problems making the GSOT feasible for realistic scale FWI applications,
as seen in the application presented here.

3.3 Field data presentation and full-waveform inversion work-
flow

3.3.1 Geological situation, dataset and initial models

3.3.1.1 Geological situation

The Valhall field is located in the southern part of the Norwegian sector in the North Sea,
approximately 300 km southwest of Stavanger (Fig. 3.1). It is a shallow environment with a
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Figure 3.1: Location of the Valhall field on the North Sea (from Thurin, 2020)

nearly constant water depth of 70 m. Valhall reservoir lies along the Lindesnes Ridge, which
trends NNW (Munns, 1985; Leonard and Munns, 1987). The field has been discovered in
1975 and is used since then for oil production. It is characterized as an anticlinal in chalk
in the Upper Cretaceous Hod and Tor formations, which form the reservoir at a depth of
approximately 2400 m. Trapped gas in Tertiary shale is present above the reservoir (Sirgue
et al., 2010; Prieux et al., 2011, 2013; Operto et al., 2015). The Tertiary overburden is relatively
simple and free of complex structure (Hall et al., 2002). Chalk compaction resulting from
pressure depletion and water weakening has led to seabed subsidence (Field: VALHALL -
Norwegianpetroleum.no https://www.norskpetroleum.no/en/facts/field/valhall).

3.3.1.2 Dataset presentation

The seismic data are 4-components acquired by ocean-bottom cables (OBC), with wide aper-
ture/azimuth acquisition. The covered zone is a surface of 145 km2. Twelve receiver cables are
deployed on the seabed, containing 2048 receivers with an inline spacing of 50 m and a cable
spacing of 300 m. A total of 50824 shots are available, located 5 m below the sea surface. The
layout of this 3D acquisition is presented in Figure 3.2. In this study, we use only the pressure
component of one acquisition performed in 2011 as part of the Valhall Life of Field Seismic
(LoFS) project (Barkved et al., 2003).
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Figure 3.2: Layout of the Valhall acquisition overlapped on an horizontal VP slice at 1 km
obtained by GSOT-based FWI (from this study). Location of sources (gray dots) and receivers
(blue diamonds). Two receivers positions (A and B) are located with black stars. Cables A
(x = 2950 m), B (x = 5530 m) and C (x = 3080 m) are identifed. Black dots denote the
position of the three VP well sonic-logs.

From the raw data provided in SEGY format, only a simple pre-processing is applied. As
our FWI code relies on source parallelization, source-receiver reciprocity is applied to process
the hydrophone as explosive sources and the shots as hydrophones, hence sensibly reducing the
impact on computer resources. The data is then de-spiked before a quality control over the
complete dataset: the energy (RMS) of each gather is calculated to manually remove faulty
gathers (the one with a large variation of RMS amplitude). The last step is to create frequency
bands for the inversion using a minimum-phase band-pass filter in two distinct bands: 2.5−5 Hz
and 2.5 − 7 Hz (referred to as band 1 and band 2 in the following). This goes in hand with
time-decimation; from ∆t = 4 ms to ∆t = 8 ms on the first band, and from ∆t = 4 ms to
∆t = 5 ms on the second band (Fig. 3.3).

3.3.1.3 Initial models

An initial VP model was made accessible to us thanks to AkerBP. It has been obtained through
reflection traveltime tomography. It is referred to as TOMO initial and is presented in Fig-
ure 3.4. This initial model has been used in several publications using this Valhall dataset and
has proven its capacity to give satisfactory results with L2-based FWI as it predicts the arrival
within half a period of the considered starting frequencies (2.5−5 Hz), avoiding cycle-skipping
issue (Prieux et al., 2011; Operto et al., 2015; Operto and Miniussi, 2018). The associated den-
sity model is derived from VP TOMO using Gardner’s law (Gardner et al., 1974), defined as
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Figure 3.3: 2D common-receiver gathers extracted for receiver A along cable A for: raw data
(top), band 1 data 2.5 − 5 Hz (middle) and band 2 data 2.5 − 7 Hz (bottom). White dashed
arrows point on the Schölte waves which are muted for the inversion. Blue and yellow arrows
respectively point on the reflexion from the low velocity zone and the reflexion on the top of
the reservoir. Black arrows point on the diving waves.
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ρ = 309.6∗V 0.25
P . This relation is a fair average for brine-saturated rock (excluding evaporites),

which is coherent with the expected geology of the Valhall field. AkerBP also provided us the
anisotropy model ε and δ , and while their structure is not complicated, they are of significant
influence in the modeling. The anisotropic parameter η define by Alkhalifah (1998) as

η =
ε− δ

1− 2δ
(3.14)

is shown in Figure 3.6. We can see that maximum anisotropy reach values around 15% near
the reservoir. Finally, to introduce attenuation, a simple two-layer QP model, with 1000 in
the water column and 200 in the sediments, is used (Operto et al., 2015). While it is a simple
model, it has been proven to be of great importance to explain the data. Using a more complex
QP model (for example derived from VP ) only results in marginal improvements. Moreover, it
introduces complexity and uncertainties that we prefer not to deal with (Kamath et al., 2020).

As the TOMO initial model is good enough to match the data within half a period of the
2.5 − 5 Hz frequency-band used to start FWI (Fig. 3.7), it does not represent any challenge
regarding the cycle-skipping issue. This is why we introduce a new “crude” VP starting model
called 1D initial presented in Figure 3.5. It is a purely 1D vertical starting model, based on
a linearly increasing profile with one main interface around 2400 m depth. This 1D starting
model generates strong cycle-skipping, as made visible in Figure 3.8. As traditional L2-based
FWI cannot tackle this cycle-skipping in the data, it should be a good candidate to benchmark
the capability of GSOT FWI. Associated with this VP 1D model, the density model is derived
using the preceding Gardner’s law. The anisotropy model ε and δ , as the attenuation model
QP are kept similar to those used in the TOMO setup.

3.3.2 Full-waveform inversion workflow

To obtain the final FWI reconstructed VP model, we rely on several elements that compose
our complete workflow. Each part of it plays a critical role in obtaining the best results
possible, from wavelet estimation, data selection, to post-processing the FWI model. The
generic workflow that we use in this article is presented in Figure 3.9. We detail the different
parts composing the workflow in the following sections.

3.3.2.1 Source wavelet estimation

The first step before running FWI is to obtain a proper source wavelet that is used during the
inversion to generate synthetic data. This is a crucial step as an incorrect wavelet estimation
could induce artifacts into the reconstructed model.

The wavelet is estimated by solving a linear deconvolution problem in the frequency domain,
following the methodology described in Pratt (1999). The wavelet inversion is performed on
a single random subset of 240 shot-gathers. The sample of 240 wavelets (one per shot-gather)
is then averaged to produce a single wavelet, assuming that all hydrophones have the same
coupling response.

To minimize the cross-talk between the VP model and the wavelet, we rely on a carefully
designed data weighting strategy, focusing on short-offset only as presented in Figure 3.10. The
data weighting consists in using 400 m of offset at full amplitude, then ramping down to zero
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Figure 3.4: Slices of the initial model VP TOMO . (a-c) Horizontal slices at (a) 200 m depth,
(b) 500 m depth and (c) 1 km depth. (d-e) Inline vertical slices for (d) x = 2.95 km and (e)
x = 3.95 km. (f-g) Cross-line vertical slices at (f) y = 9 km and (g) y = 6 km.

at 1200 m offset. A tail mute is applied to remove the Schölte waves. Before being used for
inversion, the wavelet is then manually checked and tapered to ensure its causality. With this
methodology, the wavelet is only estimated at the beginning of each frequency band and kept
fixed during FWI steps. The wavelet for the first frequency band and its associated spectrum
is presented in Figure 3.10. We can see that no oscillations are present after 2.7 s, and wavelets
generated from TOMO or 1D initial models are similar, which validates that this careful data
selection mitigates the potential leakage in the wavelet estimation, which could come from the
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Figure 3.5: Same as Figure 3.4 for initial model VP 1D .

P-wave velocity model. Finally, the wavelet spectrum is coherent with the data (2.5 to 5 Hz).

3.3.2.2 Random shot subsampling and frequency continuation

The FWI workflow relies on a frequency continuation approach. Inversion is performed first
on the frequencies ranging between 2.5 − 5 Hz, then on a second band between 2.5 − 7 Hz.
Respectively, the model grid spacing is set to 70 m and 50 m, ensuring at least five grid points
for the smallest wavelength. These parameters are the same as in Operto et al. (2015) and
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Figure 3.6: Same as Figure 3.4 for anisotropic parameter η.

Kamath et al. (2020).

As previously mentioned, the dataset contains 2048 shot-gathers. Since our FWI code relies
on source-parallelization, the complete dataset could not be reasonably fit in a single inversion
on the HPC facility we have access to. Therefore, we rely on a source-subsampling strategy,
similar to the one described in Warner et al. (2013). This makes it possible to divide the
dataset into batches of pseudo-randomly selected shot-gathers (120 in our case). The pseudo-
random selection implies that the previously used shot-gather could not be selected in the
next subsample until all of the available ones are used once. The subsample of shot-gathers
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3.3 Field data presentation and full-waveform inversion workflow

Figure 3.7: 2D common-receiver gathers at 5 Hz. Synthetic data generated into the initial model
TOMO are displayed in a blue/white/red color scale, field data are overlapped in grayscale with
transparency. The best result is achieved when black and blue are the only colors visible. Red
and white are shown when data are not in phase. (a) receiver A along cable A (through the
low velocity anomaly). (b) receiver B along cable B.

is changed every time the memory limit for l-BFGS is reached (3 iterations is the maximum
memory of l-BFGS in this study). The source-subsampling strategy makes it possible to fit
the FWI problem on relatively small HPC facilities while mitigating the acquisition foot-print
in the reconstructed model.

3.3.2.3 Hierarchical data weighting strategy

The first data weighting strategy tried on the dataset for FWI is simple: only remove the
Schölte waves and muted the trace near-zero offset in a radius of 350 m (see the approach
in Kamath et al. 2020). While this direct and straightforward approach (using all the data
directly) could be justified with TOMO initial models as it is not supposed to generate cycle-
skipping, this approach could not be applied to tackle a crude initial model as the 1D one,
even with the GSOT misfit function. Because of the strong cycle-skipping generated with the
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Figure 3.8: Same as Figure 3.7 into the 1D initial model.

1D initial model, we need to rely on a more careful data weighting strategy to maximize the
capability of the GSOT. This leads to introduce a six-step data weighting strategy, presented
in Figure 3.11. The three first steps only focus on diving waves with a strict time windowing
while restricting to offset to the first 4 km (later referred to as DW SO for Diving Wave -
Short Offsets), 8 km offset (later referred to as DW MO for Diving Wave - Medium Offsets),
and full offset (later referred to as DW FO for Diving Wave - Full Offsets). Then, the three
next steps release the time windowing progressively, starting with 8 km offset (later referred
to as RT1 MO for Release Time 1 - Medium Offsets), then on full offset (later referred to as
RT1 FO for Release Time 1 - Full Offsets); to finally finish with full offset and a complete
release of time windowing (later referred to as RT2 FO for Release Time 2 - Full Offsets).
Please also note that for each data weighting, the Schölte waves are additionally muted, as we
cannot model them in the acoustic approximation.
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3.3.2.4 Model post-processing

The last step of the FWI workflow is a post-processing applied to the updated VP model at
the end of each FWI step. It consists in cutting the model using a stencil (based on the shape
of the acquisition) and extrapolating the value outside the stencil with a nearest-neighbors
algorithm. This is performed for each depth slice. The stencil shaped is adapted for each
depth slice to consider the maximum illumination the acquisition can provide at depth. This
aims to remove the area on the edges of the model that are never updated during FWI due to
the lack of illumination and remove artificial low-velocity zones created on the border of the
well-illuminated zone.

To be consistent and perform a fair comparison between our two starting models TOMO
and 1D , the complete workflow detailed before is applied to both starting models. By doing so,
we validate that our workflow can tackle the dataset properly and provide satisfactory results.
Then, changing only the misfit function from L2 to GSOT, we reconduct the complete inversion
process to check how GSOT compares to L2 in this controled environment.

FWI iteration

reached satisfactory
convergence?

yes

no

reached l-bfgs
max memory?

change source
subset

release time/offset
windowing

Wavelet estimation

no

yes

are there more
offsets?

yes

are there more
frequency bands?

change to upper 
frequency band

yesno

no

Starting point
- Lower frequency band
- Restricted time/offset 

windowing

Final results

Figure 3.9: Complete FWI workflow used on the OBC Valhall dataset. At the core of the
process lies the FWI iterations. Then several loops are nested one into another, from internal
FWI iterations, source-subsampling, data selection, to finally the outer one of frequency con-
tinuation.
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Figure 3.10: On top, weighted data for source inversion displayed on a 5 Hz 2D common-
receiver gather (receiver A cable A). On the bottom, the estimated wavelet (left) and associated
spectrum (right).
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Figure 3.11: 2D common-receiver gathers extracted for receiver A along cable A with different
data weighting applied on them. From top to bottom: first break & short offset (DW SO),
first break & medium offset (DW MO), first break & full offset (DW FO), first time release &
medium offset (RT1 MO), first time release & full offset (RT1 FO), second time release & full
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3.4 Full-waveform inversion results

3.4.1 Starting from the reflection tomography model

The first FWI results presented in this article are based on the TOMO initial model. The
final reconstructed VP at 7 Hz is shown in Figure 3.12 using the L2 misfit function, and in
Figure 3.13 using the GSOT misfit function. Starting from the TOMO initial model, and as
we do not expect cycle skipping, we keep the τ parameter of GSOT to 0.2 s. This value is
low enough to always allow for fast convergence (similar to L2 ) while preserving the potential
improvement that GSOT can provide. Using a smaller value of τ would make results similar
to L2 while making τ larger would degrade the capacity of convergence of FWI due to a flatter
attraction basin which is not needed in this case. The results are almost identical between
both formulations on this setup. Some minor differences can, however, be observed. On the
shallow depth slice (a) at 200 m, a small reduction of the acquisition imprint is observable using
the GSOT misfit function. On the depth slice (c) at 1 km, a slight improvement of contrast
between the low velocity anomaly and the sediment background is also visible. Finally, on
the vertical slices (d-g), more lateral coherency in the geological structures is visible using the
GSOT misfit function. The difference globally remains marginal, but this similarity between
the L2 and GSOT misfit functions results is satisfying in itself. Indeed, alternative misfit
functions generally bring some drawbacks, such as loss of resolution power, which is not the
case here. When performing QC on the VP profile extracted from the reconstructed model
versus the sonic log (Fig. 3.22), we can see that the GSOT result is almost perfectly following
L2 result, which is consistent with the observation made directly on the VP model. A slight
improvement of the well velocity fit at depth for GSOT misfit function can be observed for the
well log 1 (which passes through the center of the target). Generally, FWI results improve the
fit to the log compared to the initial model, showing that our FWI workflow provides robust
and reliable results.

The data fit presented in Figure 3.15 shows that GSOT can improve over the L2 FWI data
fit (which is already very satisfying). On the rec A cable A 2D CRG (through the low velocity
anomaly), we can observe some data fit improvement with GSOT, for example, at −6.5 km
offset and 7 s. On the rec B cable B 2D CRG, in an area with relatively mild variations in
velocities and well away from the “gas cloud”, we can observe that, globally, the data fit is
almost the same for L2 and GSOT, with all phases correctly explained. This is not surprising
as this CRG focuses on the part of the model with sedimentary geology only, which the initial
model better explains. However, we can still see the advantages of GSOT this time with more
arrivals present for late time, as visible in the −7 to −4 km offset, from 5 to 7 s.

This “reference” result validates two essential aspects of this study. This first one is that
our FWI workflow is adapted to the dataset and can provide satisfactory results when using
L2-based FWI when a good enough initial model is used as the TOMO model. This point
is of first importance as it validates that our FWI workflow is consistent with the literature
on this dataset. The second conclusion is that the GSOT misfit function can tackle field
data problems without significant issues. Modifying the misfit function and keeping all other
parameters similar, GSOT can provide comparable results to those provided by the L2 FWI.
We can even see slight improvement both in terms of the P-wave velocity model estimation
and data fit with the GSOT misfit function. These encouraging results make it possible to
push the analysis forward: can GSOT help tackle the cycle-skipping issue and improve FWI
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Figure 3.12: Slices of the 7 Hz FWI reconstructed VP using L2 misfit function starting from
TOMO initial model. (a-c) Horizontal slices at (a) 200 m depth, (b) 500 m depth and (c) 1 km
depth. (d-e) Inline vertical slices for (d) x = 2.95 km and (e) x = 3.95 km. (f-g) Cross-line
vertical slices at (f) y = 9 km and (g) y = 6 km.

robustness compared to L2-based FWI?
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Figure 3.13: Same as Figure 3.12 using GSOT misfit function.

3.4.2 Starting from the 1D initial model

To validate the capability of GSOT to tackle large cycle-skipping, we use the 1D initial model
that we introduced previously. This 1D initial model generates cycle-skipping, even on the
mid-offset diving waves (mainly at −4 and −8 km offset), as clearly illustrated in Figure 3.8.

First, we compare the data fit obtained with L2 and GSOT at the 2nd step of our FWI
workflow as presented in Figure 3.16. For this first two steps of the FWI workflow, τ is set
to 0.35 s, which is enough to handle the cycle-skipping generated in the data. First-order
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Figure 3.14: Comparison of VP profiles extracted from the TOMO initial model (dashed red),
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with sonic log (solid black). Left subfigure corresponds to the Log 1 at the center of the target.
Middle subfigure to the Log 2, and right subfigure to Log 3 (which is far away from the target).

observation may indicate a similar data fit with GSOT and L2 , but a more in-depth analysis
shows several differences. At offset higher than 5 km, we observe a degradation with out-
of-phase arrivals for L2 on the rec A cable A CRG, while GSOT results present a significant
improvement on this part. Then, late arrivals events are better explained with GSOT. On the
second rec B cable B CRG, we observe a more continuous reconstruction of the first events
while also reducing out of phase one. Late arrivals are also better reconstructed with GSOT.
On the second CRG, the data fit obtained with GSOT is already quite good for such an early
stage of the inversion. In Figure 3.17 is presented the same CRG, but without applying the
data weighting used at this early stage (DW MO data weighting), but instead the final relaxed
data weighting (RT2 FO). Here, we can see that we are starting to predict data at larger offset
when using GSOT compared to L2 .

After the first two steps of FWI (DW SO and DW MO), we obtain the reconstructed model
presented in Figures 3.18 and 3.19. It is clear here that L2-based FWI result displays heavy
artifacts on the reconstructed VP model for depth larger than 300 m. Even if the very shallow
part of the model is correctly reconstructed, the deeper part of the model is not (see shallow
slice (a) compared with deeper slices (b) and (c)). Starting from a crude 1D initial model,
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Figure 3.15: 2D common-receiver gathers at 7 Hz starting from the TOMO initial model.
Synthetic data (blue/white/red color scale) generated into the final reconstructed VP using
(a,b) L2 misfit function, (c,d) GSOT misfit function. (a,c) receiver A along cable A (through
the low velocity anomaly). (b,d) receiver B along cable B. Field data are overlapped in grayscale
with transparency. Black arrows point to improvement obtained with GSOT.

L2 reaches its limit and is likely affected by strong cycle-skipping. This is why we stop the
L2 inversion at this stage of our workflow: pushing forward the inversion by introducing more
data does not help. Conversely, GSOT-based FWI can provide promising and meaningful VP
updates, with the recovery of correct background velocities at depth and even key features such
as the definition of strong low velocity anomalies (slices (c) (d) (f)).

As GSOT results are encouraging after only two passes on the first frequency band, we apply
our complete workflow and perform the complete inversion similar to our reference inversion,
with six passes on 5 Hz data and 7 Hz data. Regarding the τ parameter for GSOT, as said
earlier, the first two steps on the first frequency band (2.5 to 5 Hz) were performed using
τ = 0.35 s. The next four steps on the first band used a reduced τ = 0.2 s as it is enough
to tackle the shift present in the data (which already illustrates the improvement that GSOT
achieves in the first step of the inversion). For the second frequency band (2.5 to 7 Hz), only
the first step of the workflow uses a slightly relaxed τ of 0.25 s, while the remaining five steps
use τ = 0.2 s. Again, τ is relaxed at the begining to mitigate cycle-skipping, while a smaller τ
is used afterward to preserve resolution power and speed up convergence.

We present the final data fit at 7 Hz for GSOT in Figure 3.20. We can see that a relatively
good data fit is obtained, with most of the arrivals correctly explained. Still, some late arrivals
are out of phase, mainly for large offsets (larger than 6 km)
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Figure 3.16: 2D common-receiver gathers at 5 Hz starting from the 1D initial model with data
weighting apply (DW MO). Synthetic data (blue/white/red color scale) generated into the
final reconstructed VP at 2nd workflow step using: (a,b) L2 misfit function, (c,d) GSOT misfit
function. (a,c) receiver A along cable A (through the low velocity anomaly). (b,d) receiver B
along cable B. Field data are overlapped in grayscale with transparency. Black arrows point
to area where GSOT improves the datafit.

We obtain the final reconstructed VP presented in Figure 3.21. The results are promising
and show a clear improvement in resolution compared to the early results at 5 Hz, with the
main target structures retrieved above 2 km depth. The shape of the low velocity anomaly is
correctly retrieved (slice (c) (d) (f)). Lateral resolution is very significantly improved, allowing
the definition of narrow low-velocity (150 m wide) anomalies not resolved in the L2 inversion
(slice (e)).

When performing a QC using the sonic log presented in Figure 3.22, comparing the final
GSOT results with the early L2 results (that could not be pushed further with meaningful
updates) clearly illustrates that GSOT-based FWI performs meaningful updates of the model
that follows the trends of the VP sonic log. Conversely, the L2-based FWI updates are not
correcting for the wrong initial model, and updates go in the wrong direction at several depths
(for example, 1200 m and 1750 m). A comparison between the sonic log and GSOT-based
FWI results for the two starting models is shown in Figure 3.23. For the two logs outside
the center target area (Log 2 & 3), a good agreement of the FWI results is observed, with
reconstructed VP models following the same trend. For Log 1 in the center of the target area,
we can expect that reconstructed VP results will be incorrect below approximately ≈ 2 km due
to the poor illumination. Above 1.4 km depth, a good agreement can be observed between the
reconstructed models obtained using the two starting models.
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Figure 3.17: Same as Figure 3.16 but with final relaxed data weighting (RT2 FO) for display.
This exhibits the improvement of datafit obtained in area which are not yet inverted. Here,
black arrows point to improve fit and coherency of the diving wave with GSOT, whereas yellow
arrows point to improved data-fit of reflected events with GSOT.

The results are still not perfect, and the main issue is the presence of a low-velocity update
around 500 m depth, as made visible on slice (b). This low-velocity update (not present in the
reference FWI results starting from TOMO initial model) introduces a down vertical shift of
layer under this perturbation. This is why slice (c) is extracted 100 m under (1.1 km instead
of 1 km depth). This vertical shift does not affect the shape of the low velocity anomaly but
only its depth. One possible way to avoid this artifact would be to modify the early stage of
the inversion, for example, with different data-selections or modifications of the initial model
for a slightly better one (for example, based on sonic log information). While this would have
probably improved the results, we decided to keep a crude 1D initial model to stay as generic
as possible and assess the capacity of GSOT in a setup without prior information.

3.4.3 Computational costs

Computational cost analysis is performed for one gradient estimation for both L2 and GSOT
misfit functions. Computation is performed on Haswell E5-2690V3@2.6 GHz Intel nodes con-
taining 24 cores and 64 Gb of memory per node. We use 4 cores per source as our finite
difference scheme uses an OpenMP parallelization.

The computational costs on the first frequency band (2.5 − 5 Hz) and second frequency
band (2.5− 7 Hz) are summerized in the table.
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Figure 3.18: Slices of the 5 Hz FWI reconstructed VP using L2 misfit starting from 1D initial
model. (a-c) Horizontal slices at (a) 200 m depth, (b) 500 m depth and (c) 1.1 km depth. (d-e)
Inline vertical slices for (d) x = 2.95 km and (e) x = 3.95 km. (f-g) Cross-line vertical slices at
(f) y = 9 km and (g) y = 6 km.

Gradient Misfit Total time Ratio

L2 - 5 Hz 243 s 1 s 254 s 100 %

GSOT - 5 Hz 243 s 55 s 308 s 121 %

L2 - 7 Hz 898 s 1 s 912 s 100 %

GSOT - 7 Hz 898 s 101 s 1012 s 111 %
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Figure 3.19: Same as Figure 3.18 using GSOT. Here, results are consistant until 1.5 to 2 km
depth compared to L2-based FWI. Characteristic structures of the Valhall field are recovered.

The gradient column corresponds to the time spent to calculate the gradient (containing
all required wave modelings), while the misfit column isolates the time spent computing the
misfit function. The total time is the sum of gradient and misfit, and the ratio compares L2

(put at 100%) with GSOT. This analysis shows that while the computational complexity of
the solution of the gradient estimation scales to O(ω4)), the computation complexity of the
GSOT computation is in O(ω3), as noted in Métivier et al. (2019).

The overhead cost induced by GSOT is therefore reduced on the higher frequencies, which
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3.4 Full-waveform inversion results

Figure 3.20: 2D common-receiver gathers at 7 Hz starting from the 1D initial model. Synthetic
data (blue/white/red color scale) generated into the final reconstructed VP using GSOT. (a)
receiver A along cable A (through the low velocity anomaly). (b) receiver B along cable B.
Field data are overlapped in grayscale with transparency.

are the most expensive ones computationally speaking (for example, with a maximum fre-
quency of 5 Hz, the first frequency band is relatively fast to compute, making a 20% overhead
acceptable). This is one key feature that makes the GSOT misfit function able to tackle field
data applications as higher frequency drastically increases the computational cost, and GSOT
overhead will become smaller.

103



ROBUST FWI WITH GRAPH SPACE OPTIMAL TRANSPORT: APPLICATION TO 3D
OBC VALHALL DATA

 VP at 7 Hz - init 1D - GSOT

(e)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Y (km)

1

2

3

4

D
ep

th
 (k

m
)

(d)
1

2

3

4

D
ep

th
 (k

m
)

< d

< e

(c)
1

2

3

4

5

6

7

8

X 
(k

m
)

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

m
/s

< d

< e

(b)
1

2

3

4

5

6

7

8

X 
(k

m
)

1600

1650

1700

1750

1800

1850

1900

1950

2000

m
/s

< d

< e

< 
g

< 
f

(a)
1

2

3

4

5

6

7

8

X 
(k

m
)

1600

1650

1700

1750

1800

1850

1900

1950

2000

m
/s

< a
< b
< c

(g)

1 2 3 4 5 6 7 8
X (km)

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

m
/s

< a
< b
< c

< 
d

< 
e

(f)

Figure 3.21: Slices of the 7 Hz FWI reconstructed VP using GSOT misfit starting from 1D
initial model. (a-c) Horizontal slices at (a) 200 m depth, (b) 500 m depth and (c) 1.1 km
depth. (d-e) Inline vertical slices for (d) x = 2.95 km and (e) x = 3.95 km. (f-g) Cross-line
vertical slices at (f) y = 9 km and (g) y = 6 km.
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Figure 3.22: Comparison of VP profiles extracted from the 1D initial model (dashed red), early
FWI models using L2 (solid yellow) and 7 Hz FWI model using GSOT (solid purple) with
sonic log (solid black). Left subfigure corresponds to the Log 1 at the center of the target.
Middle subfigure to the Log 2, and right subfigure to Log 3 (which is far away from the target).
Updates of velocity model obtained with GSOT are following the logs trend until ≈ 2 km
depth.
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Figure 3.23: Comparison of VP profiles extracted from the TOMO and 1D initial models
(respectively dashed red and dashed blue), GSOT-based FWI reconstructed models at 7 Hz
starting from TOMO and 1D initial models (respectively solid red and solid blue), with sonic
log (solid black). Logs 2 and 3 show that results from the two different starting models are
globaly following the same trend. Results from Log 1 passing through the target are following
the same trend until 1.4 km depth.
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3.5 Discussion

Facing challenging field data applications with alternative misfit functions is not widely doc-
umented in the literature. One of the only other alternative misfit functions that has been
applied successfully to field data is adaptive waveform inversion (AWI) (Warner and Guasch,
2015; Ravaut et al., 2017; Debens et al., 2017; Roth et al., 2018; Guasch et al., 2019; Warner
et al., 2019) or Kantorovich-Rubinstein optimal transport (KROT) (Poncet et al., 2018; Messud
and Sedova, 2019; Sedova et al., 2019).

Regarding the final results obtained with the GSOT misfit function, we first validate that it
can improve over L2-based FWI in a controled environment (starting from a good enough VP
TOMO ) with improved datafit and improved lateral coherency and reduced acquisition imprint
on the model side. The computational overhead induced by GSOT stays limited thanks to the
computational complexity of GSOT being one order of magnitudes smaller than the complexity
of the gradient estimation for a given maximum frequency. This behavior translates into a good
scaling property when facing high-frequency data, which is now one trend for field data FWI
applications. When tackling a difficult 1D initial model, which generates cycle-skipping, we
show that GSOT-based FWI provides good model updates and good datafit where classical
L2-based FWI fails. The control of the convexity provided by the GSOT misfit function is
performed through the choice of the τ parameter. This parameter is directly linked to the
observed time-shift between calculated and observed data, making it easy to tune, depending
on the initial fit of the data and the expected maximum time shift. We adapt it from 0.2 s to
0.35 s in the initial stage of the workflow when we switch from the initial tomography model
to the initial 1D model.

We also emphasize that results under 2 km suffer from a substantial lack of illumination
and are therefore limited to the resolution of our initial model, explaining why no meaningful
updates are present for depth superior to 2 km. This limitation in terms of depth reconstruction
(under 2 km) is not surprising as the FWI alone is not expected to present enough illumination.
In this case, it would require the use of reflected wave inversion (RWI) or joint full-waveform
inversion (JFWI). Some preliminary but encouraging results were obtained combining GSOT
and JFWI (Provenzano et al., 2020b): GSOT adds the convexity necessary to predict the
reflected data, enabling robust velocity updates of the model at depth.

3.6 Conclusion

In this work, we focus on the application of a new misfit function: graph space optimal trans-
port. This formulation shows a clear improvement over L2 in a controled environment, unleash-
ing the potential of FWI to perform meaningful updates when starting from a crude, 1D initial
model. This clear improvement in cycle-skipping robustness, combined with a simple setup
(only one physical parameter to define) and a reasonable computational overhead, illustrates
that GSOT is a good candidate to improve FWI robustness and therefore make FWI more
accessible and easily applicable.
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Exploring new ideas and overcoming
practical limitations
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4.1 Overcoming practical issue for 3D KROT applications

This chapter presents some of the ideas and workaround that I have developed during my
years of research. This could be seen as the “graveyard” of multiples ideas, that could seem
interesting but were never pushed further for multiples reasons. Some ideas were simply not
suitable, some were interesting but present problematic flaws, and better ones simply replaced
some.

I think it is important to remind that science is not a straight path. It often requires going
through multiple paths to have a better understanding of the possibilities. Unfortunately,
the scientific community often focuses only on working solutions but not so much on what is
not working. This leads researchers worldwide to repeatedly try the same “doomed-from-the-
beginning” idea that nobody ever published about.

In a small and humble attempt to improve this, I present some of what I could refer to as
“interesting failures”, that still brings meaningful insights on the road ahead for better and
more robust FWI by possibly removing some dead-ends for future research in this field.

4.1 Overcoming practical issue for 3D KROT applications

As illustrated in Figure 4.1, the Kantorovich-Rubinstein optimal transport (KROT) does not
translate into drastic convexity improvement. The main benefit comes from the fact that it can
be defined in 1D, 2D, or 3D, allowing us to consider the lateral coherency of shot gathers. By
taking lateral coherence information of the data into account, KROT allows having a beneficial
effect on the convergence of the FWI schemes. It also helps “regularize” the results, with a
denoising effect that is welcome for field data application. This has been illustrated in recent
publications (Messud and Sedova, 2019; Sedova et al., 2019; Carotti et al., 2020).

For 3D field data, keeping computational costs low is essential, and it is essential to minimize
the potential overhead introduced by the KROT formulation. To mitigate the computational
overhead of 3D KROT, we rely on a new idea: extract lines of receivers (Figure 4.2) inside the
3D seismic cube (Poncet et al., 2018). This approach creates 2D panels on which 2D KROT
can be applied. The 3D residual will be reconstructed using all 2D residuals, and the cost
function will be the summation of every panel cost.

The algorithm for this new optimal transport work as follows:

• Choose the direction of receivers line (in X or Y) and number of receivers lines to extract
in the 3D cube (these parameters should make sense with the acquisition)

• A width of X or Y values for a line is calculated depending on the size of the acquisition

• A line is extracted from the 3D cube by selecting all receivers inside a given range of xrec
or yrec values

• 2D KROT is applied on the panel. The cost function is increased by the value of the
cost for this 2D panel, outputted 2D residual for the line is remapped to the 3D residual
(each traces of 2D residual is put back where it was in the complete 3D residual)

• Code move to next line until all lines are done
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Figure 4.1: Simple time-shifted Ricker wavelet test for crosscorrelation misfit function. (a)
presentation of the setup, with reference signal (seen as dobs ) in solid black, and shifted signal
in dashed black (seen as dcal ). (b) Value of the KROT misfit function with respect to time-
shift.

This yields a more flexible KROT implementation for 3D data, which presents a reasonable
computational overhead (increase around 25% max compared to L2 ) while preserving the
ability of KROT to take advantage of lateral coherency of the data compared to 1D KROT.

The only potential issue is that multi-2D implementation assumes that the extracted 2D
line is straight. This can be circumvented by performing receivers re-interpolation on a regular
cartesian grid directly on the data, which allows performing a regular line extraction afterward
(Figure 4.3).
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Figure 4.2: Complete (original) acquisition of a 3D OBC North Sea Valhall data. Sources are
represented by black dots, receivers by blue diamond. Two subpanels shows a 2D extracted
lines of receivers inside the acquisition.
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Figure 4.3: Same as Figure 4.2, but for the interpolated dataset. Here the extracted 2D lines
are now perfectly straight, with regular receivers spacing.
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4.2 Exploring new ideas of alternative misfit functions

In this section, I present some ideas that I have explored. These ideas have been explored
mainly on an early “prototyping” stage, focusing on increasing convexity for time-shifts on
simple 1D shifted patterns tests. These ideas have never passed this early stage and have never
been implemented into FWI for different reasons that I will detail.

4.2.1 Instantaneous phase and unwrapped phase misfit functions

First, in this section, I re-introduce the concept behind instantaneous phase and envelope
(as proposed by Bozdağ et al., 2011). One way to separate the signal phase and envelope
information is to rely on the analytical signal based on the Hilbert transform.

4.2.1.1 Hilbert transform and analytical signal

The analytical signal relies on the utilization of the Hilbert function H which can be defined
in the time domain as

H[d(t)] =
1

π
P

+∞∫
−∞

d(τ)

t− τ
dτ , (4.1)

where P stands for the Cauchy principal value.

In practical application, we do not rely on this time formulation to get the Hilbert transform
but rather on a frequency formulation proposed by Marple (1999). This method relies on a
simple three-step approach:

1. Compute the Fourier transform of d(t) using an efficient FFT solver

2. Change the negative frequency to zero

3. Compute the inverse FFT

This simple algorithm gives direct access to the analytical signal in a computationally efficient
manner. From this analytical signal, we can simply retrieve the Hilbert transform as the
imaginary part of the analytical signal d̃(t)

H[d(t)] = I[d̃(t)] . (4.2)

This analytical signal can be written regarding the instantaneous phase φ(t) and the in-
stantaneous envelope E(t) as

d̃(t) = E(t)eiφ(t) , (4.3)

where the instantaneous envelope is defined as

E(t) =

√
R[d̃(t)]2 + I[d̃(t)]2 , (4.4)

and the instantaneous phase as

φ(t) = atan
I[d̃(t)]

R[d̃(t)] + ε
, (4.5)
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or alternatively using the atan2 that has been introduced in Fortran and was originally intended
to return a correct and unambiguous value for the angle in cartesian coordinates

φ(t) = atan2
(
I[d̃(t)],R[d̃(t)]

)
. (4.6)

The atan2 formulation of instantaneous phase is prefered as it is uncondtionally stable and
does not require a water level ε.

This decomposition between the instantaneous phase and instantaneous envelope can be
used to define alternative misfit functions as detailed in the following. In chapter 2, we have
already seen that instantaneous envelope could provide a potential improvement over the L2

norm. In the following, I want to give more details on the instantaneous phase and some other
ways to obtain “envelope-like” observables that could be used for alternative misfit functions.

4.2.1.2 Instantaneous phase misfit

Using the instantaneous phase defined on equation 4.6, an instantaneous phase misfit has
been proposed by Bozdağ et al. (2011). The motivation behind the utilization of the phase
information is to reduce the sensitivity to amplitude variation, which mainly impacts global
seismology. At the crustal scale, these amplitude problems are less present.

A representation of the instantaneous phase of a signal is shown on Figure 4.4. It exhibits
that the instantaneous phase is oscillatory and could not increase cycle-skipping robustness as
the width of the temporal support carrying information is now smaller than the original signal.

This instantaneous phase misfit function is defined as

FIP =
1

2

T∫
0

[φcal(t)− φobs(t)]2dt . (4.7)

This misfit function is not designed to improve the convexity for time delays (Figure 4.5),
but rather improve robustness to amplitude miss-match. It is sensitive to polarity information,
and its resolution is prone to be good. One of the issues of removing amplitude information
is that the weighting between noise and the arrivals will be the same, leading to an increased
sensitivity to noise.
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Figure 4.4: Representation of a simple signal d(t) (black line) and the associated instantaneous
phase φ(t) (red line).
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Figure 4.5: Simple time-shifted Ricker wavelet test for the instantaneous phase misfit function.
(a) presentation of the setup, with reference signal (seen as dobs ) in solid black, and shifted
signal in dashed black (seen as dcal ). (b) Value of the instantaneous phase misfit function with
respect to time-shift.
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4.2.1.3 Unwrapped phase misfit

From the instantaneous phase can be derived the unwrapped phase, which can potentially lead
to an interesting formulation. The unwrapping of the phase is done by a simple algorithm:
whenever the jump between consecutive angles is greater than or equal to π, the algorithm
shifts the angles by adding multiples of ±2π until the jump is less than π.

Using an unwrapped phase, we can obtain a drastic improvement of convexity for time
delays, which mimic NIM misfit function (Figure 4.6). Unfortunately, unwrapping of phase is
an arduous task that is incredibly sensitive to noise (Figure 4.7), and is still challenging today
in optics or electronic fields (Wang et al., 2019). It would be impossible to extract a clean and
stable unwrapped phase of a field data signal. Therefore all the attempts to use the unwrapped
phase were not further explored.

This idea remains an excellent example of tempting ideas that could work well on synthetic
traces but are doomed to failure when analyzed a bit closer. It represents the large amount of
“dead-ends” that I have faced when trying to find alternative misfit functions.
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Unwrapped phase

Figure 4.6: Simple time-shifted Ricker wavelet test for the unwrapped phase misfit function.
(a) presentation of the setup, with reference signal (seen as dobs ) in solid black, and shifted
signal in dashed black (seen as dcal ). (b) Value of the unwrapped phase misfit function with
respect to time-shift.
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Unwrapped phase

Figure 4.7: Same as Figure 4.6 but with a very small white noise on the reference signal.
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4.2.2 Spline based envelope misfit function

The Hilbert transform is one way to extract the “true” envelope of the signal. By “true”
it directly relates to the structure of a signal, which is composed of phase and amplitude,
which translates into the fact that the instantaneous envelope can be recombined with the
instantaneous phase to recreate the original signal. However, another possibility is to extract
an “envelope” from the signal in a more physical sense, with no direct link to the phase.

To create this new envelope, we first need to extract all the maxima (and minima) of the
signal; then, spline interpolation is performed between these maxima points (or minima point)
to create a spline envelope approximation of the signal as proposed by Han et al. (2016). Thus,
we can define two separate envelopes: the upper part (from the maxima) and the lower part
(from the minima). This is the first drastic difference to the unique envelope created by the
Hilbert transform. These lower and upper envelopes can be merely average (Hu et al., 2016) to
create an ”average” spline envelope (ASE). The original idea is performed using cubic spline
interpolant. From the extensive test performed, a better version was obtained using a Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP).

The processing of the signal is performed in two steps. The first one (Algorithm 1) computes
the first and second derivative of the signal, then a second part (Algorithm 2) extracts the top
and bottom peaks. From the peaks, the PHCIP algorithm can be applied to get the top and
bottom envelope.

An example of a spline envelope and average spline envelope is presented on Figure 4.8. In
this case, on synthetic data, the average envelope obtained from the top and bottom envelope
could make an excellent observable as the width of the temporal support has been increased
while preserving phase and amplitude information.

The convexity improvement obtained with the ASE misfit is slightly improved compared
to the instantaneous envelope, as shown in Figure 4.9. The advantages of ASE over IE would
not only be related to slightly increased convexity but also to the fact that it integrates some
polarity (phase) information that IE discards. This could potentially translate into improved
results for practical application where phase information is crucial.

The effect of noise on the spline envelope is interesting. Test of data without noise vs.

Algorithm 1 calculate the first and second derivative of the signal and extract binary version
of the first derivative

1: sn = s + small white noise
2: for i = 2 to Nt − 1 do
3: ds(i) = (sn(i+ 1)− sn(i− 1))/(2 ∗ dt)
4: dds(i) = (sn(i+ 1)− 2 ∗ sn(i) + sn(i− 1))/(dt ∗ dt)
5: end for
6: for i = 1 to Nt do
7: if ds(i) ≥ 0 then
8: sign(i) = 1
9: else if ds(i) < 0 then

10: sign(i) = −1
11: end if
12: end for
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Algorithm 2 extract top and bottom peaks

1: ptop = 0
2: pbot = 0
3: for i = 2 to Nt − 1 do
4: if dds(i) < 0 and sign(i) 6= sign(i+ 1) then
5: ptop = ptop + 1
6: ttop(ptop) = t(i)
7: envtop(ptop) = s(i)
8: else if dds(i) > 0 and sign(i) 6= sign(i+ 1) then
9: pbot = pbot + 1

10: tbot(pbot) = t(i)
11: envbot(pbot) = s(i)
12: end if
13: end for
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Figure 4.8: Spline envelopes and average spline envelopes for a given seismic trace (solid black).
The top peaks (blue circle) and bottom peaks (red circle) are extracted using algorithms 1 and
2. From these minima and maxima, the top envelope (blue line) and bottom envelope (red
line) are extracted using a piecewise cubic Hermite interpolating polynomial. The mean of
these two envelopes, corresponding to the average spline envelope (purple line), presents a nice
shape that could be seen as a low-frequency version of the original signal.

two levels of noise is presented on Figure 4.10. It can be observed that for noiseless data
(Figure 4.10a) or data with a small amount of noise (Figure 4.10b), the ASE present wider
temporal support, which will translate into increased cycle-skipping robustness. We can even
observe that the ASE common shot gather is slightly cleaner at zero offset for the signal with a
small amount of noise. However, when strong noise is present (Figure 4.10c), the resulting signal
is a denoized version, without the increased temporal support width. While this denoising effect
is impressive on its own, it does not translate into improvement for cycle-skipping robustness.

The conclusion on ASE would be that the algorithms 1 and 2 present two main issues:

• It is not a differentiable operation, meaning that any attempt to derive an adjoint source
from any misfit based on this operation will be unsuccessful.

• It relies on the addition of subtle white noise to stabilize the results. For synthetic data,
there will be no issue. For real data with strong noise, the peaking will result in too many
minima and maxima. When interpolated, this will only create a ”denoise” version of the
signal and not an envelope.
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Figure 4.9: Simple time-shifted Ricker wavelet test for ASE misfit function. (a) presentation
of the setup, with reference signal (seen as dobs ) in solid black, and shifted signal in dashed
black (seen as dcal ). (b) Value of the ASE and IE misfit functions with respect to time-shift.

Peak extraction is not a differentiable operation: this is a dramatic drawback and prevents
us from applying this misfit function to FWI when using the adjoint state method to obtain
gradient. Still, ASE properties seem interesting, and from toy experiment on traces shows
it could be promising. The strong denoising effect could also be of interest for FWI as a
pre-processing step to clean out data strongly contaminated by noise.
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(b) Very small noise added to the signal

Shot gather original signal

50 100 150 200
shoot

100

200

300

400

500

600

tim
e

-5

0

5

10
10-6

0 0.5 1 1.5 2 2.5
time

-4

-2

0

2

4

am
pl
itu
de

10-6 Center trace for original signal

Shot gather ASE

50 100 150 200
shoot

100

200

300

400

500

600

tim
e

-2

-1

0

1

2

3

10-6

0 0.5 1 1.5 2 2.5
time

-1

0

1

2

3

4

am
pl
itu
de

10-6 Center trace for ASE
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Figure 4.10: Extraction of average spline envelope based using PCHIP for three levels of noise
(a: without noise, b: small amount of noise, c: strong noise).
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4.2.3 Diffusion based misfit function

Another idea explored for a new observable to improve the L2 norm misfit function is a
Diffusion-based observable. The simple idea is to take each trace and set it as the initial
condition for a 1D diffusion problem solved by finite differences. By doing so, we hope to
extract a “smooth” version of the observable with a wider temporal support. Since it is a dif-
fusion problem, we can finely control and adjust the “diffusion time”, which allows for precise
control on how much the signal is diffused and therefore smooth. At first, we can diffuse for a
long time (until we obtained a smooth enough observable to mitigate the cycle-skipping issue),
then during the non-linear iteration of the FWI process, slowly reduce the diffusion time to
make the observable less diffused and closer to the original signal. Ideally, in the end, it will be
a non-diffusion misfit that will be similar to the classical L2 waveform misfit. This ability to
smoothly control the widening of temporal support translate into control of the cycle-skipping
robustness, which is very appealing.

Let us remind the formulation of the diffusion equation as

∂u

∂t
+ κ

∂2u

∂x2
= 0 , (4.8)

where κ is the diffusion parameters.

In our case, since we do not care about the physical meaning of the diffusion we performed,
we can set κ = 1. Since we set d(t) as an initial space condition, we can rewrite the diffusion
equation as

∂d

∂τ
+
∂2d

∂t2
= 0 . (4.9)

The new quantity D(t, τ) is computed as the diffusion of the original signal d(t) for a given
time τ (the diffusion time). If τ = 0, we do not diffuse and D(t, τ = 0) = d(t). The more τ
increases, the more D(t, τ) will be a diffused version of d(t).

Instead of considering the least-squares misfit (L2 norm) between dobs and dcal, we consider
the least-squares difference between Dobs and Dcal.

Fdiffusion(τ) =
1

2

T∫
0

[Dcal(dcal, t, τ)−Dobs(dobs, t, τ)]2dt . (4.10)

where Dcal = D(dcal, t, τ) and Dobs = D(dobs, t, τ) are modified versions of the wavefield dcal(t)
and dobs(t) based on the diffusion equation for a given diffusion time τ .

An illustration of the effect of diffusion on a signal is visible on Figure 4.11. This clearly
illustrates the increased temporal support for the diffused version compared to the original
signal. Also, it shows the ability to control “how much” increased temporal support is possible
by modifying the diffusion “time”.

This potentially translates into increased convexity of the misfit function with respect to
time-shift as shown in Figure 4.12.

This behavior is further illustrated on Figure 4.13, with two Ricker wavelets, one unfiltered
and one high passed above 2 Hz. For the unfiltered Ricker wavelet, we can see a clear improve-
ment in the temporal support width, which is the feature we want to observe. However, for
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Figure 4.11: Test of diffusion on a simple signal (solid red) for two diffusion values. The less
diffused version (solid purple) and the two times more diffused version (solid blue).

the highpass filtered version, it can be observed that the signal shape is not preserved, while
the associated spectrum is still good and coherent. This raises concern with the suppression of
zero-frequency information. To push the analysis deeper, noise can be added as presented on
Figure 4.14. Here, it clearly illustrates that adding white noise to the data starts to interfere
with the diffused version and altered the signal. To validate this hypothesis, we observed the
effect of diffusion on a field-data trace (Figure 4.15). It can be observed that the spectrum
of the diffused data is not clean and does not represent a pure shift down in frequency. This
behavior can be linked to the fact that diffusion is expected to behave like a linear low-pass
filter, meaning it amplifies information from the pre-existing low frequencies in the data. When
looking at a high-passed Ricker wavelet or a field data (which contains slight noise and no zero
frequency information), it can be observed that there is no added benefit of using diffusion to
create a new observable.

This idea illustrates the potential false “good idea” which can be appealing at first while
presenting no advantages to field data application. It is a good reminder that playing with syn-
thetic data and especially Ricker wavelet (which contains close to zero frequency information)
can introduce a skew conclusion. This kind of artificial boosting of a Ricker wavelet’s low-
frequency content has been observed some times on some ideas presented during conferences
and should raise a warning.
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Figure 4.12: Simple time-shifted Ricker wavelet test for crosscorrelation misfit function. (a)
presentation of the setup, with reference signal (seen as dobs ) in solid black, and shifted signal
in dashed black (seen as dcal ). (b) Value of the diffusion-based misfit function with respect to
time-shift. Here the diffusion time τ is set to 3000.
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Figure 4.13: Test of diffusion on two Ricker wavelets, one unfiltered (solid blue) and one
highpass filtered above 1.5 Hz (solid red). The right column corresponds to the assocaited
spectrum. The top line represents the non-diffused signal while the bottom ligned represents
signals after diffusion.
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Figure 4.14: Same setup as Figure 4.13 but with noise added on the signal.
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corresponds to the diffused data and its associated spectrum.
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4.2.4 Beat-tone misfit function

Finally, another explored idea is to generate a beat tone using a cosine function on the data.
To do so, we multiply our signal d(t) in time with a cosine at a given frequency fc:

B(t) = d(t) ∗ cos(2πfct) (4.11)

If we have a signal of a given central frequency f , the beat generated should have a high and
a low-frequency component such as f − fc and f + fc. We then have to remove the high-
frequency component by applying a low pass filter, for example keeping only the frequencies
under the central frequency f of the original signal. This would theoretically allow shifting the
frequencies of the signal toward the low frequency. This behavior is illustrated on Figure 4.16
using a simple Ricker wavelet at 10 Hz. In this case, introducing a carrier at fc = 2 Hz results
in a split of the frequency content, with a part around 5 Hz on the low-frequency side and
one around 15 Hz for the high-frequency side. After applying a low-pass filter under 7 Hz we
obtain a low-frequency version of our original signal, which looks appealing.

Again, this should theoretically translate into increased convexity of the misfit function as
illustrated in Figure 4.17.

To further illustrate the effect, we apply beat tone with fc = 4 Hz on a trace from field data
from Valhall as presented on Figure 4.18. The signal is then low-passed with a maximum cut-
off frequency of 5 Hz. The original signal central frequency is around 6 Hz, and after applying
the beat tone, we again have a split of the spectrum with peaks around 2.5 and 10 Hz. After
the low-pass filter, we obtain a low-frequency version of the original signal. However, one of
the first issues would be the sensitivity to the carrier frequency fc as illustrated on Figure 4.19.
Here, with fc = 12 Hz, no beat tone effect is present. There is no “automatic and easy” way
of finding the proper carrier frequency to optimize the beat tone effect from the experiment.
Moreover, a second issue is also present and corresponds to the very unpredictable behavior of
beat tone as it depends on the cosine phase. This effect is illustrated in Figure 4.20. A slight
shift in time could lead to drastic modification of the beat tone version. This unstable behavior
will effectively lead to a basin of attraction as large as the classical L2 misfit.
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Figure 4.16: Beat tone illustration on a simple unfiltered Ricker wavelet and associated spec-
trum. First line corresponds to the raw Ricker wavelet, the second line to the beat tone version
and the third line to a low-passed version of the beat tone version to remove high-frequency
content.
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(b) Beat tone

Figure 4.17: Simple time-shifted Ricker wavelet test for crosscorrelation misfit function. (a)
presentation of the setup, with reference signal (seen as dobs ) in solid black, and shifted signal
in dashed black (seen as dcal ). (b) Value of the beat-tone misfit function with respect to
time-shift. Here fc = 0.5 Hz and the low-pass filter is set to 1 Hz.
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Figure 4.18: Same setup as on Figure 4.16 but using a field data trace coming from Valhall
instead of the Ricker wavelet.
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Figure 4.19: Same setup as on Figure 4.18 but with a less effective parameterization of the
beat tone resulting in no shift toward the low frequencies.
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Figure 4.20: Exemple of the variability of beat tone on a Valhall field trace. The reference beat
tone version is in solid black. In solid blue and red are two beats obtained from a time-shifted
version of the observed data. We can observe here that as the carrier is always the same, a
possible shift in time of the wavelet will dramatically change the signal shape.
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4.3 Investigation published during my thesis

Here, I want to present a list of the investigations I have performed and published during my
thesis that contains meaningful insights on robust FWI and alternative misfit functions. Some
of the ideas are presented in-depth in this thesis, but some were put aside for the clarity of the
manuscript. I would refer interested readers to my work for broader pictures on robust FWI
and alternative misfit functions.

• First, my Master’s thesis, focusing on improving FWI robustness with alternative misfit
functions: Pladys, A. (2016). Sensibility of several misfit functions for Full Waveform In-
version: theoretical analysis, implementation and comparative study on multiple realistic
cases. Master’s thesis, Univ. Grenoble Alpes.

• Some work on key properties that alternative misfit functions should satisfy: Pladys, A.,
Brossier, R., and Métivier, L. (2017). FWI alternative misfit functions: what properties
should they satisfy. In 79th EAGE Conference and Exhibition 2017, Paris, page Tu P1
01.

• Case study for GSOT-based FWI on Valhall: Pladys, A., Brossier, R., Irnaka, M., Ka-
math, N., and Métivier, L. (2019). Assessment of optimal transport based FWI: 3d OBC
valhall case study. In SEG Technical Program Expanded Abstracts 2019, pages 1295–1299.

• Improving cycle-skipping robustness with GSOT-based FWI on Valhall: Pladys, A.,
Brossier, R., and Métivier, L. (2020). Graph space optimal transport based FWI: 3D
OBC valhall case study. In SEG Technical Program Expanded Abstracts 2020.

• Published paper on alternative misfit functions for FWI: Pladys, A., Brossier, R., Li,
Y., and Métivier, L. (2021b). On cycle-skipping and misfit functions modification for
full-wave inversion: comparison of five recent approaches. Geophysics, in press.

• Submitted paper on 3D OBC field data application of GSOT-based FWI: Pladys, A.,
Brossier, R., Kamath, N., and Métivier, L. (2021a). Robust fwi with graph space optimal
transport: application to 3d obc valhall data. Geophysics, submitted.

I also wanted to express my regrets for not sharing my work performed on a 3D OBC North
Sea dataset in collaboration with Equinor. Unfortunately, the ownership of the dataset was
transferred during my thesis to another company, and all the authorizations were lost. This
was my first time getting around field data, and the application focused on 1D KROT analysis,
then on a multi-2D KROT analysis.
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Conclusion

This thesis manuscript aims at comparing alternative misfit functions for full-waveform inver-
sion. In the beginning, a general introduction of the history of seismic imagining and, more
generally, imaging in geophysics is performed. This introduces the different methods developed
along the year and introduces the method at the core of this manuscript: full-waveform inver-
sion (FWI). The pros and cons of this method are developed and make a transition toward the
first Chapter. In Chapter 1, a generic introduction to the FWI formalism is made, from the
forward modeling part of the problem to the inversion part with the multiple formalisms that
can be used to solve inverse problems. The non-convexity issue is introduced, followed by a
presentation of the cycle-skipping issue. An introduction to possible solutions to mitigate FWI
non-convexity is then performed. In Chapter 2, alternative misfit functions are benchmarked
on several synthetic tests, from simple 1D examples to more complex 2D FWI cases to assess
the pros and cons of each proposition. In Chapter 3, an application of the most promising
method (graph space optimal transport) is applied to a 3D field dataset. Finally, in Chapter 4,
some ideas for other alternative misfit functions and some workaround performed for practical
applications are presented.

Throughout this work, several important points have been discussed, and I want to re-
emphasize them as a conclusion:

• Is robustness to cycle-skipping the only important feature of an alternative
misfit function?
As introduced in Chapter 1, the primary and central issue of FWI comes from the non-
convexity of the misfit function conventionally used: the least-squares norm (L2 norm).
This L2 norm is at the origin of the cycle-skipping issue. Therefore, when the idea came
of replacing the L2 norm with alternative misfit functions, it seemed obvious - at first -
to focus on reducing the non-convexity of the misfit function. This led to the proposition
of many more convex (with respect to time-shifts) misfit functions. This should have
theoretically solved the cycle-skipping issue and improve FWI robustness. Nonetheless,
the number of field data applications using alternative misfit functions remains small
compared to the number of proposed solutions.

This discrepancy is, for me, explained by the fact the L2 norm is pretty good for all
other aspects: it preserves signal shape (no alteration in amplitude/phase information),
it exhibits strong noise robustness, it - when not affected by cycle skipping - delivers
very high-resolution results that FWI is known for and finally, the computational cost



CONCLUSIONS AND PROSPECTS

is negligible. These advantages have made the L2 norm the “way to go” for FWI. By
looking at cycle-skipping robustness alone while not preserving the other important key
features that a misfit function should exhibit, propositions of alternative misfit functions
can reveal themselves not adapted to realistic FWI usage (such as field data), even if
they reduce cycle-skipping sensitivity “on paper”.

• How to assess the real world capacity of an alternative misfit function?
Assessing misfit functions in the most generic and reproducible way is important. The
literature misses much cross-comparison between several propositions. As an attempt to
address this issue, I proposed several synthetic cases (presented in Chapter 2). From 1D
toy example that only focuses on shifted patterns, to simple 2D FWI tests in transmission
and reflection, to finally more realistic 2D cases with Marmousi, with a shared parame-
terization between misfit functions, cross-comparison is made easier and understanding
potential drawbacks of a given formulation is made simpler. This allowed us to restrict
the potential good down to what is for us the best candidate and further test it on field
data in Chapter 3.

If an alternative misfit function is directly tested on a more realistic case, it can be easily
tweaked to provide artificially good results, or it can fail and be difficult to identify why.
I want to promote a more systematic approach to validate alternative misfit functions
capacity and hope this work is a step in this direction.

• Are alternative misfit function some kind of magic button that could make
FWI automatic?
After extended tests, using what is for me the best misfit function at my disposal, from
simple 2D FWI setup to 3D field data application, it never behaves as a “magic button”.
Even if, on simple synthetic cases, the increase of robustness that graph space optimal
transport (GSOT) provides can simplify the workflow or allows to start from really crude
initial models, extended tests have shown that it still requires the use of appropriate
workflows when trying to tackle more complex situations. This is not a drawback, as in
such cases, L2-based FWI simply fails to provide results even when using all the possible
approaches. For me, GSOT is a clear improvement to FWI robustness, which constantly
(for the tests I performed) improves results over L2 , but at a given computational
overhead. FWI remains a complex imaging process that is far from automatic, and
providing tools to increase its robustness is a step in the good direction but not a magic
leap toward a completely robust tool.

Perspectives

This work can be separated into two parts. The first one is a presentation of several misfit
functions with an attempt at cross-benchmarking them. The analysis can be pushed forward
on multiple aspects:

• Non-exhaustive selection of misfit functions.
Indeed, the selection of misfit functions that are benchmarked together is non-exhaustive.
Moreover, we compared some of the best challengers to some simpler propositions, which
where never pushed further on. This was made as an attempt to exhibit pros and cons
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and to create more systematic ways of comparing misfit functions for FWI. By focusing on
time-domain FWI formulation and only on misfit functions, we restricted ourselves from
possible good candidates who rely on other kinds of reformulation of the FWI problem.
Other misfit functions could be considered and benchmarked against our selection using
the same framework.

• Exploring and benchmarking other types of solutions.
In this thesis, my focus has never been on extension strategies. Nevertheless, it could be
of interest to compare them with alternative misfit functions directly. Making a direct
comparison of alternative misfit function to extension strategies could bring new insight
into robust FWI.

The second part of this work consists of a field data application comparing GSOT to L2

norm. Here, several possibilities should be considered to improve the results and push the
analysis forward:

• Considering other misfit functions for field data.
From the analysis performed on several misfit functions, we decided to focus only on
the most promising candidates at our disposal. Moreover, being the solution developed
in the team, we had the greatest confidence with it, which is important when tackling
complex and large datasets that require substantial computational resources. For the
amount of time at my disposal, pushing the analysis on the best candidate make sense.
Future works, comparing other good alternative misfit functions, such as AWI, would
bring more insight into their behaviors when facing field data.

• Improving results using complementary methods.
As it was shown, results obtained on the Valhall dataset when starting from the 1D model
were impressive. Still, some imperfections in the shallow layer reconstruction are visible
compared to the results obtained from the reflection tomography initial model. These
kinds of issues could be tackled with other methods such as RWI or JFWI (Zhou, 2016;
Zhou et al., 2016; Brossier et al., 2017; Zhou et al., 2018; Li et al., 2019; Provenzano et al.,
2020b; Yao et al., 2020). Also, considering a more complex physic for the modeling could
help explain the data better. This would provide an exciting insight into the capacity of
alternative misfit functions for more complex workflow.

• Pushing inversion further.
The last line of investigation would be to push the inversion further. The choice of
stopping at 7 Hz was mainly motivated by computational resources at our disposal. This
link with the previous point and pushing the FWI workflow further will bring more
knowledge on alternative misfit function behavior on field data.

I see this work as a stepping stone to encourage more rigorous and systematic analysis and
cross-comparison of alternative misfit functions for FWI. Pushing FWI forward by increasing
its robustness can only make this method more appealing, while unlocking targets that are still
out of reach for now because of lacking good initial model. We show that field data applications
using one of the last and most promising methods (GSOT) is feasible and yield very encouraging
results and hope that FWI will continue moving forward with more interesting applications in
the years to come.
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iterative elastic inversion. In Expanded Abstracts, volume SI5.6, pages 1013–1016. Society of
Exploration Geophysics.

Jin, S., Madariaga, R., Virieux, J., and Lambaré, G. (1992). Two-dimensional asymptotic
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