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Romain Brossier
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privilège de partager un foyer avec toi, de travailler avec toi, et de profiter de tous les degrés de ton
humour. Saches que tu es un ami, un scientifique, et une personne exceptionnelle, et que tu seras toujours
dans mon coeur.
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Abstract

Full Waveform Inversion (FWI) is an ill-posed non-linear inverse problem, aiming at recovering detailed
pictures of subsurface physical properties, which are crucial to explore and understand Earth structures.
Classically formulated as a least-squares optimization scheme, FWI yields a single subsurface model
amongst an infinite possibility of solutions. With the general lack of systematic and scalable uncertainty
estimation, this formulation makes interpretation of FWI’s outcomes complex.

In this thesis, we propose an unconventional, scalable way of tackling the lack of uncertainty
estimation in FWI, thanks to data assimilation ensemble methods. We develop a scheme combining
both classical FWI and the Ensemble Transform Kalman Filter, that we call ETKF-FWI, and which is
successfully applied on two 2-D test cases. This scheme takes advantage of the theoretical common-
ground between least-squares optimization problems and Bayesian filtering. We use it to recast FWI in a
local Bayesian inference framework, thanks to the ensemble representation. The ETKF-FWI provides
high-resolution subsurface tomographic models and yields a low-rank approximation of the posterior
covariance, holding the uncertainty and resolution information of the proposed solution. We show how
the ETKF-FWI can be applied to qualitatively evaluate uncertainty and resolution of the solution. Instead
of providing a single solution, the filter yields an ensemble of models, from which statistical information
can be inferred.

Uncertainty is evaluated from the ensemble’s variance, which relates to the diversity of solution
amongst the ensemble members for each parameter. We show that lines of the correlation matrix are ideal
to evaluate qualitatively parameters resolution, thanks to their adimentionality. While the methodology
is computationally intensive, it has the benefit of being fully scalable. Its applicability is demonstrated
on a synthetic benchmark. This preliminary test allows us to assess the sensitivity of the ensemble
representation to the common undersampling bias encountered in ensemble data assimilation. While
undersampling does not affect the image reconstruction in any way, it results in variance underestimation,
which makes the whole exercise of quantitative uncertainty assessment complicated. Ensemble inflation
has been used to mitigate this bias, but does not seems to be a practical solution.

A field data experiment is also discussed in this thesis. It makes it possible to test the sensitivity
of the ETKF-FWI to complex noise structure and realistic physics. As it stands, the complexity of the
problem reduces flexibility in the ensemble generation, and hence on the uncertainty estimate. Despite
these limitations, results are consistent with the synthetic benchmark, and we are able to provide a
qualitative uncertainty assessment. The field data case also allows us to evaluate the possibilities to use
the ETKF-FWI on multiparameter inversion, which is still regarded as a challenging topic in FWI. The
ETKF-FWI multiparameter inversion yields improved models compared with conventional ones. More
importantly, it makes it possible to assess the uncertainty associated with parameters cross-talks.



Résumé

L’inversion de forme d’onde complète (FWI) est une méthode d’inversion non-linéaire qui a pour but
l’obtention de modèles précis des propriétés physiques du sous-sol terrestre. Ces modèles, véritables
cartes de propriétés physiques, sont indispensables pour l’exploration et l’étude des structures internes
de la Terre. Généralement formulée sous la forme d’un schéma d’optimisation par la méthode des
moindres carrés, la FWI compare des enregistrements sismiques observés en surface, avec des données
synthétiques calculées à partir d’un modèle numérique de sous-sol. Alors qu’une infinité de modèles
peut potentiellement expliquer les observations, la FWI, du fait de sa formulation, ne permet d’obtenir
qu’un seul modèle du sous-sol fortement conditionné par le choix de modèle de départ. À cette ambiguı̈té
s’ajoute la difficulté d’estimer l’incertitude de la solution, à cause du coût de calcul prohibitif de la FWI.
La non-unicité de la solution et le manque de moyens d’estimation d’incertitude rend l’exploitation des
modèles de FWI compliquée.

Dans cette thèse, nous proposons une méthode non conventionnelle et abordable, intégrant
l’estimation d’incertitude au coeur de la solution de FWI. Notre méthode combine la FWI conven-
tionnelle et l’assimilation de données par méthodes d’ensemble. De ce fait, elle tire avantage de la vitesse
de convergence de la FWI conventionnelle, ainsi que des capacités d’estimation d’incertitude du Filtre
de Kálmán d’Ensemble dit ”Transform” (ETKF). Cette combinaison est permise par les fondements
théoriques communs aux problèmes d’optimisation en FWI conventionnelle et au filtrage bayésien de
l’ETKF. Nous utilisons ce schéma, l’ETKF-FWI, afin de transposer le problème de FWI dans le cadre de
l’inférence Bayésienne locale. Au lieu d’une unique solution, l’ETKF-FWI retourne un ensemble de
modèles qui permet à la fois de calculer la meilleure solution au sens des moindres carrés, mais aussi
l’information d’incertitude et de résolution associée à chaque paramètre. Cette estimation d’incertitude
est rendue possible par l’approximation de bas-rang de la matrice de covariance a posteriori, calculée à
partir de l’ensemble. Les valeurs de variance permettent d’évaluer le degré de variabilité de la solution
au sein de l’ensemble. La résolution est quant à elle, donnée par les termes hors diagonaux de la matrice
de corrélation, qui est préférée à la matrice de covariance pour sa nature adimensionnelle.

L’application de l’ETKF-FWI à deux cas d’études (un test synthétique et une application sur données
de terrain) nous permet d’évaluer la faisabilité, ainsi que les limites de notre technique. Malgré le
coût de calcul important lié à la représentation d’ensemble, cette stratégie permet une implémentation
complètement parallèle, la rendant avantageuse au regard des solutions existant dans la littérature. Ces
tests nous permettent d’évaluer l’influence de la taille de l’ensemble sur l’estimation de la variance,
en caractérisant le biais de sous-échantillonnage associé aux petits ensembles. Bien que ce biais soit
classiquement corrigé grâce aux méthodes d’inflation d’ensemble, celles-ci ne semblent pas adaptées à
l’ETKF-FWI, limitant l’estimation d’incertitude à des évaluations qualitatives. De plus, la complexité de
l’application sur données de terrain impacte la création de l’ensemble initial, ce qui influence directement
les capacités de l’ETKF-FWI à produire une estimation quantitative de l’incertitude.

Nous terminons par l’application de l’ETKF-FWI à une inversion de plusieurs paramètres physique



(vitesse des ondes P et densité), considéré comme un défi majeur en FWI conventionnelle. Ce test nous
permet d’évaluer qualitativement les liens de corrélation et d’ambiguı̈té entre vitesse et densité, ainsi
que leurs incertitude et résolution respectives. De plus, le modèle moyen issu de l’ETKF-FWI semble
être de qualité supérieure, ce qui laisse supposer d’un possible effet de préconditionnement fourni par la
covariance.

vii



Contents

General Introduction 1

1 Uncertainty quantification for Full Waveform Inversion 7
1.1 Overview of FWI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Historical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Mathematical formulation of FWI . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3 Interpretation of the gradient and Hessian operators . . . . . . . . . . . . . . . 16
1.1.4 Link between the Hessian and the posterior covariance in Bayesian estimation . 19

1.2 Uncertainty quantification in FWI: state-of-the-art . . . . . . . . . . . . . . . . . . . . 21
1.2.1 Uncertainty quantification through global optimization techniques . . . . . . . 22
1.2.2 Local uncertainty estimation in FWI . . . . . . . . . . . . . . . . . . . . . . . 27
1.2.3 Ideas from the Data Assimilation community . . . . . . . . . . . . . . . . . . 32

2 Data Assimilation 35
2.1 Elements of Data Assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.1 Defining the system state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.3 A practical example of statistical estimator . . . . . . . . . . . . . . . . . . . 38
2.1.4 The dynamical model - forecasting stage . . . . . . . . . . . . . . . . . . . . 41
2.1.5 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.6 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Ensemble Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.1 Ensemble representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.2 EnKF’s forecast step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.3 Analysis step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.4 Ensemble Transform Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.5 Maximum-Likelihood Ensemble Filter . . . . . . . . . . . . . . . . . . . . . . 58
2.2.6 Ensemble Kalman Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3 Limits of EnKF methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.1 Undersampling characterization . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.2 Inbreeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.3 Filter divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.4 Spurious Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.5 Solutions to undersampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Combining DA and FWI 71



CONTENTS

3.1 Proposition 1 - A dynamic formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2 Proposition 2 - Extending the state-space: The WRI analog . . . . . . . . . . . . . . . 73
3.3 Proposition 3 - Extending the state-space: The EKI analog . . . . . . . . . . . . . . . 74
3.4 Proposition 4 - Extending the state-space: adding adjoint . . . . . . . . . . . . . . . . 74
3.5 Proposition 5 - A simple adjoint scheme . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.1 FWI as a dynamic problem: defining a dynamic proxy . . . . . . . . . . . . . 76
3.5.2 The ETKF-FWI scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5.3 ETKF-FWI sampling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Synthetic application of the ETKF-FWI 85
4.1 Solving the FWI problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 ETKF-FWI on the Marmousi II synthetic benchmark . . . . . . . . . . . . . . . . . . 87

4.2.1 Synthetic benchmark setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.2 The ETKF-FWI setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.3 ETKF-FWI application with 600 ensemble members. . . . . . . . . . . . . . . 89

4.3 Investigating undersampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.1 Parameter estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.2 Variance approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.3 Correlation approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Mitigating undersampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Field data application of the ETKF-FWI 110
5.1 The Valhall oil field dataset and ETKF-FWI parameterization . . . . . . . . . . . . . . 110

5.1.1 P-wave velocity reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.1.2 P-wave velocity and density reconstruction . . . . . . . . . . . . . . . . . . . 116

6 Conclusion and perspectives 124

References 129

ix



CONTENTS

x



General Introduction

Most of our current understanding of Earth’s internal structure is coming from observations of various
geophysical fields. Slights deviations of gravity values recorded at the surface can inform us about the
variations of material density at depth, enabling the detection of large structures within the Earth. Earth’s
geomagnetic fields have also been permanently crystallized into seafloor spreading oceanic basalts.
These records make possible to trace back our planet’s geomagnetic history up to a few hundred million
years, from which our planet’s tectonic history was deduced. Finally, records of seismic wavefields under
the form of seismograms have granted us with a considerable amount of knowledge on our planet’s
dynamic mechanisms and structure.

Even though seismograms might seems complicated to decipher given their cryptic look, they contain
a fair share of information. Fortunately, we can rely on the strong ties between the physics governing
wave propagation and the propagating medium itself to make sense of these recordings. In the same way
the human body can be scanned with ultrasounds, it is possible to use seismic wavefield recorded at the
surface, to reveal Earth’s deep structure. This tomography method is a classical geophysical problem
called seismic tomography.

Seismic tomography

Seismic tomography appeared at the beginning of the 20th century, as a powerful method to look through
the opaque Earth and uncover its structure. One of the prime examples of discovery in this area came
from Mohorovičić (1909), who noticed discrepancies in the recordings of the Zagreb earthquake of
October 1909, when looking at seismograms recorded at various distance to the epicenter. To explain the
variations in the seismograms content over the epicentral distance, Mohorovičić concluded that a shallow
interface must be present in the subsurface, inducing reflections and refractions in the wavefield. The
presence of this discontinuity (also known as the Mohorovičić discontinuity or the Moho) was inferred
from observations and our knowledge of the laws governing wave propagation, as a solution of an inverse
problem. This denomination comes from the fact that when solving an inverse problem, we ought to find
the cause (Moho discontinuity) of an effect (reflections and refractions recorded in the seismograms).

Seismic tomography has since then grown and branched out into many different applications. The
main categories can be defined, depending on whether the source generating the recordings is controlled
or not. We often refer to these categories as passive and active tomography. The early work of
Mohorovičić falls in the passive seismic category, as the source of the wavefield he studied came from
an earthquake. This type of tomography is generally aimed at recovering large scale mantle structures
(at a regional or global scale). It has to deal with a sparse and limited amount of natural seismic sources
and receivers location: seismic stations are unevenly distributed at the surface, and seismic activity is
mostly confined at the interface of tectonic plates (be it subductions or collision zones).



INTRODUCTION

(a) Onshore acquisition

(b) Offshore acquisition

Figure 1: Schematic of an onshore and offshore setup in seismic exploration surveys. (Total).

Nevertheless, passive seismic tomography has been applied with remarkable success to regional and
global scales (Aki et al., 1977; Fichtner et al., 2009; Bedle and Lee, 2009; Tape et al., 2010; Panning
et al., 2010; French and Romanowicz, 2015; Bozdağ et al., 2016), granting us valuable insights on our
planet’s deep structures.

Active seismic tomography differs from passive seismic tomography by its voluntary nature, its use
of active and controlled sources (explosion, air-gun, hammer source), its acquisition geometries, and
the difference of targets. Due to the lack of energy and acquisition scale, active seismic tomography is
generally focused on shallow crustal targets, ranging from a few meters to a few kilometers depth. It has
been prominently used in geophysical exploration, as a means to get precise images of the subsurface,
for civil-engineering applications or georesources exploitation (Plessix, 2009; Sirgue et al., 2010; Plessix
et al., 2012; Warner et al., 2013b; Zhu et al., 2015; Operto et al., 2015).

Seismic exploration surveys can be conducted on land (Fig. 1a), where seismic waves are generated
by applying a force directly onto the ground. The sources can either be impulsive (blast of an explosion,
percussion by a heavy dead-weight) or vibrating, according to specific sweeping frequency patterns
(vibrating pot or trucks). Waves generated during the survey, travel through the subsurface and are
recorded at the surface by arrays of evenly distributed geophones (recording devices, similar in principle
to microphones, specifically designed to record seismic waves).

Seismic surveys can also take place offshore (Fig. 1b), where the acquisition devices (sources
and receivers) are dragged beneath the water surface by exploration vessels. The implosive source
is generated by an air gun, which air-bubbles burst acts as an acoustic seismic source. The devices
used to record the pressure wavefield in the water are called hydrophones. Despite a few differences
in acquisition design, the imaging principle stays virtually the same as for onshore acquisitions. Both
types of acquisition are relied-upon for oil-and-gas exploitation, and tomographic models are part of the
decision-making process leading to drilling into potential reservoirs. Producing reliable tomographic
images is thus critical to avoid the costly consequences of dry wells at the exploitation stage, for instance.

2
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Figure 2: Example of sensitivity tests on checkerboard and spike heterogeneities. (a) Input checkerboard
model; (b) input spike model; (c) output checkerboard model; (d) output spike model. Seismic sources
are denoted by purple dots and receivers by black triangles. From Rawlinson and Spakman (2016)

The uncertainty problem

Over the past decades, tomography has been very successful at getting more out of seismic recordings,
uncovering finer and sharper features in reconstructed tomographic images, across all scales. The
techniques have also become more and more computationally expensive, and up-to-date tomographic
schemes capable of the highest precision are complex. It is notably the case of Full Waveform Inversion
(FWI), the tomography technique that is of interest in this thesis, which is often a crucial step in
oil-and-gas exploration workflows.

Despite the improvements in images ”quality” with modern schemes, one of the main difficulties of
seismic tomography remains: assessing the reliability of tomographic models. Besides, as the complexity
of the method grows, uncertainty quantification becomes more complicated to achieve, which is typically
the case in FWI.

The uncertainty issue arises from the ”indirect” nature of seismic tomography: the physical field
(our only source of information) is measured at the surface, and it is generally not possible to check
the validity of the inferred subsurface model directly. Even worst, several tomographic models could
explain the observations with the same level of adequacy, meaning there are plenty of plausible solutions
to the problem. Uncertainty estimation in tomographic applications thus appears essential, given its
prevalence both in global seismology and exploration geophysics. In seismology, tomographic models

3
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serve as a basis for geologic interpretations of large tectonic features and geodynamic processes, despite
knowing the model might not resolve these features entirely. In exploration geophysics, interpretations
of tomographic models are used to devise exploitation strategies and evaluate risks, be they financial,
societal, or ecological. It is thus necessary to control and assess how trustworthy tomographic solutions
are, especially when decision-making is at stake instead of committing to a single solution as it still often
done nowadays. But how to check if an inferred model is representative of the truth if there is no access
to the subsurface?

While it is possible to get a direct measurement of the subsurface in the case of shallow crustal
targets through well-log measurement, these observations are by nature very localized. The cost of
drilling also makes them very impractical, and their uses for in-situ verifications are very restricted.
Therefore, if exterior means and in-situ measurements can not solve the uncertainty problem, we must
seek a solution within the tomographic formalism itself.

One of the most practical methods for quality control of tomography results, fall in the category of
sensitivity analysis. The principle is rather simple: given the acquisition geometry of a real tomographic
problem, synthetic seismograms are computed in a known heterogeneous model. From a blank model,
the goal is to recover these perturbations with the synthetic dataset previously computed. The quality of
the recovered model is supposed to inform us of the quality we can expect from the real tomographic
problem. For convenience, the known heterogeneous model generally has a specific structure, either
containing spikes of positive and negative perturbations, or a ”checkerboard” pattern of positive and
negative anomalies (Fig. 2). However, these tests are prone to suffer from biases introduced by the chosen
heterogeneities’ scale and structure (Rawlinson and Spakman, 2016) and are not ideal for uncertainty
estimation and quality control (despite their popularity).

Sensitivity analysis does not seem to be the definitive answer to the uncertainty problem. Instead,
uncertainty estimation should ideally be based on the Bayesian inference framework for inverse problems
(Tarantola, 2005). With the Bayesian inference framework, it is possible to explore the plausible solutions
and assess their uncertainty, but this comes at a cost: when the scale of the problem grows large, as in
FWI, uncertainty estimation based on this mathematical formalism becomes computationally prohibitive,
such that no systematic uncertainty estimation method has been developed.

Nonetheless, some state-of-the-art methods for uncertainty estimation have been developed to
approximate some elements of the Bayesian formalism. These methods come at the cost of expensive,
additional computations to assess the model output quality and are often intrinsically not scalable,
creating a computational bottleneck that prevents their systematic applications. These state-of-the-art
methods will be reviewed in detail later in Chapter 1.

Instead of following that trend, this work ought to define a new solution to the lack of uncertainty
estimation, by recasting our problem in a Bayesian formalism. It has to remain compatible with the
requirements of large scales inverse problems by being scalable, but also integrate uncertainty estimation
as part of the solution of our tomographic problem.

Seeking solutions elswhere

As we seek affordable and systematic uncertainty estimation for FWI (and to a broader extent, any seismic
tomographic technique), we can look toward another Earth-sciences community that has achieved great
success in that avenue. For that, we turn to the Numerical Weather Prediction (NWP) community, which
has developed, since the sixties, methods to perform uncertainty estimation for large scale problems,
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similar in size with what is typically encountered in FWI. These methods are generally denoted as Data
Assimilation (DA) and have since then been applied in various other research and engineering fields.

The reason we are interested in these methods in the first place is that they can provide systematic
uncertainty estimation, even on large scale problems. This is achieved thanks to the core design and
philosophy of DA, which uses uncertainty when inferring and forecasting physical systems state.

Thus, by integrating mathematical insights from DA into our FWI problem, we might be able to
define a framework that can be successful at both inferring subsurface parameters and assessing the
uncertainty of recovered solutions. To that extent, we are interested in statistical ensemble DA methods,
which we believe, are the more suited for this task and have proven to be very efficient for large scale
problems requiring expensive computation. These methods will be carefully reviewed later in this
manuscript (chap. 2). Ensemble DA methods naturally allow representing uncertainty through the
generation of multiple realizations of solution (the ensemble of solutions), which is a desirable feature
for FWI.

Outline of the manuscript

In this manuscript, I propose a review of FWI, current uncertainty estimation methods, and ensemble DA
methods, from which an original application was derived. This new methodology termed ETKF-FWI
(for Ensemble Transform Kalman Filter) constitutes the main scientific contribution of this thesis work.
To present this contribution, the manuscript will be organized as follows.

Chapter 1 ought to draw a complete picture of FWI, first from its historical perspectives, then by
introducing its mathematical formulation as a numerical optimization problem. Later, the relationship
between numerical optimization and uncertainty will be explained, as it is a natural step to understand
the challenge at stake: uncertainty estimation in FWI.

The second part of this chapter will be devoted to reviewing the work that has been done by others, in
estimating uncertainty in FWI, be it by the mean of global optimization, or by exploiting the mathematical
objects underlying local optimization strategies. Finally, insights from the DA community on uncertainty
estimation are introduced to pitch the primary goal of this thesis work: establishing a DA framework for
uncertainty estimation in FWI.

In Chapter 2, DA theory is thoroughly reviewed. From the basic concepts of Bayesian filtering
that underlie DA methods, the chapter will progress toward standard DA assimilation tools. Starting by
detailing the most straightforward Bayesian estimator, the chapter expands on the Kalman filter and its
popular developments based on ensemble approximations (notably the Ensemble Transform Kalman
Filter). This finally leads us to discuss the typical biases and limitations that the ensemble approximation
entails, along with the methods commonly employed to mitigate them.

The first two theoretical chapters bring us to Chapter 3, where we explore the ways of bridging
together FWI and DA. I present five propositions, from which one has been selected to conduct tests in
the subsequent chapters. Finally, the scheme that we came-up with and named ETKF-FWI is detailed at
the end of the chapter.

Chapters 4 focuses on the application of the ETKF-FWI to the Marmousi synthetic benchmark. It
discusses both the numerical implementation of the scheme, along with strategies regarding ensemble
generation and analysis of the filter’s output. Thanks to the straightforward nature of this synthetic
benchmark, ensemble approximation biases are investigated, and an attempt at mitigating them is
presented.
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Chapter 5 takes on the previous application, but this time on a field dataset. This application allowed
us to test the applicability of the ETKF-FWI on a more complicated test case. While it allowed verifying
the observations made on the synthetic benchmark, it also allowed performing a multiparameter inversion
to evaluate parameters cross-talk, which remains one of the difficulties in FWI.

Conclusions and perspectives are given in the last chapter of this thesis.
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Chapter 1

Uncertainty quantification for Full
Waveform Inversion

Contents
1.1 Overview of FWI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Historical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Mathematical formulation of FWI . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.3 Interpretation of the gradient and Hessian operators . . . . . . . . . . . . . . 16

1.1.4 Link between the Hessian and the posterior covariance in Bayesian estimation 19

1.2 Uncertainty quantification in FWI: state-of-the-art . . . . . . . . . . . . . . . . . 21
1.2.1 Uncertainty quantification through global optimization techniques . . . . . . 22

1.2.2 Local uncertainty estimation in FWI . . . . . . . . . . . . . . . . . . . . . . 27
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1.1 Overview of FWI

1.1.1 Historical overview

Full Waveform Inversion (FWI) is a seismic tomography technique, aiming at interpreting seismic wave
recordings, to characterize subsurface properties. As wavefields behavior and evolution are imposed by
the physical properties of their propagating medium, it is possible to infer those physical parameters
through inverse problem-solving. Seismic tomography applications cover a broad spectrum of scales
and targets, and are commonly used for regional to global scale in the academic community (Aki
et al., 1977; Fichtner et al., 2009; Bedle and Lee, 2009; Tape et al., 2010; Panning et al., 2010; French
and Romanowicz, 2015; Bozdağ et al., 2016) and for crustal-scale exploration industrial applications
(crustal-scale imaging, reservoir monitoring, and civil engineering targets, Plessix, 2009; Sirgue et al.,
2010; Plessix et al., 2012; Warner et al., 2013b; Zhu et al., 2015; Operto et al., 2015).

FWI was first formulated by Lailly (1983); Tarantola (1984), as an attempt to bridge the gap between
Claerbout (1971)’s migration imaging principle and the traveltime tomographic imaging principle. While
migration imaging is mostly responsible for investigating the high-wavenumber content of subsurface
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images (sharp details), and traveltime tomography is focused on the low-wavenumber content (overall
kinematic), FWI aims at building broad-wavenumber models. It does so, by considering that all arrivals
in a seismogram are governed by the same type of wavefield-medium interactions (Devaney, 1984),
described by the wave equation.

FWI is thus formulated as a data fitting procedure, where entire observed seismograms are compared
with corresponding synthetics, computed by solving the wave equation. Early applications of FWI
proved to be too computationally demanding compared to the ressources available at the time, even
when limited to 2-D cases (Gauthier et al., 1986; Cary and Chapman, 1988; Crase et al., 1990; Jin et al.,
1992; Lambaré et al., 1992). Their success were also heavily conditioned by data availability, mostly
limited at that time to short-offset seismic reflections surveys. With this type of data, the sensitivity to
large wavelengths structure is fairly poor, making FWI applications challenging unless a very accurate
starting model is picked for the inversion. Even though the methodology was promising, the numerical
cost of FWI and the difficulties associated to short-offset data prevented a significant adoption, and
research stalled for a while. FWI was then push foward again in the nineties, with developments in
frequency-domain FWI (Pratt, 1990; Pratt and Worthington, 1990; Pratt and Goulty, 1991; Pratt et al.,
1996, 1998; Pratt, 1999). These developments allowed to acknowledge the importance of long-offsets and
transmission data to reconstruct large-scale structures FWI, demonstrated in 2-D cross-hole acquisition
by Pratt and Worthington (1990). The frequency-domain formulation, which can be advantageous
computationally-wise in 2-D, associated with advances in hardware capacity and new acquisition design,
put FWI research back on track.

FWI is now a mature imaging technique, and the research interests have shifted. While early
research focused on making the concept applicable and understanding FWI’s imaging power, most of the
current research is now focused on making FWI more robust and able to tackle more complex problems,
especially so in the context of industrial exploration. For instance, FWI on land datasets is known
to be particularly challenging, as it requires numerical solvers that can adequately represent complex
topography and strong elastic effects that affect the wavefield in shallow subsurfaces environments (Trinh
et al., 2019). Efforts are thus made to honor as much as possible the physics of wave propagation in
elastic medium, while keeping numerical solver affordable and efficient.

Current research is also attempting to alleviate the inherent ill-posedness of FWI (see 1.1.2), to make
its general formulation more robust. As a matter of example we can think of alternative misfit-functions
that ought to relax the FWI problem, such as the envelope misfit (Bozdağ et al., 2011), instantaneous
phase misfit (Fichtner et al., 2008; Maggi et al., 2009; Bozdağ et al., 2011; Lee and Chen, 2013; Tejero
et al., 2015) or cross-correlation based misfit (Luo and Schuster, 1991; Tromp et al., 2005; van Leeuwen
and Mulder, 2010). A new way of measuring the misfit between seismic traces have been proposed
following the optimal transport paradigm (Engquist and Froese, 2014; Métivier et al., 2016, 2019). The
robustness of the technique can also be ensured by using appropriate regularization terms when solving
the FWI problem (van Leeuwen and Herrmann, 2013; Warner et al., 2013a; Warner and Guasch, 2014;
Aghamiry et al., 2019).

Finally, in the past few years, interest has also grown over the topic of uncertainty quantification in
FWI. While the importance of uncertainty estimation has always been promoted in Tarantola’s visionary
work (Tarantola, 2005), this aspect of the methodology has mostly been left aside through the evolution
of FWI. The lack of systematic uncertainty quantification is a big issue that we ought to address in this
thesis work: without uncertainty estimation, exploitation, and interpretation of tomographic models is an
unsound exercise.

In the following chapter, I will introduce the physical and mathematical concepts underlying FWI.
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This theoretical introduction will be followed by a review of uncertainty quantification in FWI to provide
the reader with a complete overview of the current research landscape.

1.1.2 Mathematical formulation of FWI

Conventional FWI is formulated as a least-squares minimization problem between recorded wavefield
data dobs and synthetics dcal computed from a discrete physical model m. It is an inverse problem, for
which one tries to infer information about the mechanical properties of the subsurface, from information
contained in observed data. In the case of FWI, the considered observations are either represented
by seismograms in the time domain (Fichtner, 2011; Virieux et al., 2017), or by a complex wavefield
values in the frequency domain (Pratt et al., 1998; Pratt, 1999; Virieux et al., 2009). By reducing the
least-squares distance through model updates, accounting for all phases and amplitudes information,
one expects to retrieve a high-resolution, plausible subsurface model, which should explain the data.
Mathematically, it is formulated as finding the minimum of the regularized misfit functional defined as

C(m) =
1

2
‖dcal(m)− dobs‖2 +R(m,mp), (1.1)

where ‖.‖2 is the least-squares norm, and mp is a prior model used in the regularization term R. In
general, the regularization is introduced either by specifying a prior model (which means the FWI
minimization must find the good balance between the data misfit, and the distance from this prior model
mp), or by appling a smoothing term on the FWI model updates.

Before reviewing the various inversion strategies that can lead to solution of equation 1.1, it is
required to introduce the forward problem, necessary to compute dcal(m) and evaluate the data misfit.

The forward problem: modeling accurate wavefields Any inverse problem requires first and fore-
most the ability to solve a forward problem. Here, the forward problem refers to solving

dcal = H(m) (1.2)

where dcal is the output given the input parameters m and the forward operator H, which express the
action of a physical system on m. This way,H can be viewed as a (linear or non-linear) mapping from
the model space to the data space such that

H(m) : Rn → Rd, (1.3)

or in the case of complex valued observations:

H(m) : Rn → Cd, (1.4)

where d is the number of discrete observations and n the number of model parameters. In the case of
FWI, this forward operator requires to solve the full wave equation, that describes the behavior of a
propagating wavefield u in any given medium m. In the case of seismic waves, it is common practice to
describe the evolution of wavefield under the linear elasticity regime, written as:

{
ρ(m)∂ttui(m, t) = ∂jσij(m, t) + si(m, t),

σij(m, t) = Cijkl(m)εkl(m, t).
(1.5)
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In equation 1.5, we assume Einstein’s notation convention (summation over indices). ui is the ith

component of the particle motion, σij is the stress tensor, εkl is the strain tensor and Cijkl is the stiffness
tensor (with i, j, k, l ∈ [x, y, z]). The medium density is defined by ρ and si is the ith component of an
external volumetric force applied to the medium.

While the system of equations 1.5 describes compressional and shear wave propagation in elastic
media, it can be interesting to consider its acoustic approximation, as the acoustic wave equation is
generally cheaper to compute, while being relatively accurate in specific contexts. This is the case, for
instance, in most of marine seismic exploration where the acoustic approximation of the wave equation
is usually favored, as only compressional waves can be recorded in the water column.

In the acousic approximation, the stiffness tensor reduces to the bulk modulus κ(m) = ρ(m)V 2
p (m)

where Vp is the compressional wave velocity. which leads to the acoustic approximation

ρ(m)∂ttu(m, t) = κ∇2u(m, t) + s(m, t), (1.6)

where∇2 is the Laplacian operator. Note that in the acoustic case, the physical field u(m, t) corresponds
to the (scalar) pressure field accross the model m at any given time t, and the source term also reduces to
a scalar field.

The acoustic wave equation can also be expressed under its time-harmonic equivalent, by considering
the Fourier transform of the pressure field, which yields the wave equation in the Fourier domain

−ω2ρu(m,ω) = κ∇2u(m,ω) + s(m,ω), (1.7)

where ω is the angular frequency. This frequency-domain formulation can have several advantages in
the frame of FWI: seismic attenuation is easily accounted for by using a complex-valued velocity Vp
(Toksöz and Johnston, 1981), multi-sources can be computed efficiently if a direct solver is used to
solve the corresponding linear system (Li et al., 2019). Finally, the time-harmonic formulation can allow
significant dimensionality reduction of the data-space.

As we will solely focus on 2-D marine geophysics case studies, we only consider the frequency
domain acoustic wave equation (which accounts for attenuation) to compute the physical field used in
our FWI scheme. This choice of formalism has been driven by the low computational cost it entails
for the numerical experiments conducted in Chapters 4 (where the numerical modeling scheme will be
detailed) and 5 .

The acoustic wave equation is expressed under the following compact form

B(m,ω)u(m,ω) = s(m,ω), (1.8)

where B(ω,m) is a complex-valued ”impedance” matrix (Marfurt, 1984). Note that in our forward
problem, the wavefield depends on the modeling frequency: solving the forward problem yields a
steady-state pressure field for each monochromatic frequency ω.

Under this compact form, computing the synthetic wavefield measurements dcal(ω,m) comes down
to

u(ω,m) = B−1(ω,m)f(ω),

dcal(ω,m) = Eu(ω,m),
(1.9)

where E is linear observation operator that extracts the values of u at receivers’ locations. Finally,
by noticing that the monochromatic synthetic data are only dependent on model parameters m and
frequency ω, we can define a frequency-dependent forward operatorHω(m) such that

Hω(m) = EB−1(ω,m)s(ω) = dcal(ω,m). (1.10)

10



1.1 Overview of FWI

Global solution to the FWI problem A global optimization method is a technique that ought to locate
the global minimum of a continuous, possibly non-convex, misfit functional

C(m) : Ω ⊂ Rn → R, (1.11)

where Ω is defined as the solution space, discretized over n parameters. The interests of using such
methods lie in their capacity to handle non-convex misfit functions (such as illustrated in Figure 1.1), and
therefore, to deal with the occurrence of local-minima in Ω (which typically arise in ill-posed inverse
problems such as FWI). With this type of approaches, one will attempt to sample adequately the solution
space, rather than finding a point-localized solution in Ω: the goal is to explore and ”map” the misfit
function to evaluate all of its minima and find the optimum. By explorating the solution space, global
search approaches are also a natural candidate for uncertainty estimation.

They require the evaluation of the misfit function in numerous points of Ω to draw an accurate
description of said ”global” map (the solution space). In the case of FWI, this misfit function evaluation
requires to compute dcal(m) through the evaluation of the forward operator.

The performances of global search approaches are thus closely tied with the size of Ω, and therefore,
the number of discrete points n that are used to represent the system: as the number of parameters
increases, the number of samples required to accurately represent Ω increases also, which limits the
applications of global searches to n ∼ 101 to 103.

Despite having shown little success in FWI applications (Martin et al., 2012; Bardsley et al., 2014;
Biswas and Sen, 2017; Sajeva et al., 2017b), these methodology are still an active topic of research.
They rely on various stochastic sampling strategies such as: Markov chain Monte Carlo (MCMC)
methods (Metropolis-Hastings sampling (Metropolis et al., 1953), Gibbs sampler (Geman and Geman,
1987), Hamiltonian MCMC (Duane et al., 1987) and reversible jump MCMC (Green, 1995)) or Genetic
algorithms (Mitchell, 1998) to name a few. An extensive review of global search approaches applied to
FWI will be given later in this chapter.

Local solution to the FWI problem When the problem size becomes intractable for stochastic
sampling, the classic alternative is to use local optimization techniques. Local optimization aims at using
local information of the misfit function (such as its gradient and its curvature) to ”navigate” toward one
of the function’s minimum. With these approaches, the convergence is always driven toward the closest
minimum, hence, the choice of initial model strongly defines these schemes performances. In a way,
defining the starting model m0 defines the subspace A ⊂ Ω in which the misfit function is minimized,
de-facto reducing the number of possible solutions as the new solution space can be a small fraction of Ω.
It also defines the solution one can expect to retrieve once the closest minimum is reached. The global
optimum can only be reached with an appropriate starting point if the misfit function is not globally
convex.

Given any initial model m0 such that C(m0) ∈ A, each subsequent solution in the sequence
mk = (m0,m1, . . . ,mk) is considered to be located in the vicinity of the previous step (and thus in A).
The model update can be written as a sum of a model perturbation ∆mk and mk such that:

mk+1 = mk + ∆mk

= mk + αkdk,
(1.12)
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Figure 1.1: Multimodal misfit function C(m) : Ω ⊂ R2 → R. Exactly three minima are visible on
this function, two of which are global (this specific optimization problem has a non-unique solution).
Red dots denote the two global minima while a blue dot denotes the third minimum. Global search
approaches are specially fitted for this type of settings, as they can help to identify the possible solutions
to the minimization problem.

where dk is the local descent direction of the misfit function at iteration k, and αk is the step length in
the direction of descent (how much mk moves along dk). These two parameters are computed at each
iteration to ensure that each mk+1 provides a better fit to the data:

C(mk+1) < C(mk). (1.13)

and at the same time that each iteration converges sufficiently fast toward the minimum (Wolfe, 1969).

1.1.2.1 Linesearch: the Wolfe conditions

The choice of parameter αk is a key component to an efficient optimization strategy. Improperly chosen,
it can lead to underperformances in term of convergence speed (the steps along dk are too small) or
chaotic/oscillatory behavior (oscillation around the minimum without reaching it or even moving to a
different search subset) as can be seen in Figure 1.3.

Finding the optimal αk is akin to an optimization problem on its own, in which one tries to find the
optimal value α?k such that

α?k = argmin
αk

C(mk + dkαk). (1.14)

Minimizing this cost function iteratively with a dedicated optimization method, is reffered to as solving
an exact line search problem. In practice however, exact line search methods are only use in very special
cases, such as when C(m) is perfectly quadratic. Instead of finding the αk that minimizes equation
(1.14), we can define conditions that are easier to satisfy, while allowing the convergence toward the
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Figure 1.2: 2-D view of the multimodal misfit function C(m) : Ω ⊂ R2 → R displayed in Figure 1.1.
The domain space Ω and its three local subsets A1,A2 and A3 associated to each of the three minima
are represented. Any starting point chosen in one of the subset for the optimization method, will lead to
the closest local minimum following the ”topography” of C(m).

closest minimum. This type of approach to determine alpha are reffered to as inexact line search methods
(Nocedal and Wright, 2006).

One common set of conditions are known as the Wolfe conditions, which is a set of two constraints
defined as

C(mk+1) ≤ C(mk) + c1αkd
T
k∇C(mk)

dTk∇C(mk+1) ≥ c2dTk∇C(mk)
(1.15)

where the constants c1 and c2 are chosen such that 0 < c1 < c2 < 1. The first inequality is known as the
first Wolfe condition (or Armijo condition) and is a linear decrease criterion. This first condition acts as
an upper-bound by imposing a linear minimization rate. The second Wolfe condition, also known as
the curvature condition, ensures that the step along the descent direction is not too small. It imposes
that the slope at k + 1 is greater than the slope at k times a constant c2 and excludes small step lengths
that would slow down the convergence. The curvature condition acts as a lower-bound to the line search
algorithm. Taken together, the Wolfe conditions ensure that the optimization converges to the closest
minimum at an optimal speed, provided c1 and c2 are set adequately. The behavior of the line-search
algorithm is highly dependent on the values of c1 and c2, and readers might reffer to Nocedal and Wright
(2006) for a complete review and guidelines.

We can cite the backtracking method (Ortega and Rheinboldt, 1970) as a popular example of line-
search algorithm (Nocedal and Wright, 2006). In this thesis work, the line-search procedure used is a
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Figure 1.3: Alpha selection for steepest descent optimization strategy. The starting point of the optimiza-
tion corresponds to subdomain A1 ⊂ Ω, therefore the minimum to be recovered is the blue one (see
Figure 1.2). Values of αk have been maintained fixed for each of the k = 25 minimization iterations, for
demonstration purposes. If alpha is fixed with a too small value, 25 iterations are not enough to drive the
convergence to the minimum (pink). When αk is set appropriately (blue), the convergence is ensured in
25 iterations. If αk is too large, the first iteration sets us in the subset A3 and the recovered minimum is
not the desired one.

bracketing method, implemented in the SEISCOPE Opitmization Toolbox (Métivier and Brossier, 2016).
Alternatively to the line-search method, one can define the optimal step-length according to a trust region
method (Nocedal and Wright, 2006). However, trust region methods are deemed more complicated to
implement, therefore line-search algorithm are generally prefered for their simplicity.

1.1.2.2 Defining the descent direction

The descent direction has been defined as a vector dk that allows a minimization of the data misfit from
a step k to k + 1, along its direction. A first order Taylor expansion of C(mk) yields

C(mk + ∆mk) ≈ C(mk) + ∆mT
k∇C(mk) +O(∆m2

k), (1.16)

where T designate the transpose operator. As the step length is conventionally chosen to be strictly
positive (αk > 0), the gradient descent condition in equation 1.13 gives

dTk∇C(mk) < 0, (1.17)

hence the vector dk is a descent direction only if its scalar product with the gradient of C(mk) is negative.

First order methods - tangent linear approximation The first choice of descent direction that can be
used to perform such minimization procedure, is the steepest descent direction, defined by the opposite

14



1.1 Overview of FWI

of the gradient of the misfit-function. One can think of gradient-descent optimization as a ball rolling
along the steepest slope of a surface: the ball would represent the optimized model, and the surface
would be the misfit function. This direction is given by

dk = −α∇C(mk), (1.18)

which corresponds to a minimisation along a tangent-linear approximation of the misfit function. While
its formulation is rather simplistic, this method is fairly limited by its linear assumptions and a low
convergence rate (at best linear for a linear optimization problem), which prevents its application on
practical FWI cases.

Second order methods - quadratic approximation To go beyond the tangent-linear approximation
of the gradient method, we can develop equation 1.12 to the second order Taylor expansion, yielding,

C(mk + ∆mk) ≈ C(mk) + ∆mT
k∇C(mk) +

1

2
∆mT

k∇2C(mk)∆mk +O(∆m3
k), (1.19)

where∇2C(mk) is the second-order derivative of the misfit function, also called the Hessian operator.
For the sake of notation simplification, we will denote the gradient and the Hessian of the misfit function
at mk by G and H respectively. The minimizer of the quadratic approximation gives the second order
descent direction. It is obtained as a stationary point of the quadratic approximation gradient. Therefore
we can compute the optimum value of ∆mk that is a root of equation 1.19 derivative:

∇C(mk + ∆mk) = 0 and thus G + H∆mk = 0, (1.20)

hence the perturbation that minimizes C(mk + ∆mk) is given by

∆mk = −H−1G. (1.21)

While the interpretation of the gradient descent was described as ”following the steepest descent
direction”, the second order method, or Newton’s method, has a different geometrical interpretation.
Because we consider the second order Taylor expansion of the misfit function, we can express it under
the form of a parabola

y = 1 + x+
1

2
x2. (1.22)

Where the gradient method yield a tangent-linear approximation, the Newton’s method yield a parabollic
approximation of the misfit function (Figure 1.4). The minimization point correspond to the minimum
of the fitting parabola: in a linear least-squares setting, a single iteration is sufficient to find the global
optimum (as opposed as a linear convergence rate for the gradient method).

Thanks to their faster convergence rate, second-order methods (”Newton-type”) are favored in the
context of FWI. Because each cost function evaluation requires solving a costly forward problem, we are
bound to choose the methods that have the faster convergence rate, and thus rule-out first-order methods.
However, computation of the Hessian operator is generally non-trivial: it is a computational and memory
burden, as the Hessian operator is a matrix of n× n parameters. It is impossible to build, yet to inverse
in practical FWI applications and Newton’s method is out of reach in most realistic settings (Pratt et al.,
2008; Fichtner and Trampert, 2011a; Métivier et al., 2013).

To circumvent this limitation and still benefit from the effect of the Hessian (which encapsulate
curvature information), we usually rely on quasi-Newton optimization methods (Nocedal and Wright,
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Gradient method
Newton's method

Figure 1.4: Geometrical representation of first and second order minimization methods. Second order
methods demonstrate a faster convergence rate thanks to the local quadratic minimizer.

2006) which allows approximating the effect of the inverse Hessian iteratively and very cost-effectively,
without explicit computation of H or H−1. Instead of building the Hessian explicitely (either exactly or
by using a finite-difference approximation), the quasi-Newton method builds an approximation of the
Hessian based on the gradient’s evolution accross the optimization steps.

In essence, quasi-Newton express the model perturbation (or the Newton step) as

∆mk = −B−1k G, (1.23)

where Bk is positive-definite matrix chosen to approximate H, and is generally initialized to be diagonal,
and is updated at each subsequent iterations. The various quasi-Newton algorithm differ in the way they
update of Bk+1.

In this work, we relied on the l-BFGS algorithm (for limited memory-
Broyden–Fletcher–Goldfarb–Shanno). Instead of storing an n × n Hessian approximation,
this algorithm reduce this computational burden by evaluating a low-rank approximation of Bk that
allows to recursively evaluate equation 1.23 from a limited number of vectors of size n, reducing the
memory requirements of the BFGS method.

In this work, all of the FWI applications were carried-out using SEISCOPE Optimization Toolbox’s
(Métivier and Brossier, 2016) implementation of the L-BFGS method. Readers may refer to Nocedal and
Wright (2006) for a complete overview of quasi-Newton and limited-memory quasi-Newton methods,
and details on their practical implementations.

1.1.3 Interpretation of the gradient and Hessian operators

We have seen that local-optimization strategies are the go-to option for practical FWI applications, as the
global-optimization options are too expensive for high-dimensional problems. However, while global
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optimization methods are intrinsically linked with a probabilistic evaluation of the misfit function, the
uncertainty information in local search methods is less evident at first glance.

To better understand the complex link between the misfit function, resolution, tradeoffs and uncer-
tainty of the recovered model, it is necessary to precisely expose the two main operators that drive the
minimization, namely the gradient and the Hessian operator. Both are directly tied to the misfit functional
and are then the direct elements controlling the reconstruction of subsurface models through FWI, and
their uncertainty. I review these operators in the following subsections, which are deeply rooted in Pratt
et al. (1998) development of the Gauss-Newton and Newton methods for FWI in the frequency domain.

Gradient interpretation In frequency domain FWI, the computation of the gradient comes down to
computing the partial derivative of the misfit function with respect to the subsurface model parameter m

G =
∂C(mk)

∂mk
= Re(JT δd∗) = Re

[
(E

∂u

∂m
)T δd∗)

]
, (1.24)

where J denotes the n× d Frechet derivative matrix (the Jacobian operator), Re denotes the real-part
and δd∗ is the conjugate of the data difference

δd = dcal(mk)− dobs, (1.25)

yielding the expression of the misfit function for complex valued wavefield data

C(m) =
1

2
δdT δd∗. (1.26)

Aranging equation 1.8 with respect to the parameter mk,i yields an expression of the Jacobian as a
function of the forward operator

B
∂u

∂mk,i
= − ∂B

∂mk,i
u, (1.27)

or
∂u

∂mk,i
= B−1s†i , (1.28)

where s†i correspond to the ith virtual source s†i = − ∂B
∂mk,i

u. I will now reffer to ∂u
∂mk,i

as the partial
derivative wavefield at mk,i. This show that one can express the computation of the Frechet derivative
as solving a forward problem, with the complex-valued impedance matrix and a new source term (as
in equation 1.9). This virtual source term is the product of the predicted wavefield u and the partial
derivative of the impedance matrix. This operator holds the radiation pattern of the model (i.e., how
the wavefield interacts with the medium given the link between physical parameters and the angle of
incidence of the wavefield). In other words, this parameter contains information about the scattering
properties of the medium mk. Thus the source term in equation 1.28 can be viewed as the predicted
wavefield u, scattered by the parameter mk,i.

Considering

∂u

∂m
=

[
∂u

∂m1
,
∂u

∂m2
, . . . ,

∂u

∂mk,i

]
=
[
B−1s†1,B

−1s†2, . . . ,B
−1s†i

]
(1.29)

or
J = B−1S (1.30)
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where S contains all the virtual sources the gradient can be expressed as

G = Re(JT δd∗). (1.31)

The gradient is consequently the natural direction of the model update, as it tends to locally adjust the
parameters in m that are responsible for the data mismatch. This can further be highlighted if we express
the gradient as

G = Re((s†i )
T v) = Re(uT [

∂BT

∂mk,i
]v), (1.32)

where it clearly appears that the gradient results from a zero-lag gross correlation of the predicted and
the backpropagated wavefield, projected over the radiation pattern operator (scattering properties of
the medium), highlighting the missing point-scatterers in mk. This formulation corresponds to the
adjoint-state formulation in Plessix (2006).

Hessian interpretation Given that the Hessian operator is the second partial derivative of the misfit
function, it can be expressed as

H = ∇G = JTJ +

(
∂J

∂m

)T
(δd . . . δd), (1.33)

such that it is expressed as a sum of two terms.

At the vicinity of the global minimum, where the gradient gives the direction of the global solution,
the Hessian provides information on the local curvature and convexity of C(mk). It is therefore a critical
piece of information in the framework of uncertainty estimation as it is a measure of the interdependecy
between parameters and holds resolution measure (Pratt et al., 1998; Fichtner and Trampert, 2011b;
Fichtner and van Leeuwen, 2015)

The first term is generally designated as approximated Hessian (or Gauss-Newton approximation
of the Hessian) when considered on its own. By the nature of the JTJ product, it corresponds to the
zero-lag cross-correlation of the partial derivative wavefields, between model parameters mi and mj .
The Gauss-Newton Hessian is a symmetrical operator, which diagonal terms contains the zero-lag
autocorrelation of the partial derivative wavefields. Because this term contains the squared amplitude
of the partial derivative wavefields, it naturally contains a measure of the geometrical spreading that
affects the scattered wavefields. Thus, the Hessian can be used as a scaling operator to account for the
geometrical spreading in G and improve the balance of model updates (by ”boosting” the update in areas
of the model that are poorly sampled by the wavefield). The off-diagonal terms of the Gauss-Newton
Hessian are given by the intercorrelations of the partial derivative wavefields of parameters mi and mj .
They provide information about the links between different model parameters and register band limited
effects and illumination. In the context of FWI, these terms act as a convolution operator applied to
a point localised model parameter mi. The maximum expected sharpness of the recovered image is
intrinsically encoded in the off-diagonal terms of the Hessian operator. In the same fashion we can
account for the geometrical spreading with the gradient preconditioning, the Hessian can also be seen as
a de-convolution operator, to refocus the point localized model parameters which helps ”de-blur” the
recovered model. In the case of a multi-parameter inversion, it also helps with the scaling between the
various physical parameter updates.

The second-order terms
(
∂J
∂m

)T
(δd . . . δd), contain the product of second partial derivative wave-

fields with data residual. It accounts for double scattering (Pratt et al., 1998), which the gradient and
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Gauss-Newton Hessian neglect. Because it contains second-order partial derivative wavefields, which
requires numerous forward modeling solve to build, this term is generally not accounted for in FWI.
This approximation is reasonable if the problem is not too strongly non-linear, or if the data-misfit is
small (Tarantola, 1987; Pratt et al., 1998). Nonetheless, Métivier et al. (2017) have shown the interest of
considering these second order terms in case of very strong multiscatering effects in the data (that can
arise in very shallow subsurface environments or in civil engineering applications).

1.1.4 Link between the Hessian and the posterior covariance in Bayesian estimation

From the description of the gradient and Hessian operators, it is clear that both play a key role in the
resolution and tradeoffs we can expect to recover from an FWI application. While the gradient can be
computed explicitly at a reasonable cost, it does not have any straightforward uses for uncertainty estima-
tion. The Hessian operator, on the other hand, is the key operator to perform uncertainty assessments and
quality controls. To emphasize the importance of H in uncertainty estimation, I will recall the Bayesian
formulation of the linearized least-squares problem and show how statistics play a role when the model
parameters of inverse problems are modeled as random processes. Consider the forward problem

dcal(m) = H(m) + η (1.34)

were we add η as a noise vector. In the Bayesian formalism, both vectors m and η are considered as
random processes, with associated probability distributions. The solution of the inverse problem in this
setting is a probability distribution that updates the beliefs on m by incorporating information from dcal.

Let us first consider as an example the following regularized deterministic inverse problem

m? = argmin
m

1

2
‖dcal(m)− dobs‖2 +

1

2
‖m−mp‖2, (1.35)

where the regularization term in equation 1.35 corresponds to the Tikhonov regularization (Tikhonov and
Arsenin, 1977), and is used to mitigate the ill-posedness of the inverse problem. It does so by imposing
constraints on the optimization (for instance, mp could be a smoothness constraint to prevent overfitting
the observations).

Assuming dobs is affected by additive Gaussian noise and assuming the prior distribution to be
Gaussian (prior knowledge about the structure of m), the posterior distribution of m knowing dobs is
given by the probability density function (PDF) pdobs(m) such that

pdobs(m) ∝ exp

(
−1

2
‖dcal(m)− dobs‖2 −

1

2
‖m−mp‖2

)
. (1.36)

The PDF gives the probability for the random variable m to take any value in A. It is closely tied to the
local optimization problem, as the maximum probability values are given by minimizers of the misfit
function C(m).

The link with the Hessian operator can be demonstrated by considering the maximum value of the
PDF, the Maximum A Posteriori (MAP). By separating the ”data” and ”prior” term of the misfit function
in equation 1.35, we can express C(m) as

C(m) = Cp(m) + Cd(m) (1.37)
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where the prior model misfit Cp(m) is given by

Cp(m) =
1

2
(m−mp)

TP−1p (m−mp) (1.38)

with Pp being the prior covariance (uncertainty on the prior estimate).

The data misfit is given by

Cd(m) =
1

2
(dcal(m)− dobs)TR−1(dcal(m)− dobs), (1.39)

where R is the measurement noise matrix (measurement uncertainty). In the linear quadratic assumption,
Cd(m) can be expressed as

Cd(m) =
1

2
(dobs − dcal(mp)−H(m−mp))

TR−1(dobs − dcal(mp)−H(m−mp)), (1.40)

where H is the linearized version of the forward map defined in equation 1.10. Accordingly, the gradient
of the misfit function is given by

∇C(m) = P−1p (m−mp)−HTR−1(dobs − dcal(mp)−H(m−mp)). (1.41)

The solution of ∇C(m) = 0 yields the MAP point of the PDF, which gives the optimal state estimate m̂

m? = mp + (P−1p + HTR−1H)−1HTR−1(dobs − dcal(mp))

= mp + PpH
T (HPpH

T + R)−1(dobs − dcal(mp))
(1.42)

Note that the solution of equation 1.42 is the solution to the Best Linear Unbiased Estimator (see 2.1.3).
From here, it is possible to make the connection between the posterior covariance matrix P given by the
BLUE equations (the covariance defining the Gaussian PDF in equation 1.36) and the Hessian operator
in the vicinity of m̂ (Press et al., 1986; Draper and Smith, 1998; Tarantola, 2005). In the vicinity of the
minimum, the expression of the Hessian of C(m) is given by

H(m?) = P−1p + HTR−1H, (1.43)

while the posterior covariance of the Bayesian least-squares solution in equation 1.42 is given by the
BLUE equation

P = (I−PpH
T (HPpH

T + R)−1H)Pp. (1.44)

By applying the Sherman-Morrison-Woodbury formula (also known as the matrix inversion lemma)

P = Pp −PpH
T (HPpH

T + R)−1HPp = (P−1p + HTR−1H)−1 (1.45)

we can demonstrate the equivalence between the posterior of the Bayesian least-squares solution, and
the Hessian in the vicinity of the solution

P = H−1(m?). (1.46)

The posterior covariance matrix of the Bayesian inverse problem yields information on the state estimate.
It provides a measure of the uncertainty we have about the estimate m̂ given the prior and data uncertainty.
The covariance is an n × n positive semi-definite symmetrical matrix, that is generally diagonally
dominant. The diagonal of the covariance matrix contains the absolute variance values of the solution
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for each of the m̂i parameters. The off-diagonal terms contain the cross-covariances between the model
parameters m̂i and m̂j . The covariance matrix is thus holding all of the uncertainty information that
would be desirable to estimate in FWI application. However, because neither the Hessian operator nor
its inverse can be computed explicitly in the case of high-dimensional spaces, uncertainty estimation in
FWI is made very challenging.

In this section, the general framework for inverse problem has been developed. The deterministic
least-squares local inversion has been presented, along with the gradient and Hessian operator and
their respective roles in the inversion framework. I have also presented how the Hessian operator is
holding the uncertainty estimation, and how we can make a connection between the Bayesian Inference
Framework via the MAP estimator. Note that this assumption only holds in the linear Gaussian case
and in the vicinity of the global minimum. It is clearly identified that one should estimate the posterior
covariance matrix to estimate the uncertainty of the solution. In the next section, I will review the various
methodologies that have already been proposed in the literature, to underline their strength and their
shortcomings.

1.2 Uncertainty quantification in FWI: state-of-the-art

In this section, I propose a review of the uncertainty estimation methods for the FWI problem, within
two distinct groups: the global optimization methods, that are naturally geared to proposed uncertainty
estimation, and the local optimization approaches, based on the estimate of the inverse Hessian operator
in the vicinity of the solution. These have been the two main choices of methods for solving the
uncertainty estimation problem in the literature. This review will be followed by a quick introduction
of ”alternative” methods inspired from the Data Assimilation literature, which is the main focus of this
thesis. But before that, I would like to quickly address this apparent simple question...

What is even ”uncertainty”?

It appears that there is no consensus on the definition of ”uncertainty.” There is a general definition, in the
literal sense, of course (something that is not known or certain according to the Cambridge Dictionary).
However, the lack of a precise mathematical definition is painfully apparent when one is interested in
estimating or quantifying it. It is especially true in the context of inverse problem theory: how do we
define uncertainty in that context? As discussed previously, uncertainty is pretty much associated with
the misfit function we are dealing with, as we have shown equivalence between inverse Hessian and the
covariance matrix. Nevertheless, then, which part of this misfit function is the uncertainty we are seeking
to estimate? One possibility would be to evaluate the complete topology of the misfit, and locate all the
possible minimum, to finally infer statistics on ”which solution is the more likely.” However, it appears
that even when you decide which minimum is your solution, the shape of the misfit in its vicinity gives
us valuable information on how certain (or not) this solution is (tradeoff and resolution information).

Both the ”global” and ”local” topologies of the misfit are holding uncertainty information, and even
though we could argue that the ”global” topology is the ideal representation of uncertainty, both global
and local estimates hold a measure of uncertainty. I would like to emphasize to the readers that in this
work, we have developed a local Bayesian uncertainty estimation framework, similar to local Hessian
estimation methods developed in the geophysical exploration literature ((Bui-Thanh et al., 2012; Fang
et al., 2018; Liu and Peter, 2019; Gineste et al., 2020)), which are also termed ”uncertainty estimation
methods.” It is also interesting to note that the Data Assimilation community (that will be discussed
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in more detail in Chapter 2) has also followed the same type of semantics for ”uncertainty estimation”
based on a local estimate of the Hessian (Kalmikov and Heimbach, 2014; Rao and Sandu, 2015). We
will closely follow this type of framework in this thesis. Thus, ”local estimation” of uncertainty is very
much associated with the local estimate of the second-order derivative of the misfit in the vicinity of the
solution. With that set-out, we shall review the global and local uncertainty estimation methods that have
been proposed in the FWI literature thus far.

1.2.1 Uncertainty quantification through global optimization techniques

Despite being challenging to apply in the context of high-resolution (and therefore, high-dimensional
solution spaces), global optimization is still an active topic of research in the FWI community. As
mentioned in the previous section, the globals search approaches have the advantage of providing
systematic uncertainty estimation along with the solution of the problem. In theory, they are also able to
sample the full solution space and map all the local minima that exist within Ω, without constraining
the inverse problem with strong prior information. Additionally, the global optimization algorithms are
often gradient-free, which can be particularly useful when the forward modeling problem is given as a
black-box, or if the misfit function differentiation is non-trivial to compute. Thanks to this property, they
benefit from lower memory requirement, algorithmic complexity and some of them are formulated as
embarassingly parallel problems.

However, there also exists significant limitations within the global optimization framework. First,
the convergence is rarely guaranteed, or it requires an infinitely large amount of samples to converge.
Due to this limitation, the choice of the initial sample and other hyperparameters inherent to stochastic
optimization can limit the effective sampling space. The limited amount of samples one can evaluate
can result in a biased overview of the solution. The stochastic properties of these methods can also be a
problem, as for two identical initial conditions, the two sampled solution might be different, which make
the evaluation of their performances complicated. Finally, they inherently require a large amount of
forward modeling solves to evaluate the numerous samples needed to describe the solution space. While
they certainly have an ideal theoretical formulation compared to local search methods, they require
some tinkering and clever parameterization to be applied to FWI, in order to overcome the curse of
dimensionality that arise in high-dimensional problems.

Early application of global optimization methods to FWI can be found in Sen and Stoffa (1991),
with an application of simulated annealing (SA) and Stoffa and Sen (1991), with an implementation of
genetic algorithm (GA). Due to computational limitations at that time, and the costly nature of these
approaches, their pioneering works were conducted on 1-D velocity profiles of the earth, with at best
twenty unknowns (ten layers, which velocity and density values were evaluated). Natural processes
inspire both methodologies: SA is inspired by slow re-crystallization of a melted solid, and GA is based
on natural selection of a population that evolve by random mutations. On top of their computational
cost, they are also limited by hyperparameters that control the ”crystallization” and the rate of mutations.
To find the critical temperature, Sen and Stoffa (1991) had to perform a systematic evaluation of
the temperature (systematic search approach), which would not be feasible on slightly larger inverse
problems. The same goes with Stoffa and Sen (1991), as they had to define an optimal probability value
to control the rate of random mutations. Though their computational cost limited both applications, GA
has a clear advantage over SA, as it is easily parallelizable over the population members. Moreover, these
applications have shown the importance of adequate parameterization of the problem, demonstrated with
a synthetic over-determined case where the inversion results get inaccurate (Figure 1.5).
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Figure 1.5: Comparison between the true (solid line) and the inverted profile (dashed line) with a
cross-correlation of 0.933 (highly fiting model). This setting clearly shows how the model parameter
are badly estimated when the model parameterization is not adequate (here, 21 layers instead of 10).
reproduced from Sen and Stoffa (1991)

Two decades later, Tran and Hiltunen (2011) presented an application of SA on 2-D fully elastic
FWI, with mildly varying horizontal structures. Moving from 1-D to 2-D was made possible with a
clever parameterization, achieved with less than a few tenths of parameters (from ten to forty). In their
study, the authors empirically showed that the number of samples required to obtain the MAP estimate
was two-hundred times the number of parameters. Datta and Sen (2016), use similar technique, with a
fast SA algorithm, and a model parameterization based on 2-D nonoscillatory splines functions (Figure
1.6). The authors show that slightly complex geometries can be represented with a few nodal points and
defined velocities values (less than 30 nodal points are used in this study), which greatly reduce the size
of the solution space.

Aleardi and Mazzotti (2016), proposed to use GA along with a Markov-Chain Monte-Carlo Gibbs
sampler, to make the best use possible of the numerous forward problem solves, that are required during
the GA inversion. They point out a weakness that is common to the SA and GA methods above: they
are bound to produce biased posterior covariance because they are not Markov Chain Monte Carlo
methods. The reason they provide biased PDF comes from their tendency to oversample the regions of
the model around the minimizers (Figure 1.7). By not discarding the models that are computed during
the GA inversion, Aleardi and Mazzotti (2016) shows that one can use a (MCMC) Gibbs sampler on the
stored model to produce an unbiased PDF To that extent, they generate a search space from a Voronoi
tesselation of the solution space, from the samples drawn during the GA search. The Gibbs sampler is
run across the tessellated space to compute the unbiased PDF.

Mazzotti et al. (2016) and Sajeva et al. (2017b) later proposed an extension of the GA + Gibbs
sampler, generalizing its application 2-D problems. As many of the methods presented in this section,
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Figure 1.6: An example velocity model derived from the nonoscilatory spline function proposed in Datta
and Sen (2016). The velocity model is parameterized over five interfaces. The nodes in each interface
are shown with white circles whereas the dotted black line shows the interface after interpolation. The
velocities between interfaces are estimated using linear interpolation. From Datta and Sen (2016)

their proposition relies on dimensional model reduction. Their model space is discretized over a coarse,
irregularly spaced 2-D grid on which the inversion is performed. With this discretization, they were able
to apply the GA + Gibbs sampler on up to 146 unknown parameters, in a fully acoustic FWI setting. The
scheme is used in a very similar fashion, where the MAP estimate is given by the GA sampling, while
the Gibbs sampler produces an unbiased posterior probability density function. Sajeva et al. (2017a)
reviewed four classes of stochastic optimization methods: GA, SA, particle swarm optimization, and
neighborhood algorithm on 1D elastic FWI. They concluded that GA was the best-suited approach,
provided that the global minimum is not located in extreme values of the solution space (at the ”edges”
of Ω).

While the methods discussed above (from the ”meta-heuristic” class) seems to be the prevalent
strategy to achieve adequate posterior sampling, another class of method that is defined as purely
”stochastic” has been growing in popularity for the past few years. The MCMC method (Metropolis
et al., 1953; Hastings, 1970), is a class of sampling approach, akin to Monte-Carlo methods, which
relies on a Markov-Chain which stationary law is the posterior PDF to be sampled. At each step, the
MCMC algorithm proposes a new sample, conditional on the current one, and decide to accept or reject
it according to a sampling criterion (Gallagher et al., 2009). Because this sampling strategy only takes
into account the current step to produce the next sample, it does not have a memory effect and is often
described as a ”random walk” sampling (the sampling chain is said to satisfy the Markov property
(Serfozo, 2009)). Basic MCMC algorithm is defined as a cycle of three steps:

• Random walk in the model space. A new sample is proposed by perturbating the current sample
according to a prescribed prior probability. If Gaussian prior is used, the k+ 1 sample perturbation
will be drawn from a Gaussian PDF centered on the sample k.

• Misfit function evaluation. After the new sample is drawn, its data misfit is evaluated.

• Metropolis-Hasting / Gibbs sampling. The proposed sample is accepted or rejected, according
to the probability that they can explain the data.

When a sufficient amount of samples have been accepted, the statistical property of the sampling
population is computed, and typically yield the approximated posterior covariance.
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Figure 1.7: Computation of the PDF in GA + Gibbs sampler algorithm in Aleardi and Mazzotti (2016).
(a) The initial analytical PDF used in the optimization, (b) the initial PDF and the 1000 samples (white
dots) drawn during the GA search. The solution space has been preferentially sampled close to the two
minima. (c) The solution space explored during the GA inversion is divided into Voronoi cells, with
the GA samples as nuclei. The likelihood of each of the 1000 sample is associated with their respective
Voronoi cell. (d) Illustration of Gibbs sampler paths that are used to draw the samples from GA that
approximate the unbiased PDF From Aleardi and Mazzotti (2016)

While MCMC methods are popular within the geophysics community (to solve small problems), the
cost of their application have been a significant limiting factor for their application in tomography, let
alone FWI. Early MCMC tomographic application was proposed by Cary and Chapman (1988), on a
1-D problem, where traveltime and waveform data were used. They focused on evaluating initial model
candidates with the global search. Afterward, these candidate models were inverted with local linearized
FWI. An early application on 2-D model space was performed by Vasco et al. (1993) in the context of
borehole tomography, limited to traveltime data, however. In 2-D domain, the first FWI posterior was
realized by Cordua et al. (2012), also in a borehole setting (with cross-hole Ground Penetrating Radar
observations), although they failed at demonstrating the applicability of the methodology on field data
(where the structure of noise is not correctly characterized).

Facing difficulties to scale up the search methods, two major strategies emerged from the literature.
Hybridization of meta-heuristic methods to accelerate the PDF sampling, with a subsequent MCMC,
search to perform the unbiased uncertainty analysis (as presented previously) such as the MCMC
algorithm proposed by Hong and Sen (2009). Some of these mixed applications have been discussed
along with other meta-heuristic methods earlier in this section (Aleardi and Mazzotti, 2016; Mazzotti
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et al., 2016; Sajeva et al., 2017b), but also fall in the category of MCMC samplers. The other strategy has
been popularized by Bodin and Sambridge (2009), who introduced transdimensional methods to seismic
tomographic imaging. The idea behind this application comes back to Sen and Stoffa (1991) observation
about sub-optimal parameterization of the inverse problem. Because the number of unknown considered
can significantly impact the performance of an inversion scheme, the principle of transdimensional
inversion is to set the number of parameters as an unknown of the inversion problem. Depending on the
target data, the transdimensional MCMC will adapt the number of parameters on which the inversion is
carried. This generally allows us to consider a minimum amount of model parameters (as in the case of
model reduction approaches), but also to find the optimal model discretization. The transdimensional
decomposition and representation of the model space generally rely on Voronoi tesselation. At each
sampling iteration of the transdimensional MCMC, the number of nuclei (and therefore of cells) can
randomly be increased or decreased to fit the data better. While the original application of Bodin and
Sambridge (2009) was performed with traveltime data, it has since been applied to the FWI problem
in several instances: Ray et al. (2016) proposed the first application of transdimensional FWI with
elastic, frequency domain data. They were able to produce a posterior sampling which MAP estimator
fitted closely with previous results obtained with a deterministic method on their field-data example.
Additionally, they showed the interest of the transdimensional approach by providing an evaluation of
the number of interfaces to consider to fit their data adequately. Biswas and Sen (2017); Sen and Biswas
(2017) have developed a two-fold approach, with transdimensional traveltime tomography, followed by
an MCMC FWI performed in the best fitting model parameterization. The rationale for using traveltime
tomography in the first place is the very cheap cost of misfit evaluation, which enables more robust
exploration of the solution space. The outcome of the traveltime tomography MCMC constitutes a good
starting point for the subsequent FWI MCMC, as it provides both the optimal starting model and the
optimal model parameterization. With this application, it also appears that the Voronoi tesselation is an
advantageous model parameterization. We see in Figure 1.8 that the recovered mean model is described
with more discrete parameters than the sum of its parts: all the cells that are not entirely overlapping
create additional discrete-points when averaged over a Cartesian grid.

The particularity of the MCMC sampling used in Biswas and Sen (2017); Sen and Biswas (2017), is
the uses of Hamiltonian dynamics to drive the sampling stage effectively (Duane et al., 1987). The so-
called Hamiltonian MCMC (H-MCMC), has been recently receiving much attention from the community
(Fichtner et al., 2018a,b; Gebraad and Fichtner, 2018) as it seems to be a promising technique to perform
fully stochastic sampling. The advantage of H-MCMC over traditional MCMC methods is that it allows
using the misfit function’s gradient to accelerate the sampling speed: instead of a ”step-by-step” random
walk on Ω, the H-MCMC sampler is affected by ”momentum” and travel on Ω along paths defined by
the local slope.

All the methodologies that have been presented in this segment display an evident shortcoming: the
inability to produce high-resolution models within the Bayesian framework. The computational cost of
global searches requires model parameterization strategies, which ultimately reduces one capacity to
obtain a high-resolution model (while it is the primary appeal of FWI). As for now, the interest of global
search seems limited to initial models building: exploring a coarse version of the space can help identify
all the potential initial models that are fitted for linearized FWI.

Until proven wrong, it seems that the curse of dimensionality (Bellman, 2015) is too harsh of a
constraint to allow global search approaches to reach the high-resolution capacity of local FWI. Trading
resolution power for uncertainty estimation does not seem to be interesting in the context of FWI
(but could be appropriate for traveltime tomography). Following the presentation of the global search
approaches for uncertainty estimation in FWI, I will now focus on local uncertainty estimation methods
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Figure 1.8: Results from transdimensional H-MCMC in Biswas and Sen (2017), at different iterations.
(a) The true velocity model. (b) The initial velocity model, represented as 1000 nuclei (NC). The search
in Ω is initialized at a smoothed version of the true model. (c) Sample model after 3969 evaluations, and
the number of nucleai increased to 6850. (d) The final mean model, averaged over the 3969 selected
samples from the transdimensional H-MCMC algorithm. Note that when average over a cartesian grid,
the number of distinc values increases from the final number of nuclei (nmean > NCfinal Modified from
Biswas and Sen (2017).

in the following subsection.

1.2.2 Local uncertainty estimation in FWI

The other family of uncertainty estimation is set in the local search paradigm. I have shown the clear
relationship that exists between the posterior covariance matrix close to the MAP, and the local inverse
Hessian operator in the vicinity of ta minimum in Section 1.1.2. While this relation is only valid in
the local quadratic assumption, it has allowed the development of local uncertainty estimation method.
These ”Hessian based” uncertainty estimation are generally performed in two steps:

1. Performing a standard FWI. From a good initial model m0, an iterative linearized least-squares
optimization scheme is performed, and the model is improved with the means of a gradient or
(more likely) a Newton-type optimization method.

2. Local evaluation of the Hessian or inverse Hessian operator. Here the Hessian or preferably
its inverse is approximated one way or another, to infer the statistical properties of the inversion
outcome. This step is highly dependent on the choice of m0, and therefore on the subset of Ω in
which the misfit is minimized.

Before discussing the methods which have been proposed in the literature, we can underline an important
fact: the estimated uncertainty estimation is highly dependent on the inversion hyperparameters. This
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Figure 1.9: Schematic representation of the Gaussian approximation (red dashed line) of the misfit
function (solid blue line). The goal of local uncertainty estimation in this context is to define the best
fitting Gaussian PDF that represent the lateral variations of the misfit close to the optimum.

was already the case within the global search paradigm (where the model parameterization constrained
the solution space), but while global search makes a compromise on the resolution to obtain uncertainty
estimation, local approaches tend to favor high-resolution models with limited uncertainty estimation.
Because the local uncertainty estimation methods are based on a strong quadratic assumption, they
are limited to an evaluation of uncertainty within that approximation (Figure 1.9). Within this local
paradigm, it is obvious that all of these methods will fail at evaluating the occurrence of local minima in
the misfit function. At best, we can sample uncertainty information in the vicinity of the solution given
by local optimization, from which we can infer information about the solution quality: correlation and
cross-talk between parameters, absolute variance.

Historically, the first attempt at qualifying FWI result quality, based on second-order information of
the misfit function has been proposed by Fichtner and Trampert (2011b). While their purpose was not to
evaluate uncertainty per se, their proposition has to be acknowledged as the first direct attempt to exploit
Hessian information to evaluate solutions quality in FWI. In this work, they propose an evaluation of
local resolution based on Point-spread Functions (PSF), defined by the Hessian: recalling that H acts
as a convolutional filter, it is possible to evaluate local resolution by solving the product of H with a
point localized perturbation (typically a Dirac δ-function). The Hessian will spread the point-mass of the
δ-function over the space, from which we can infer the resolution information contained in the Hessian.
From field data experiments, they computed PSF by evaluating lines of the Hessian operator H(m,mi),
with mi being the ith parameter of the domain m. They observed bell-shaped PSF, centered on mi, from
which they derived a Gaussian approximation of the PSF. Because they treat the lines of the Hessian
as a Gaussian PDF they can easily compute their Fourier transform, which enables to inspect model
resolution in the Fourier domain. The limitations of this methodology are: 1) it is unable to provide
an approximation of the inverse Hessian, 2) it can only estimate the Fourier spectrum of one line of
the Hessian at a time. Based on this approach, a variant was proposed by Fichtner and van Leeuwen
(2015). They also considered the effect of the Hessian to be the same as a Gaussian smoothing kernel,
from which the spatial extents can be estimated with autocorrelations of the smoothed signals (Figure
1.10). Both Fichtner and Trampert (2011b) and Fichtner and van Leeuwen (2015) were derived from
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Figure 1.10: Estimation of the spatial extent of the Gaussian PDF that approximates the convolutional
effect of the Hessian. From Fichtner and van Leeuwen (2015)

strong assumptions on the structure of the Hessian operator, and are not able to approach the posterior
covariance matrix that holds uncertainty information. Instead, their problem comes down to evaluating
the spatial extent of a Gaussian smoothing kernel.

As with global optimization methods, to mitigate the cost of the uncertainty estimation, a straight-
forward idea would be to reduce the size of the solution space, which in turns would reduce the size
of H and H−1. Following this idea, Du et al. (2012) and later Jordan (2015) have proposed a model
parameterization based on B-Spline functions to achieve space reduction, which alleviates the compu-
tational burden on the estimation of the covariance P. With the model size reduction, the covariance
matrix can be explicitly computed, which yields an uncertainty estimate on a coarse grid. Note that
even though this method has been demonstrated on a stereotomographic application, this formulation
of the problem can easily be ported to FWI. However, reducing the size of the solution space in local
optimization approaches does not seems to be an appealing strategy: 1) as with all local optimization
strategy, the quadratic assumption of the misfit function is fairly reductive 2) the B-Spline representation
would prevent reaching high-resolution results.

The second possibility is to take advantage of the data sparsity that is generally encountered in
tomographic applications. As we can expect the illumination of the target subsurface to be sparse and
incomplete, the Hessian operator is often rank-limited: it is, therefore, possible to project the Hessian
operator on a smaller basis on which it is well defined, to compute its pseudo inverse. Bui-Thanh et al.
(2013) propose to do exactly this, as the authors take direct advantage of the rapidly decaying spectrum
of the Hessian matrix in their global tomographic application to approximate a low-rank Hessian. Based
on previous work that established the compact nature of the Hessian for a smooth medium (Bui-Thanh
and Ghattas, 2012a,b), they developed a scalable method that allow to compute a prior-preconditioned
inverse Hessian, and draw samples from the posterior to evaluate pointwise statistics of the solution
(Figure 1.13).

To approximate the low-rank Hessian and its inverse, they rely on matrix-free Lanczos iterations,
which requires a resolution of the forward problem at each iteration. The nice perk of this methodology
is that the spectrum of the Hessian can be built iteratively, and stopped once a criterion is reached to
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Figure 1.11: Spectrum of the Hessian operator for 2 Global FWI application. Problem 1 is defined with
a single source (green) and receiver (red) couple. The corresponding spectrum of the Hessian displays a
rapid decay and allows to be represented with less than 25 singular values. The dashed line denotes the
truncation threshold. The second problem has significantly better coverage (3 sources and 130 receivers),
and thus has a far better-posed Hessian matrix. As a result, it requires more singular values (at least 700)
to be approximated correctly.) Modified from Bui-Thanh et al. (2013).

Figure 1.12: Samples drawn from the prior (top) and posterior (bottom) distributions of Problem II (see
Figure 1.11). The optimal model obtained with linearized least-squares inversion is shown on the right
for reference. From Bui-Thanh et al. (2013).
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Figure 1.13: Point spread function approximation of the Hessian. (a) Set of Dirac δ-function from which
the PSFs are evaluated. (b) Local subsets of the PSFs from the convolution between the Hessian and
the δ-functions. (c) Product of a random vector with the true Hessian. (d) Product of the same random
vector with its PSF approximation. From Zhu et al. (2016).

avoid computation of lower-order singular values. They reduce the uncertainty estimation problem to
solving forward and adjoint simulation of the wavefield to build an approximation of the Hessian, once
the MAP is reached. Because the spectral content of their prior-preconditioned Hessian matrix is strictly
dependent on the acquisition, their method is not sensitive to the number of discrete grid points on which
the model is represented. This leads them to obtain an approximate posterior over n = 430000 model
parameters.

Following the same leading idea of approximating the Hessian with its truncated version, Zhu et al.
(2016), Eliasson and Romdhane (2017), and Liu and Peter (2019) proposed similar approaches. Instead
of using the Lanczos method to approximate the Hessian, they rely on the randomized singular value
decomposition (rSVD; Liberty et al., 2007; Halko et al., 2011) which is also designed to approximate
matrices of low-rank. In their development, Zhu et al. (2016) directly re-adapt the formulation of
Bui-Thanh et al. (2013). As with the matrix-free Lanczos method, the rSVD requires to perform
Hessian-vector product at each iteration. Based on the assumption that the convolutional properties of
the Hessian do not change too rapidly across the model space, they approximate the Hessian with PSFs.
By interpolation of these few PSFs, they were able to reduce the required number of Hessian-vector
products to perform the rSVD and speed up their uncertainty estimation algorithm.

Additionally, it is interesting to note that the low-rank Hessian formalism can be extended to different
flavors of FWI. For example, Fang et al. (2018) have applied this low-rank approximation strategy on the
Wavefield Reconstruction Inversion (WRI). WRI is a waveform inversion method that relies on a specific
regularization term controlled by the wave equation, which effectively changes the nature of the misfit
functional. They have demonstrated that thanks to the relaxation afforded by the WRI, which further
convexify the misfit function, their application is particularly adequate to the Gaussian approximation of
the posterior distribution. In their proposition, they derived a factored formulation of the Gauss-Newton
Hessian which allows drawing samples from the posterior without additional forward problem solves
(once the square root of the Gauss-Newton Hessian has been explicitely build and stored).
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This goes to demonstrate that with an appropriate formulation, provided the alternative misfit
function can be locally approximated under a quadratic form, the Hessian-based approaches can be used
for uncertainty estimation. Alternatives to the Euclidean norm, such as the envelope misfit function
(Bozdağ et al., 2011) or the recently proposed Wasserstein distance or Graph-space distance (in the
context of Optimal Transport optimization (Engquist and Froese, 2014; Métivier et al., 2016; Yang et al.,
2018; Métivier et al., 2019)) could greatly benefit from this kind of development and offer uncertainty
estimation on top of their reduced sensitivity to local minima.

I have introduced local uncertainty estimation method in this short review, which are all based on
low-rank approximation of the Hessian matrix to produce uncertainty estimation. As with the global
search approaches, all of these methodologies are ultimately limited by one’s ability to harness their
computational cost and solve the many forward simulations required to solve both the optimization
problem and the subsequent uncertainty estimation scheme. One of the main difficulty for the application
of these approaches is the intrinsic iterative nature of the Lanczos and rSVD methods, which prevent
local uncertainty estimation from being implemented in a fully scalable way.

As a final note of this review, I would like to re-emphasize the very local nature of the Hessian-based
uncertainty estimation schemes: In the methods above, the small singular values of the Hessian are
omitted in the construction of the pseudoinverse Hessian. These values correspond to model parameters
that are either in the nullspace of our inverse problem or are poorly constrained by the data (Kalmikov
and Heimbach, 2014). Because the spectrum of the inverse Hessian represents parameters uncertainty,
the omitted singular values of the Hessian correspond to substantial parameter uncertainty. Thus,
the truncated pseudoinverse Hessian produced by these methods only measures uncertainty in the
data-constrained subdomain, and discard any information related to the nullspace.

From this review, it is evident that the uncertainty estimation literature is still in its infancy in the
domain of FWI. While global and local uncertainty estimation methods have their advantages and
limitations, they are the two favored ways of conducting uncertainty estimation nonetheless. Still,
their computational intensive nature and limited scalability have prevented a large adoption of these
cutting-edge methodologies: uncertainty estimation is not systematic in FWI.

1.2.3 Ideas from the Data Assimilation community

While the FWI community is developing cutting-edge techniques for uncertainty estimation, the Data
Assimilation (DA) community had concurrently a long-lasting history of uncertainty estimation paired
with complex geophysical systems study. Their methods have demonstrated a particular ability to solve
inverse problems with a large number of degrees of freedom, high degree of complexity, and data
sparsity while integrating uncertainty quantification within their inverse problem-solving schemes. Their
systematic uncertainty estimation would be highly desirable in the context of FWI.

Generally, the overall goal of DA in geophysical applications is to characterize the state of a dynamic
system through time, which can be subjected to non-linear dynamics by combining sparse observations
and numerical models. DA has notably been successfully implemented at operational scales in areas such
as numerical weather forecasting, oceanography, reservoir characterization, and climatology (Rodell
et al., 2004; Navon, 2009; Cosme et al., 2010; Lee et al., 2016).

Because DA tools can handle large-scale non-linear problems, as it is the case with the FWI problem,
we might be able to take advantage of the DA formalism to bring a new look at uncertainty estimation in
FWI. Applying ensemble-based Data Assimilation to geophysical tomography has already started being
investigated. Indeed Jin et al. (2008) propose using the Ensemble Kalman Filter (see 2.2) to solve 1D
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Figure 1.14: 1-D FWI application solved with the I-EnKS. The prior (left) and posterior (right) ensembles
are displayed. The ensemble spread (shaded blue), and its mean (solid blue line) are the solution yieled by
this ensemble method. The true model is depicted as a solid black line. This inversion yield a significant
uncertainty reduction in the upper part of the domain, while the deeper part (poor illumination) displays
greater uncertainty. Note also that in this applciation, the I-EnKS has been able to recover the true values
of the velocity structure in most of the domain. From Gineste et al. (2019).

prestack FWI. Gineste and Eidsvik (2017) and later Gineste et al. (2019) proposed to used the Ensemble
Kalman Smoother (Evensen and van Leeuwen, 2000) and the Iterative Ensemble Kalman Smoother
(Bocquet and Sakov, 2014) to inverse 1D velocity profiles. Their results pictured in Figure 1.14 showed
that with a very broad non-informative prior, the Iterative Ensemble Kalman Smoother was able to solve
their synthetic inverse problem, while also providing a confidence interval for their solution. Liu and
Grana (2018) propose to use the Ensemble Kalman Smoother to inverse jointly elastic and petrophysical
rock properties in the context of reservoir monitoring. This also goes to show that the DA framework is
well suited for multiparameter inversion, which is a requirement for serious FWI applications.

This review set the stage for the core work behind this thesis: an original DA-FWI scheme adapted
to take advantage of both worlds. By combining a classical FWI Newton-type solver and ensemble
filtering, we ought to perform FWI with an embedded uncertainty estimation solution. The linearized
least-squares part is expected to provide a quick convergence rate to the MAP, along with high-resolution
models. The DA part, on the other hand, is expected to provide uncertainty estimation in a Bayesian
framework, based on the local quadratic assumption of the local search. This will make for a new breed
of local optimization, taking advantage of the uncertainty estimation framework of DA tools.

Conclusion

In this chapter, we have introduced the general aspects of the FWI problem. Both the forward and inverse
problems have been defined. It allowed us to present how the forward problem is solved in the frame
of finite-difference frequency-domain FWI. Then, we gave a complete overlook of the global and local
scheme one can use to solve the FWI problem. The advantages and limitation of both paradigms have
been highlighted, and special attention has been given to the resolution of FWI as a linearized least-square
problem. From there, the definition of the gradient and the Hessian have been given, and their link with
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uncertainty estimation established. This theoretical section was followed by a comprehensive review
of existing uncertainty quantification methods in FWI. We highlighted the characteristics of most of
them and highlighted a few fundamental limitations that prevent their uses as a systematic solution
to the uncertainty problem. Finally, a short introduction was given on DA methods, and their take on
uncertainty estimation, as a general trend, but also by presenting a few novel application to FWI, leading
us to the original contribution of this thesis work.

In the next chapter, I will provide an extensive theoretical development of the methodologies
underlying DA tools, for the readers that might be unfamiliar with the DA literature. From the simple
Kalman Filter, and its relation the Bayesian least-squares problem, I will move to more sophisticated
schemes such as the Ensemble Transform Kalman Filter, that will be implemented along with FWI later
in Chapter 3.
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At first glance, the common-ground between seismology, seismic tomography, and Data Assimilation
(DA) might seem to be limited. DA is a general framework that is commonly used to predict and update
one’s belief on a physical system, and it is deeply rooted in probability theory, statistics, and even
control theory in some instances. However, the shrewd eye will see through the complicated jargon and
terminology of DA, an apparent connexion with inverse problem theory.

In this chapter, I wish to establish this connexion clearly: I will present the theoretical foundations that
lead to the development of the most common tools in DA: from a basic estimator to the well established
Kalman Filter and some of its variants. As stated in the previous chapter, this work investigates the
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possibilities to couple DA and FWI together as a unified framework for uncertainty quantification;
therefore, a comprehensive introduction to the DA literature is needed to establish a clear connection
between these two fields.

This chapter owes much to the textbooks of Evensen (2009); Fletcher (2017), both of which are
wonderful introductions to the broad topic of DA. The work of Harlim and Hunt (2005) and Hunt et al.
(2007) also deserves special recognition, as it shines with clarity and exposes complex principle with a
simplicity that can only be appraised. Finally, I want to acknowledge the outstanding work of Labbe
(2016) whose book allowed me to build solid intuitions on the concepts of Bayesian filtering and get into
the realm of DA through the right door.

2.1 Elements of Data Assimilation

I will begin by introducing the nomenclature on some key objects that are necessary to grasp the DA
literature and concepts, notably the system state, the forecast, the observation vector, and the analysis
state.

2.1.1 Defining the system state

The goal of DA is to characterize the state of a system m at any given discrete time k. In the vast majority
of cases, the objects of study in DA applications are continuous systems (the Earth’s atmosphere and
ocean, the position of an object in a continuous space, or the properties of the subsurface, for instance).
As with numerical optimization, it is practical to represent the system in the ”model” space: a discrete
representation of the continuous system over n points that allows its numerical manipulation. In DA, the
discrete version of the continuous system is generally defined as the state vector

mk ∈ Rn, (2.1)

where Rn is sometimes referred to as the state space, and the subscript k expresses the state vector ”at
time k”.

The readers accustomed to DA literature might be surprised by this choice of nomenclature instead
of the classical xk that has been defined in the seminal review by Ide et al. (1997). The choice of mk

over xk is purposely made to underline the link between numerical optimization applied to FWI and DA.
This choice will also become obvious later with the theoretical developments in Chapter 3, where DA
and FWI will be closely intertwined.

The state vector can hold two types of state variables. The state variables that are directly measurable
with a sensor are called observed variables, while those that are inferred from the observed variables are
called hidden variables. Let us consider a simple example to illustrate the differences between observed
and hidden variables (that example will be handy to explain other concepts later in this section): we
consider an object moving at an unknown constant velocity v along a 1-D axis, which position x is
measured periodically. The position is directly measured: it is an observed variable. The object’s velocity
can be inferred from consecutive measurements and is, therefore, a hidden variable.

The system is defined as the moving object; its position and velocity define its state. From here, we
can design several DA problems where one can estimate the evolution of:

• the objects’ position,
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• the objects’ velocity,

• the objects’ position and velocity altogether.

To these problems, we can associate three different state parameterizations:

mk =
[
xk
]
, mk =

[
vk
]

and mk =

[
xk
vk

]
. (2.2)

While the first problem would be a pure estimation or filtering problem, the second and third are con-
ceptually identical to solving inverse problems in which the velocity would be inferred from successive
measurements of position. Now that the state vector has been defined, we can move on to the first
obvious source of information on the system state: observations. For the remainder of this chapter, we
consider the joint state vector (third case) as a simple example to illustrate various concepts of DA.

2.1.2 Observations

We define an observation vector yok ∈ Rd, which is the counterpart of our state vector,

yok ∈ Rd, (2.3)

where the superscript o stands for ”observation” and Rd is generally referred to as the observation space.
As with the state variables, the observation can cover a broad range of measurements of the system. The
observation vector can contain measures of different physical attributes and come from very different
sensors (various sampling rates, precision, units). Furthermore, observations can also be localized in the
system space (in-situ measurements) or be non-local (measures at the boundaries of the system), and the
length of yok might change over time.

The relation that ties the state and the observation space is contained in an observation operator
Hk : Rn → Rd that yields

yok = Hkmk. (2.4)

In most realistic applications however, the data vector might be affected by observation errors ε such that
equation (2.4) becomes

yok = Hkmk + εk. (2.5)

Such noise can stem from the sensor precision, the level of background noise, or general uncertainty
surrounding the physical state of the measurement device (uncertainty on its location, for instance). The
measurement noise is often modeled as a random variable which mean ε̄k and covariance Rk are given
by

ε̄k = E[εk], (2.6)

and
Rk = E[(εk − ε̄k)(εk − ε̄k)T ], (2.7)

where E[.] designates the expectation (the average value of the random variable given an infinite amount
of realizations). It is common practice to consider the unbiased observation errors (Asch et al., 2016),
defined as a zero-mean Gaussian random variable following εk ∼ N (0, Rk). Coming back again at our
toy example, the discrete observation operator Hk is given by

Hk =
[
1 0

]
, (2.8)
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and the observation at each timestep k are given by

yok = Hkmk + εk. (2.9)

With the introduction of both the state vector and the observation vector, we are left with two different
pieces of information to estimate the true system state. From an ”initial guess” on the system state, we
can produce an analysis: the estimate of the system state based on a clever combination of observational
data and initial (background) information. Common sense would tell us that the true system state lies
somewhere ”in-between,” and should be a tradeoff between observation and background information: if
not, there is something utterly wrong with one of them! The next subsection details how this ”clever”
combination is made and introduce the theory behind the DA analysis.

2.1.3 A practical example of statistical estimator

Based on our toy example, let us design a practical estimation problem. At a fixed time k, I believe the
object’s position to be xb (where b stands for background), but the observation xo differs from my belief.
Recalling that the solution should lie somewhere ”in-between,” the most naive solution to the problem
would be to consider a linear combination of my initial guess and the observation

xa = xb +K(xo − xb), (2.10)

where xa denote the analysis state that I wish to estimate and K is a scaling factor satisfying 0 ≤ K ≤ 1.
To compute the ”optimal” value of K, it is useful to consider the (unknown) true state xt (where the
superscript t stands for ”true”) and compute the different errors that are associated to this estimation
problem. From

xa − xt = xb − xt +K(xo − xt − xb + xt), (2.11)

we define the following errors

α = xa − xt, β = xb − xt and ε = xo − xt, (2.12)

where α is the analysis error, and β and ε are respectively, the background and the measurement error.
We obtain

α = β +K(ε− β). (2.13)

This yields
E[α] = E[β] +K(E[ε]− E[β]) (2.14)

that can be reduced to
E[α] = ᾱ = 0 (2.15)

provided that errors are zero-mean. Recalling the variance of a random variable can be expressed as
σ2 = E[(ε− ε̄)2], we can express the analysis error variance as

σa
2 = E

[
{β +K(ε− β)}2

]
= σb

2 + 2KE [β(ε− β)] +K2E
[
(ε− β)2

]
= σb

2 + 2KE [βε]− 2Kσb
2 +K2(σo

2 + σb
2)− 2K2E [εβ]

(2.16)

where σa, σb and σo are respectively the analysis, background and observation variances. If we consider
that the forecasting error has no correlation links with the observation error, we can rewrite equation
(2.16) as

σa
2 = σb

2 − 2Kσb
2 +K2(σo

2 + σb
2). (2.17)
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To find the best estimate of the system state, we need to find the value of K that minimizes the analysis
variance, in turn minimizing the analysis error. The minimum variance is given by

dσa
2

dK
= 0 = 2K(σo

2 + σb
2)− 2σb

2 (2.18)

and therefore the optimal scaling factor K∗ that minimizes the analysis error is solely given by the ratio
of observation error over forecast error

K∗ =
σb

2

σo2 + σb2
=

1

1 + σo2/σb2
, (2.19)

The optimal state estimate given measurement and forecast error is given by

xa = xb +
1

1 + σo2/σb2
(xo − xb). (2.20)

This estimator is classically called BLUE, for Best Linear Unbiased Estimator, which yields the optimal
weighting for the linear combination of two independent pieces of information (and considering their
respective errors to be zero-mean noise) (Asch et al., 2016). The BLUE can be intuitively interpreted
with respect to the estimator errors:

• if we know the observations to be superior to the numerical model (σo2 � σb
2), xa ≈ xo

• if we know the numerical model to be superior to the observations (σb2 � σo
2), xa ≈ xb

• if both are strictly equivalent (σb2 = σo
2), then xa is nothing more than the arithmetic mean

between the measured and forcast information.

Note that from here, we can also express the analysis error covariance in terms of the gain matrix K

σa
2 =

σb
2σo

2

σo2 + σb2

= (1−K∗)σb2
(2.21)

Where we can see that the analysis yields an update of our prior belief in the Bayesian paradigm (we
update both our belief on the state of the system, but also the uncertainty on the state estimate).

In the case where both the background and measurement errors can be modeled as unbiased Gaussian
noise (β ∈ N (0, σ2b ) and ε ∈ N (0, σ2o)), the BLUE solution is also the minimum mean square error
(MMSE) solution. The analysis is thus given in terms of the mean and variance of the posterior Gaussian
distribution.

N (xa, σ2a) = N (xb, σ2b )×N (xo, σ2o) (2.22)

which makes the analysis a ”Gaussian update” illustrated in Figure 2.1. Indeed, the product of two
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Figure 2.1: Numerical example of the BLUE in the Gaussian case. Both the background (blue) and the
observation (green) are modeled as Gaussian random variables which PDFs are denoted by solid lines.
The posterior distribution of the analysis (also a Gaussian) is obtained from the product of the background
and observation PDFs and is denoted by the red dashed line. Note that because the observation is more
reliable than the background state (smaller variance), the analysis is closer to the measurement than the
initial guess.

independent gaussian with respective means xb and xo and variances σ2b and σ2o yields

The mean

xa =
σ2bx

o + σ2ox
b

σ2b + σ2o
,

= (
σ2b

σ2b + σ2o
)xo + (

σ2o
σ2b + σ2o

)xb,

= Kxo + (1−K)xb,

= xb +K(xo − xb),
and variance

σa
2 =

σb
2σo

2

σo2 + σb2

(2.23)

which are both consistant with the equations of the BLUE.

This gives us the general solution for a linear Gaussian estimation problem. The principle of DA is to
generalize the BLUE to dynamical systems, such that DA is defined by Asch et al. (2016) as ”An analysis
that combines time-distributed observations and a dynamic model”. The final step toward defining DA is
to introduce the dynamical model.
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2.1.4 The dynamical model - forecasting stage

Knowing and predicting how the system behaves provides a great deal of information, which is important
to consider when making state estimation. Thereby, the DA formulation integrates numerical forecasting
models, or forecasting operators, at the core of the system state estimation, in order to complement the
observations. These forecasting operators are generally built on the equations (or their approximation)
that govern the evolution of the system with time: in the case of our 1-D moving object example, they
would be Newton’s equations of motion. Applied to the state vector at time k, they produce a forecast
state at time k + 1 following

mf
k+1 = Fk(mk) (2.24)

where the superscript f denotes the forecast and Fk : Rn → Rn, is the forecast operator.

In the (frequent) case where the model cannot adequately predict the evolution of the system state,
equation (2.24) becomes

mf
k+1 = Fk(mk) + ηk (2.25)

where ηk designates the process noise. Process noise can arise from the mismatch between the physical
world and its mathematical representation. They can also appear when the correct set of equations
governing the system’s evolution may not be known or may only be approximated. The process noise is
defined as a random variable which mean η̄k is given by

η̄k = E[ηk], (2.26)

and covariance Qk by
Qk = E[(ηk − η̄k)(ηk − η̄k)T ]. (2.27)

Qk is generally reffered to as the process noise and is often modeled as a zero-mean Gaussian random
variable, which can be denoted as ηk ∼ N (0,Qk).

Recalling the 1-D moving object example with state vector mk =

[
xk
vk

]
, and assuming a constant

velocity, the position after a time ∆t is given by:

xk+1 = vk∆t+ xk. (2.28)

Considering the forecast to be invariant with time, the discrete forecast operator F is given by

F =

[
1 ∆t
0 1

]
, (2.29)

which allows us to express the forecast as

mf
k+1 = Fmk + ηk (2.30)

I stated earlier that knowing the laws that govern the system’s evolution with time is already a great
deal of information. However, we can also see the limits of using only a numerical model to estimate the
state of a real physical system. Even in the context of our straightforward model: if the initial position is
not known perfectly, the filtered position could always be over or under-evaluated. The error would be
much more severe if the constant velocity is not the good one, as the state estimate would get worse with
time. Even worse, if the equations governing the system are more complicated than our basic constant
velocity model, the forecasting operator likely loses connection with the real system pretty quickly. This
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is especially true in the context of NWP, where the chaotic nature of the atmosphere makes it difficult to
predict accurately with the sole use of numerical modeling.

The solution to this problem takes the form of DA tools that integrate both the time-dependent
observations with a numerical forecasting model, in order to produce the best state estimate, at any given
time k. With this introductory matter aside, we can now focus on the precursor of statistical DA tools:
the Kalman Filter.

2.1.5 The Kalman Filter

Historically regarded as the first statistical DA tool, the KF was proposed by Rudolph E. Kalman in his
seminal paper titled ”A new approach to linear filtering and prediction problems” (Kalman, 1960). This
work was closely followed by a joint publication with Richard S. Bucy (Kalman and Bucy, 1961), but
was initially rejected: one of the referees commented, ”it cannot possibly be true” (Grewal and Andrews,
2001). A couple of years later, the KF was successfully applied to estimate and control the circumlunar
trajectory of the Apollo space capsule, sparking a vivid interest for the tool. Since the sixties, the KF has
been a prevalent tool in adaptive filtering for signal processing and control theory (Chen, 2003). The
main idea of the KF is the generalization of the BLUE to dynamic systems, which is made possible with
a straightforward algorithm.
Initialization

• Initialize the background state

• Initialize the background uncertainty

Forecast

• Project the system state ahead in time with the forecast operator

• Adjust the state uncertainty to account for the forecasting errors

Analyse

• Get observations and their associated uncertainty/precision information

• Compute the residual between the forecast state and observations

• Compute the analysis state, the best tradeoff between all pieces of information

Coming back at our object tracking problem, the KF can provide an estimate position for each k, the
discrete time-steps at which we observe the linear system. To simplify the notation, we consider both the
observation and forecast operator to be invariant with respect to time.

Initialization We consider the initialization of the filter in the first place. As with the BLUE, it starts
with a prior belief at step k=0. Therefore we have

m0 and P0, (2.31)

where m0 is the background state and P0 is the background uncertainty (P0 = E[β0(β0)
T ] with β0 the

background error). At that stage, because we typically do not have better information than a simple
initial guess, the background uncertainty P0 should be large to reflect the lack of information.
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Forecast Having defined the forecast operator in equation (2.25), we can predict the state of the system
at the next timestep k = 1, . . . ,K with

mf
k = Fm0 + η0. (2.32)

By applying the forecast operator, we introduce the following forecasting error

εfk = mf
k −m

t
k,

= Fm0 − Fmt
0 − η0,

= F(m0 −mt
0)− η0,

= Fβ0 − η0,

(2.33)

and thus we need to update our belief accordingly by formulating the forecast error covariance

Pf
k = E[εfk(εfk)T ],

= E[(Fβ0 − η0)(Fβ0 − η0)T ],

= FE[β0(β0)
T ]FT + E[η0(η0)

T ],

= FP0F
T + Qk.

(2.34)

The forecast error covariance is computed by applying the forecast operator to the background error
covariance, to which we add the covariance term that rules the process noise.

Analysis From the forecast, the BLUE gives us the analysis equation, that can be applied as soon as
observations are available. The analysis state is given by

ma
k = mf

k + Kk(y
0
k −Hmf

k), (2.35)

where Kk is the Kalman gain matrix. In DA, it is common to refer to (y0k −Hmf
k) as the innovation

term, which measures the discrepancies between the observation and the predicted observation. The
Kalman gain matrix is the optimal weight that minimizes the analysis (posterior) error covariance. Note
that the Kalman gain matrix is by construction positive definite. From our development of the BLUE, its
formulation is given by

Kk = Pf
kH

T (HPf
kH

T + R)−1, (2.36)

which corresponds to equation (2.19) where variances have been replaced by covariance matrices, which
in turn, explains the introduction of the observation operator H.

Let us express Sk = HPf
kH

T + R where HPf
kH

T act as a projection of the forecast error from
the state space, to the measurement space as the ”measurement uncertainty”. It allows expressing the
Kalman gain as

Kk = Pf
kH

TS−1,

≈ prediction uncertainty
measurement uncertainty

HT ,
(2.37)

which goes to emphasize the optimal weight nature of the Kalman gain in the update equation as
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Forecast
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Analysis
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Initial
Guess

Observations

State
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(   )

(          )

(          )

Figure 2.2: Schematic representation of the KF algorithm. From an initial guess/initial conditions, the
sequential filter is initialized to produce forecast and analysis cycles. After each cycle, the output of the
filter is the state estimate and its associated uncertainty. Modified from (Labbe, 2016).

ma
k = mf

k + Pf
kH

TS−1(y0k −Hmf
k),

≈ mf
k +

prediction uncertainty
measurement uncertainty

HT (y0k −Hmf
k).

(2.38)

Finally, the last step of the KF analysis is to compute the posterior error covariance Pa
k given by

Pa
k = (I−KkH)Pf

k , (2.39)

which is nothing more than the multivariate version of equation (2.21). Note that due to the positive
definite nature of the Kalman gain matrix, the analysis covariance should always be a smaller fraction of
the forecast covariance. If the analysis uncertainty is greater than the forecast uncertainty, it is generally
an indication of filter degeneracy (often caused by numerical errors). With this short example, we have
demonstrated that from a rough initial guess, it is possible to predict the future state of the system and to
correct it when observations are available. From there, the analysis of the previous step becomes the
starting point for the next cycle (Figure 2.2), and each new cycle benefits from the variance reduction of
the previous analysis. This is what allows starting from a large prior uncertainty: the filter is expected to
mitigate the initial lack of knowledge of the system over time (provided the system is behaving purely
linearly and that the forecast operator is designed correctly)

Once all the developments are out of the way, the KF cycles reduce to a few equations
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time| | |
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Figure 2.3: Schematic representation of the KF algorithm. Crosses denote state vectors, stars denote
measurement vectors, and ellipses represent covariances. Blue denotes the forecast state, red the analysis,
green the observed data, and grey the forecast data. The dashed lines are indicative of the information
used to produce the analysis state. Note that here, because the observation error covariance (green) is
lower than the forecast error covariance (blue), the analysis is closer to the data vector than the forecast
vector.

Forecast

mf
k = Fkm

a
k−1 + ηk,

Pf
k = FPf

kF
T + Qk,

Analysis

Kk = Pf
kH

T (HPf
kH

T + R)−1,

ma
k = mf

k + Kk(y
o
k −Hmf

k),

Pa
k = (I−KH)Pf

k ,

(2.40)

yielding a very powerful filter, shining by its simplicity and ease of implementation.

A ”sequential view” of the KF is illustrated in Figure 2.3 for a 1-D problem. This way, we can see that
after each analysis, the filter defines the best tradeoff between the forecast (blue) and the measurement
(green) information.

Additionally, the Gaussian assumption of the KF allows expressing the analysis as a Bayesian
least-squares minimization problem (its ”variational” formulation). This comes down to minimizing the
following cost function

C(mk) =
1

2
‖Hmk − yok‖

2 +
1

2

∥∥∥mk −mf
k

∥∥∥2, (2.41)
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that can also be expressed as

C(mk) =
1

2
(yok −Hmk)

TR−1(yok −Hmk) +
1

2
(mk −mf

k)TPf
k

−1
(mk −mf

k), (2.42)

and again, we can see that the analysis is a balancing act between the observation term (first term), and
the forecasting term (second term).

From the derivation of the BLUE, we have seen that the KF is an optimal tool when dealing with
linear dynamics and Gaussian noises. However, its abilities to tackle non-linear problems are relatively
limited. Typically, the filter will fail whenever the forecast model has a strongly non-linear response, or
if the observation operator is non-linear. To mitigate this shortcoming, one of the earliest proposition
took the form of the Extended Kalman Filter (EKF) (Jazwinski, 2007).

2.1.6 Extended Kalman Filter

As its name suggests, the EKF allows to ”extend” the KF formalism, to tackle weakly non-linear
problems. The idea of the EKF date back to the early papers of Kopp and Orford (1963); Cox (1964) and
was formally established by Jazwinski (2007)’s first edition in 1970.The idea stems from consideration
of the non-linear case for the KF, where the forecast state and the observations equations become

mf
k = F(ma

k−1) + ηk,

yok = H(mf
k) + εk,

(2.43)

where F is a non-linear forecasting operator, andH is a non-linear observation operator. Using this set
of equations in the KF would violate its underlying Gaussian assumption (a Gaussian function through a
non-linear process is not Gaussian anymore), and therefore an optimal solution cannot be derived for
the non-linear setting. We can instead rely on a local tangent-linear approximation of F andH, at the
current state

F =
∂F(ma

k−1)

∂m

∣∣∣
ma

k−1

H =
∂H(mf

k)

∂m

∣∣∣
mf

k

(2.44)

where F and H are the Jacobians of the forecasting and observation operator, yielding respectively the
discrete forecast operator and the discrete observation operator (Jazwinski, 2007; Labbe, 2016). This
gives the following algorithm for the EKF
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Forecast

F =
∂F(ma

k−1)

∂m

∣∣∣
ma

k−1

mf
k = Fkm

a
k−1 + ηk

Pf
k = FPf

kF
T + Qk

Analysis

H =
∂H(mf

k)

∂m

∣∣∣
mf

k

Kk = Pf
kH

T (HPf
kH

T + R)−1

ma
k = mf

k + Kk(y
o
k −H(mf

k))

Pa
k = (I−KH)Pf

k

(2.45)

In practice, the linearized F and H are often too inaccurate to produce reliable forecasts and observations.
Their non-linear versions computed from an appropriate numerical integration scheme are generally
preferred (Labbe, 2016). For this reason, the Jacobians are only used to compute the error covariances and
the Kalman Gain matrix. If the problem allows it, the Jacobians can be computed analytically. Otherwise,
they are approximated with a numerical solver. The EKF allows formulating a linear approximation to
the non-linear problem, which requires re-evaluating the Jacobians of F and H at each iteration.

Unfortunately, both the KF and EKF are limited to studies of small-scale systems, with at best a few
hundred parameters. When the size of the state space increases, the covariance matrices Pf and Pa (of
size n× n) become untractable, and other strategies must be used. As with FWI, in operational NWP
and other DA applications, it is not uncommon to deal with state spaces in the range of 106∼9 degrees of
freedom, which prevents storing and manipulating the covariance matrices. To overcome this limitation,
it is possible to rely on rank-limitation strategies, such as ensemble methods, to limit the computational
burden of DA applications.

2.2 Ensemble Kalman Filter

As discussed in the previous section, using the KF to study large-scale systems can be problematic,
especially when it comes to manipulating covariance matrices. To overcome this limitation, Evensen
(1994) proposed a Monte-Carlo approximation of the KF, based on an ensemble representation of the
system state: the Ensemble Kalman Filter (EnKF). He showed that for an infinite number of ensemble
members and considering a linear-Gaussian setting, his methodology could yield the exact KF solution.
Therefore, with a limited number of ensemble members, it can produce an approximation of the KF
solution. In the non-linear case, however, the state approximated by the ensemble can differ from the
KF filter solution (Mandel and Beezley, 2009; Le Gland et al., 2009; Mandel et al., 2011). Despite
representativity errors, its successful applications in geophysics have made it one of the prevalent DA
methodology, and its limitations have been overlooked. Thanks to its success, variants of the EnKF
are currently being developed at an operational level in several meteorological centers on up to 109

degrees of freedom (as it is the case for the MOGREPS global assimilation system ran at the Met Office
(United-Kingdom) or the ICON global domain model ran at the Deutscher Wetterdienst (Germany) as
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part of their numerical weather prediction routines). Note that even though the EnKF original formulation
required the observation operator to be linear, the EnKF has, since then, been successfully applied with
non-linear observation operators (Evensen, 2003; Hunt et al., 2007).

As the KF and EKF, the EnKF is a Bayesian sequential filter, which is also based on alternating
forecast and analysis steps. The ensemble representation allows computing a reduced-rank analysis,
which in turn, allows a significant cost reduction in high-dimensional problems. In this section, I will
detail the EnKF formalism, list some of the popular variants of this filter, and discuss its practical
implementation.

2.2.1 Ensemble representation

The overarching idea of Evensen’s EnKF is to approximate the system state (its state estimate and its
error covariance matrices), with an ensemble mk of Ne state vectors m(i)

k ∈ Rn,

mk = {m(1)
k ,m

(2)
k , . . . ,m

(Ne)
k } (2.46)

where mk is a n×Ne matrix, whose column contains all the individual state vectors and where typically
Ne � n. From the ensemble representation, provided its repartition is Gaussian, the state estimate
and uncertainty are represented by the first and second-order Gaussian moments (mean and variance).
Consequently, it is possible to compute the relevant metrics involved in the original KF formulation from
the ensemble (as illustrated with a 2-D case in Figure 2.4), which makes the extension of the KF scheme
to large scale problems affordable.

The system state estimate (first Gaussian moment) is given by

m̄k =
1

Ne

Ne∑
i=1

m
(i)
k . (2.47)

We denote the perturbation matrix Mk, which columns contain the deviation to the mean

Mk = [m
(1)
k − m̄k,m

(2)
k − m̄k, . . . ,m

(Ne)
k − m̄k]. (2.48)

This matrix is at best of rank Ne − 1 by construction, as the sum of all of its column equates to zero.
The state uncertainty is given by the second Gaussian moment that we can approximate by

Pe,k =
1

Ne − 1
(mk − m̄k)(mk − m̄k)

T =
1

Ne − 1
MMT . (2.49)

where the subscript e denote the ”ensemble” covariance matrix (or ”empirical” covariance estimated
from the ensemble). Computing the Gaussian moments of the distribution only requires storing Ne state
vectors, which is very interesting when Ne � n.

This ensemble representation strategy, which yields a low-rank approximation of the system state, is
the basis of the EnKF. From here, we can study how this approximation carries over the forecast and
analysis steps.
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Figure 2.4: Schematic representation of the ensemble strategy. Here, the true mean and covariance (red
dot and red ellipse) can be estimated from the ensemble of points. Note that this sampling strategy is not
interesting in this 2-D example, as Ne � 2. However, it becomes advantageous as soon as Ne � n.

2.2.2 EnKF’s forecast step

Considering first the forecast step in the ensemble formalism. Following the KF’s forecast equation, the
ensemble forecast from step k − 1 to k is given by

mf
k

(i)
= Fk(mk−1

(i)) + η
(i)
k i = 1, 2, . . . , Ne, (2.50)

where the forecast operator Fk can be non-linear, and η(i)k is the process-noise which is generally
modeled as a multivariate Gaussian random vector (η(i)k ∈ N (0,Qk)), with Qk being the forecast error
covariance matrix. As with the ensemble covariance matrix, it is possible to generate an ensemble of
random noise vector {η(1)k , η

(2)
k , . . . , η

(Ne)
k }, which empirical covariance Qk,e tends toward Qk when

the size of the ensemble goes to infinity. In practice, however, we generally have limited knowledge on
Qk and on the natural process errors that affect the system. In that case, one generally reduces equation
(2.50) as

mf
k

(i)
= Fk(mk−1

(i)) i = 1, 2, . . . , Ne. (2.51)

While omitting the process noise greatly simplify the forecasting step, this simplification tends to under
evaluate the forecast covariance. This underestimation can be mitigated with an inflation procedure
that artificially increases the ensemble spread after the forecast step, to avoid an over-confidence in the
forecast. This procedure is detailed in subsection 2.3.5.

The advantage of the EnKF is that the forecast covariance can be approximated from the forecasted
ensemble, such that

Pf
k,e =

1

Ne − 1
Mf (Mf )T , (2.52)

where each column of Mf
k

(i)
= [mf

k

(i)
− m̄f

k ]. In practice, the ensemble covariance is never explicitly
computed due to computational and memory limitations. The implications of this approximation over
the analysis step are detailed in the next subsections.
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Figure 2.5: Schematic representation of the EnKF algorithm. Bullets represent the ensemble members,
crosses denote ensemble means, stars denote measurement vectors, and ellipses represent ensemble
covariances. Blue denotes the forecast state, red the analysis, green the observed data, and grey the
forecast data. The dashed lines are indicative of the information used to produce the analysis state.

2.2.3 Analysis step

As stated before, the goal of the EnKF is to provide a low-rank approximation of the KF equations,
without building explicitly any covariance matrices. In its original formulation, Evensen (1994) proposed
to consider only the case where the observation operator is linear and directly plugged the empirical
covariance Pf

k,e in the KF analysis equation. In the subsequent developments, the subscript k has been
omitted to ease the readability.

Evensen’s original analysis scheme is based on the formulation of Pa in terms of Pf as in equation
(2.16). In the multivariate case, equation (2.16) becomes

Pa = E[(α)(α)T ],

= (I−KH)Pf (I−HTKT ) + KRKT ,

= Pf −KHP−PfHTKT + K(HPfHT +R)KT,

= (I−KH)Pf .

(2.53)

However, Burgers et al. (1998) and Houtekamer and Mitchel (1998) pointed-out that Evensen’s for-
mulation of Pa

e does not coincide with Pa unless observations are treated as random variables with
covariance R. Evensen’s original development thus lacked an equivalent to the term KRKT , making
his formulation of Pa

e converges toward

Pa
e = (I−KH)Pf (I−KH)T , (2.54)

which does not satisfy the BLUE equation of the covariance analysis.

50



2.2 Ensemble Kalman Filter

From this demonstration, careful research went into formulating the ensemble analysis that satisfies
the BLUE equation while retaining the significant cost reduction offered by the ensemble approximation.

Stochastic analysis

To mitigate the shortcoming of the original EnKF formulation, Burgers et al. (1998); Houtekamer and
Mitchel (1998) proposed a new EnKF scheme in which the observations are perturbed with Gaussian
random noise, by defining an ensemble of Ne perturbed observations yoε =

[
yoε

(1), yoε
(2), . . . , yoε

(Ne)
]

with
yoε

(i) = yo + ε(i), i = 1, 2, . . . , Ne. (2.55)

The stochastic EnKF analysis ensemble ma =
[
ma(1),ma(2), . . . ,ma(Ne)

]
is expressed as

ma(i) = mf (i) + Ke

[
yoε

(i) −H(mf (i))
]
, (2.56)

with the Kalman gain defined as

K = Pf
eH

T (HPf
eH

T + R)−1. (2.57)

Note that this formulation implies that the state estimate is given by

m̄a = m̄f + Ke

[
ȳoε −H(m̄f )

]
, (2.58)

where ȳoε = yo corresponds to the unperturbed observations. With these developments, the authors
ensured that the relation between Pa

e and Pf
e in the EnKF, is the same as the relation between Pa and

Pf in the original KF scheme. The analysis ensemble covariance is given by

Pa
e = E[(ma − m̄a)(ma − m̄a)T ]

=
1

Ne − 1
Ma(Ma)T

= (I−KeH)Pf
e +O(N−1/2e )

(2.59)

where Ma = (ma − m̄a). With the addition of perturbed observations, their version of the analysis
ensemble covariance satisfies the BLUE. They also showed that this formulation could be expanded
to account for non-linear observations: introducing the non-linear observation operatorH, the general
formulation of the stochastic EnKF analysis is given by the following set of equations:

yf
(i)

= H(mf (i))

ȳf =
1

N

Ne∑
i=1

yf
(i)

Yf = (yf − ȳf )

Ke =
1

Ne − 1
Mf (Yf )T (

1

Ne − 1
Yf (Yf )T + R)−1

ma(i) = mf (i) + Ke(y
o
ε
(i) − yf (i)).

(2.60)
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This formulation solved the two major problems of the KF: the stochastic EnKF satisfies the BLUE even
for non-linear forecast and observation operators and is compatible with large systems study thanks to
its covariance matrix-free formulation.

While the stochastic EnKF relies on approximating R with an ensemble of perturbated observations,
alternatives ”deterministic” EnKFs, have been formulated to account for R explicitly. The interest of
deterministic methods is that they eliminate the risks of sampling error for R. They are also generally
more accurate and stable than the stochastic EnKF (Whitaker and Hamill, 2002; Tippett et al., 2003),
and also exhibit better performances (Whitaker and Hamill, 2002; Sakov and Oke, 2008).

Deterministic EnKFs are of particular interest in this study, as they have been preferred to stochastic
EnKF in our numerical experiments, due to the advantages mentioned above. I propose a short review of
the deterministic EnKFs in the following subsections.

Deterministic analysis

As mentioned previously, the first motivation for the derivation of deterministic EnKFs was to avoid
sampling error introduced by the perturbated observations, while also satisfying the BLUE equation
(2.53). Following Whitaker and Hamill (2002), these two requirements can be met by expressing the
EnKF analysis equations as a two-step update:

m̄a = m̄f + K(ȳo −Hm̄f ), (2.61)

Ma = Mf + K̂(Yo −HMf ), (2.62)

where K is the regular Kalman gain, and K̂ is a reduced gain matrix used to update the perturbation
matrix. The stochastic EnKF presented in the previous subsection can be expressed as a special case
of this formulation where K = K̂ and Yo are a set of random perturbations drawn according to the
measurement noise distribution R (as in equation (2.55)). The need for perturbated observation then
appear clear when considering the special case where K = K̂ and Yo = 0, which can be shown to yield

Pa
e = (I−KH)Pf

e (I−KH)T , (2.63)

and therefore does not satisfy the BLUE analysis, as seen previously (Burgers et al., 1998).

Whitaker and Hamill (2002), propose to set the reduced gain K̂ so that it satisfies

(I− K̂H)Pf
e (I− K̂H)T = (I− K̂H)Pf

e , (2.64)

which has a solution under the form

K̂ = Pf
eH

T [(

√
HPf

eH
T + R)−1]T [

√
(HPf

eH
T + R) +

√
R]−1. (2.65)

Therefore, the perturbation update can be expressed as

Ma = (I− K̂H)Mf . (2.66)

This deterministic analysis is referred to as an ensemble square root filter (EnSRF), where the
analysis covariance is obtained by updating its square root Ma. Contrarily to the stochastic EnKF, there
are several implementations of deterministic EnKFs, even though they are algebraically equivalent. Their
differences stem from the non-unique ways of computing Ma as a transformation of Mf under the form
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MfT or T̂Mf , where T and T̂ are transformation matrices that satisfy the BLUE analysis equations
(Sakov and Oke, 2008). For a complete review of EnSRFs methods and other deterministic alternatives,
readers might refer to Tippett et al. (2003); Sakov and Oke (2008); Fletcher (2017).

For the remainder of this section, I will review additional forms of deterministic EnKFs:

• the Ensemble Transform Kalman Filter (ETKF) proposed by Bishop et al. (2001), as it is the
scheme we chose to perform numerical experiments in this study.

• the Maximum Likelihood Ensemble Filter (MLEF) proposed by Zupanski (2005), which non-
linear formulation and iterative nature make it an interesting bridge with numerical optimization
methods.

• the Ensemble Kalman Inverse (EKI) proposed by Iglesias et al. (2013a), which is a stochastic
optimization method based on statistical DA principles.

2.2.4 Ensemble Transform Kalman Filter

The ETKF is a deterministic EnKF scheme that was initially proposed by Bishop et al. (2001). Its
derivation starts by recognizing that at any time, the state estimate error covariance can be reduced to a
product of the covariance’ square roots

Pe =
1

Ne − 1
MMT . (2.67)

Therefore, the most cost-effective way of computing the analysis ensemble, as suggested in the ensemble
square root filters, is to update the mean and the perturbation matrix separately. Considering equation
(2.67) we can re-write the Kalman gain matrix as

K =
1

Ne − 1
Mf (Mf )THT

[
1

Ne − 1
HMf (Mf )THT + R

]−1
=

1√
Ne − 1

Mf (Mf )THT 1√
Ne − 1

[
1√

Ne − 1
HMf (Mf )THT 1√

Ne − 1
+ R

]−1
.

(2.68)

Defining A = 1√
Ne−1

HMf , we can recognize the matrix identity

AT (AAT + R)−1 = (INe + ATR−1A)−1ATR−1, (2.69)

and thus the Kalman gain’s expression becomes

K =
1

Ne − 1
Mf

[
INe +

1

Ne − 1
(Mf )THTR−1HMf

]−1
(Mf )THTR−1. (2.70)
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Replacing the Kalman gain in equation (2.53) by the form we have derived in equation (2.70) allows us
to express the analysis covariance as

Pa
e =

1

Ne − 1
(INe −KH)Mf (Mf )T ,

=
1

Ne − 1
(Mf −KHMf )(Mf )T ,

=
1

Ne − 1

{
Mf − 1

Ne − 1
Mf

[
INe +

1

Ne − 1
(Mf )THTR−1HMf

]−1
(Mf )THTR−1HMf

}
(Mf )T ,

=
1

Ne − 1
Mf

{
INe −

1

Ne − 1

[
INe +

1

Ne − 1
(Mf )THTR−1HMf

]−1
(Mf )THTR−1HMf

}
(Mf )T .

(2.71)

This formulation is particularly interesting in its way of handling the analysis update. We can first notice
that this expression is entirely free of covariance matrices manipulation: instead of Pf

e , its factorized
form is preferred. We can also note that the inner term can be expressed as a symmetrical operator
P̃a = TTT , which dimensions are Ne ×Ne,

Pa
e =

1

Ne − 1
Mf P̃a(Mf )T . (2.72)

Recalling that the ensemble covariance matrices are at best of rankNe−1, P̃a allows carrying the analysis
over the ensemble subspace S ∈ RNe , on which Pf

e and Pa
e are well defined. This projection over the

arbitrary subspace spanned by the ensemble allows a notable cost reduction, which makes the ETKF very
affordable. P̃a is nothing more than the ”effective analysis covariance” spanning the ensemble subspace
(Hunt et al., 2007). In his review, Tippett et al. (2003) points out that the computational complexity of the
ETKF is O(N3

e + nN2
e + dN2

e ) and is thus linearly dependent on the size of the state and observation
spaces. This low-rank reduction based on the ensemble representation is similar to the basis reduction
strategies discussed in Chapter 1, which makes this formalism very interesting for uncertainty estimation
in FWI.

The second advantage of the ETKF, is that it allows us to consider non-linear observation operators
in a very straightforward manner. This property comes from the fact that in equation (2.71), each time
the linearized observation operator appears, it is next to the perturbation matrix Mf . Because HMf

is the first Taylor expansion ofH(mf )−H(m̄f ), we can linearly approximate HMf as a matrix Yf

(Harlim and Hunt, 2005) such that

Yf = H(mf )− ȳf (2.73)

where ȳf is given by

ȳf =
1

Ne

Ne∑
i=1

H(mf (i)). (2.74)

By replacing occurences of HMf by Yf in equation (2.71), the analysis formula becomes
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Pa
e =

1

Ne − 1
Mf

{
INe −

1

Ne − 1

[
INe +

1

Ne − 1
(Yf )TR−1Yf

]−1
(Yf )TR−1Yf

}
(Mf )T ,

=
1

Ne − 1
Mf

[
INe +

1

Ne − 1
(Yf )TR−1Yf

]−1
(Mf )T ,

= Mf
[
(Ne − 1)INe + (Yf )TR−1Yf

]−1
(Mf )T .

(2.75)

Finally the effective ensemble analysis covariance is expressed as

P̃a = TTT =
[
(Ne − 1)INe + (Yf )TR−1Yf

]−1
. (2.76)

The covariance analysis reduces to finding the appropriate square root of TTT such that Ma = MfT
(which has non-unique solutions). In his original formulation, Bishop et al. (2001) proposed to compute
the SVD of the Ne × Ne operator TTT = UΓUT and to perform the update as Ma = MfUΓ1/2.
However, his version of the ETKF introduces some biases to the analysis (Wang and Bishop, 2003):
the sum over the columns of Ma yields a non-zero vector, which deviates the ensemble from the
analysis mean. It also tends to introduce a bias on the variance repartition. Leeuwenburgh et al. (2005)
demonstrated on a scalar model by assimilating a single observation that this formulation returned
an ensemble perturbation in which all entries but-one were zeros. Consequently, if the number of
observations is insufficient, Bishop et al. (2001)’s original scheme could result in zero-entry vectors in
the ensemble perturbation matrix. This induces a tendency to generate outliers that concentrate most of
the variance information (Sakov and Oke, 2008). The variance repartition bias is problematic because
it tends to reduce the number of contributing perturbations to the representation of variance, which
in turn can result in an underestimation of the total variance. In other words, Bishop et al. (2001)’s
analysis scheme introduces rank-deficiency in the ensemble, such that it cannot sample the covariances
adequately and might introduce instabilities along with the DA cycles.

To correct for this bias, Wang et al. (2004) and Ott et al. (2004) proposed to use a strictly symmetrical
transformation operator, such that a better balance in the variance repartition is ensured while preserving
the mean. To that extent, they introduced the transform operator as T = UΓUTC, with C being an
orthogonal matrix that preserves the mean, satisfying

CCT = INe , C1 = 1 (2.77)

where 1 is a vector of size Ne which entries are ones (Sakov and Oke, 2008). In practice, this matrix is
often set as the identity matrix.

The analysis scheme of this mean-preserving ETKF (spherical simplex ETKF (Ott et al., 2004; Sakov
and Oke, 2008)) can be resumed as follow:
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yf
(i)

= H(mf (i)),

ȳf =
1

N

Ne∑
i=1

yf
(i)
,

Yf = (yf − ȳf ),

P̃a = ((Ne − 1)I + Yf TR−1Yf )−1 = UΓUT ,

T = UΓ−1/2UT INe ,

Ma =
√

(Ne − 1)MfUΓ−1/2UT INe ,

m̄a = m̄f + Mf P̃a(Yf )TR−1(yo − ȳf ),

ma = m̄a + Ma.

(2.78)

Additionally, as with the regular KF, because all underlying assumptions of Gaussianity hold for the
ETKF, it can be expressed under the following variational formulation (Hunt et al., 2007)

C(m) =
1

2
(yo −H(m))TR−1(yo −H(m)) +

1

2
(m− m̄f )TPf

e
−1

(m− m̄f ), (2.79)

which further underlines the link with least-squares optimization schemes discussed in Chapter 1: in
the Bayesian linear setting, the ETKF analysis is equal to the KF analysis, which has been shown to be
equivalent to Newton’s method of optimization (Humpherys et al., 2012) in the least-squares optimization
setting.

To solve this minimization problem and compute the analysis state, the singularity of Pf
e in equation

(2.79) must be dealt with, as it is not invertible under that formulation. We can see however, that the
column space S of Pf

e is the same column space spanning Mf , the ensemble subspace, on which
(Pf

e )−1 is well-posed. Because (m− m̄f ) also lies in the forecast ensemble perturbation subspace, the
minimization of C(m) is well-posed over S. Therefore, the appropriate coordinates system has to be
used in order to project this minimization over the subspace S.

To do so, there are two possible approaches: using the singular vectors of Mf (Ott et al., 2004) or
directly use the columns of Mf to project the problem in the ensemble subspace (Hunt et al., 2007). We
favor the second methodology that does not requires to solve the singular value decomposition of Mf ,
which is generally more affordable.

We change the coordinate system by letting

m = m̄f + Mfw (2.80)

where w ∈ RNe is a weight vector to be determined. This is equivalent to consider that the deviation
from the mean of the system state is given by a linear combination of the weight vector w and the forecast
ensemble perturbations (Harlim and Hunt, 2007). We can re-write the variational cost function as

C(m̄f + Mfw) =
1

2
(yo −H(m̄f + Mfw))TR−1(yo −H(m̄f + Mfw))+

Ne − 1

2
(Mfw)T [Mf (Mf )T ]−1(Mfw)

(2.81)
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which can be simplified as

C(w) =
1

2
(yo −H(m̄f + Mfw))TR−1(yo −H(m̄f + Mfw)) +

Ne − 1

2
wTw (2.82)

This change of coordinate system (on S) allows solving the minimization problem over aNe dimensional
space, rather than a n dimensional space. From there, finding the weight vector wa that minimizes
equation (2.84), is equivalent to finding the m̄a = m̄f + Mfwa that minimizes equation (2.79).

Following the linearization in equation (2.73), we can linearly approximate the measurement operator
by considering

H(m̄f + Mfw) = ȳf + Yfw. (2.83)

Then, the cost function is expressed as

C(w) =
1

2
(yo − ȳf + Yfw))TR−1(yo − ȳf + Yfw)) +

Ne − 1

2
wTw, (2.84)

which minimum is given by equating its gradient to zero

∇C(w) = (Ne − 1)w − (Yf )TR−1(yo − ȳf + Yfw)) = 0. (2.85)

Equation 2.85 has a solution under the form

wa = P̃a(Yf )TR−1(yo − ȳf ) (2.86)

where P̃a = ((Ne − 1)I + Yf TR−1Yf )−1. In the state space, the ensemble is given by

m̄a = m̄f + Mfwa,

Pa
e =

1

Ne − 1
Mf P̃a(Mf )T .

(2.87)

We finally obtain the same algebraic solution to the ETKF problem, as derived earlier. In this study, we
chose to implement the ETKF rather than other alternatives for several reasons:

• Its deterministic nature that guaranteed better performance over the stochastic EnKF.

• Its variational formulation lets us establish a clear link with least-squares minimization.

• Its ease of implementation.

• Its low computational and memory burden.

In the next subsection, I briefly introduce the Maximum-Likelihood Ensemble Filter (Zupanski, 2005),
which directly used the variational formulation of the ETKF to formulate an iterative EnKF variant. On
top of its advantageous iterative nature and the possibility to formally consider non-linear observations,
the MLEF is an important stepping stone of the EnKF literature, as it is the basis for several other
iterative methods such as the Ensemble Randomized Maximum Likelihood filter (Chen and Oliver, 2012)
and the Iterative Ensemble Kalman filter (Sakov et al., 2012).
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2.2.5 Maximum-Likelihood Ensemble Filter

One of the limitations of the ensemble filters lies in the nature of their observation operator. The analysis
of the EnKF and ETKF guarantee an optimal solution only if the observation operator is strictly linear
(although we have seen that non-linear observation can be considered). When the observation operator is
strongly non-linear, the behavior of these filters might be compromised. To deal with non-linearities,
we have seen previously that we typically consider a first-order Taylor expansion of the non-linear
operator, in place of using a linearized operator. Instead of this approximation, the Maximum-Likelihood
Ensemble Filter (MLEF) of Zupanski (2005) propose a fully non-linear development, and then determine
a solution in the reduced space, with a projection similar to the transformation performed in the ETKF.

As its name suggests, the MLEF optimal state estimate corresponds to the maximum of the posterior
PDF (Zupanski et al., 2008). The MLEF thus differs from the methods we have seen so far that are
focused on variance reduction (note that both state estimates should be strictly equivalent in the linear
Gaussian case). While other ensemble methods provide the state estimate in a single iteration, the
MLEF integrates an inner iterative minimization loop inside of its algorithm, which requires using a
local-optimization method. While this methodology was not tested in the frame of this thesis work, the
iterative nature of the MLEF makes it appealing to solve non-linear problems such as FWI.

The MLEF starts with defining a state vector m0, which represents the initial condition of the DA
application. As with previous cases, this state vector lies in the state space Rn and is associated to an
ensemble of initial perturbation pi0, i = 1, ..., Ne spanning the ensemble subspace S. Zupanski (2005)
define these perturbations as the square-root error covariance, which is an n×Ne matrix, and makes it
in essence, very similar to the ensemble perturbation matrix M previously defined. From here, the initial
ensemble is given by

m
(i)
0 = m0 + p

(i)
0 , i = 1, ..., Ne (2.88)

In a similar fashion than other deterministic EnKFs, the goal of the analysis is to evaluate the square
root (Pa)1/2, by computing pa(i), i = 1, ..., Ne. The forecast of the MLEF is expressed as

pfk+1

(i)
= F(ma

k
(i))−F(ma

k) = F(ma
k + pak

(i))−F(ma
k), (2.89)

which ultimately corresponds to the forecast of a perturbated ensemble, to which we subtract the forecast
state vector F(ma

k): the forecast is only about projecting the ensemble of perturbations. Once the
forecast is obtained, the goal of the analysis focuses on maximizing the posterior’s likelihood. As with
the ETKF, this is done by minimizing the BLUE cost function. From now on, we drop the time index for
readability.

C(m) =
1

2
(yo −H(m))TR−1(yo −H(m)) +

1

2
(m−mf )T (P f )−1(m−mf ) (2.90)

where mf is the forecasted state vector, and Pf = (Pf )1/2[(Pf )1/2]T . The covariance square root
(Pf )1/2 appears to be at best of rank Ne− 1 and therefore a basis reduction strategy can be used to apply
the MLEF. The state estimate update ∆ma is defined as

∆ma = ma −mf (2.91)

and lie in the ensemble subspace S ∈ RNe , which is defined by the column space of Pf 1/2 =

{pf (1), pf (2), . . . , pf (Ne)}. The analysis can be expressed as a linear combination between the forecast
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perturbations and a coefficient vector w ∈ S and thus the state estimate update is expressed as

∆ma = w1p
f (1) + w2p

f (2), . . . , wNep
f (Ne)

. = Pf 1/2w (2.92)

The covariance square-root act as a projection operator (similar to the ETKF) from the ensemble subspace
back to the state space. The cost function increment is given by

∆C(m) = C(m+ ∆m)− C(m) (2.93)

for ∆m ∈ S, and since minimizing ∆C(m) is equivalent to minimizing C(m) (Zupanski et al., 2008)
the cost function can be expressed as

C(m+ ∆m) = C(m) + (∆m)T (Pf )−1(m−mf )

− [H(m+ ∆m)−H(m)]T R−1 [yo −H(m)]

+
1

2
(∆m)T (Pf )−1(∆m)

+
1

2
[H(m+ ∆m)−H(m)]T R−1 [H(m+ ∆m)−H(m)] ,

(2.94)

and for a differentiable observation operator, we can write

C(m+ ∆m) = C(m) + (∆m)T (Pf )−1(m−mf )

− (∆m)T
[
∂H

∂m

]T
R−1 [yo −H(m)]

+
1

2
(∆m)T (Pf )−1(∆m)

+ (∆m)T
[
∂H

∂m

]T
R−1

[
∂H

∂m

]
(∆m)

+O(‖∆m‖3),

(2.95)

which is equivalent to the second order Taylor’s expansion of C(m) in the vicinity of m (Zupanski et al.,
2008). From there, it is possible to define Z , a non-linear ananlog to the ETKF observation perturbation
matrix Y, by defining

Z(m) =
[
z1(m), z2(m), . . . , zNe(m)

]
zi = R−1/2

[
H(m+ p(i))−H(m)

]
,

(2.96)

from which we can define the gradient and Hessian of C(m)

∇C(m) = (Pf )−1/2(m−mf )− [Z(m)]TR−1/2(y −H(m)) (2.97)

∇2C(m) = INe + [Z(m)]TZ(m), (2.98)

where the gradient is a Ne dimensional vector and the Hessian is a Ne ×Ne matrix, as the minimization
is carried in the ensemble subspace. In Zupanski et al. (2008), the authors demonstrate that their
formulation of the analysis can be expressed as a generalization of the Conjugate-Gradient and the BFGS
optimization methods, with the added benefit of not requiring explicitly differentiable operators. The
final step of the MLEF is to update the ensemble perturbations such that

(Pa)1/2 = (Pf )1/2
[
INe + [Z(ma)]TZ(ma)

]−1/2
, (2.99)
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which satisfies
Pa = (Pf )1/2

[
INe + [Z(ma)]TZ(ma)

]−1
(Pf )T/2. (2.100)

The MLEF analysis is very similar to what we had derived for the ETKF equations, except that it
allows considering a non-linear observation operator. With minor modification to the misfit function,
Fletcher and Zupanski (2006) also showed that the MLEF could handle log-normal PDFs, which makes
it work even in non-Gaussian context (though it is unable to tackle multimodal PDFs).

While the MLEF has proven to be a great candidate for NWP applications (Carrassi et al., 2008), its
implementation complexity made it less attractive than the ETKF, for the prospective work we ought to
perform in this thesis work. Nonetheless, I believe that this method, which makes a clear bridge between
statistical DA methods and iterative local optimization approaches, is a good indicator that both DA and
FWI methodologies can be bridged together to produce more robust FWI tools. The MLEF ability to
perform well under non-linear regimes while delivering a systematic uncertainty quantification would be
highly desirable for FWI applications.

Before moving on to the next section, I would like to briefly introduce the work of Iglesias et al.
(2013a), which seems to have stayed under the radar of the DA community. While I have not found the
time to play with their ideas, their work has grasped my attention, as it constitutes a true missing link
between statistical DA and optimization: the Ensemble Kalman Inverse (EKI).

2.2.6 Ensemble Kalman Inverse

The main idea underlying the EKI is to use the EnKF formalism, and adapt it as an iterative minimiza-
tion method, that share the same kind of restrictions than local optimization methods. Recalling the
fundamental inverse problem introduced in Chapter 1, the EKI ought to find the model parameters m
from a set of observations yo, related by

yo = H(m) + ε, (2.101)

where, as in Chapter 1,H : Rn → Rd is the forward map from the state space to the measurement space
(equivalent to the model and data space from our early definition of inverse problems) and ε ∼ N (0,R)
is a random noise vector with ε ∈ Rd. As the solution of the inverse problem is sought within the EnKF
framework, they consider a regularized problem with the misfit function under the form of

C(m) =
1

2
(yo −H(m))TR−1(yo −H(m)) +

1

2
(m− m̄)TP−1prior(m− m̄), (2.102)

where the second term is a regularization term introducing prior information on m. The effect of this
regularisation is to introduce a finite-dimensional subset A in which the solution of the inverse problem
is sought (Iglesias et al., 2013a). The EKI is able to solve both dynamic and static inverse problems but
for the sake of simplicity and to keep notations concise, I will focus only in the static case, where there
is only one instance of dobs.

To perform the minimization, the EKI requires to augment the space, in order to create an artificial
dynamic system on which the EKI evolves. This state augmentation resembles the joint sate-observation
space that is considered in the Ensemble Adjustment Filter of Anderson (2001). The extended space is
defined as Rn+d along with the artificial dynamics mapping Υ : Rn+d → Rn+d as

Υ(z) =

(
m
H(m)

)
for z =

(
m
y

)
. (2.103)
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where z is the augmented vector of length n + d containing both the state parameters m and the
observations y. The artificial dynamics of the EKI is defined as

zk = Υ(zk−1), (2.104)

and the observation related to the artificial dynamics are as follows

yk = O(zk) + εk (2.105)

where O : Rn+d → Rd is defined as a projection operator such that O = (O, Id) with Id being an
Identity matrix of size d, and εk ∼ N (0,R).

At each iteration of the EKI, an ensemble of models spanning the subspace A are updated by
combining the artificial dynamics, and a perturbated version of the single observation via the EnKF
analysis equation. Perturbed observations are used to drive the search for the solution inside of A as it
allows to ”move around” the subspace. From the extended state vector, the state estimate is given by

m̄k =
1

Ne

Ne∑
i=1

m
(i)
k =

1

Ne

Ne∑
i=1

O⊥z
(i)
k . (2.106)

where O⊥ : Rn+d → Rn is the reciprocal projection operator mapping the extended space back to
the state space and is given by O⊥ = (In, 0). Finally, given an ensemble of size Ne, each iteration of
minimization is given as

Forecast

zfk = Υ(zak−1)

z̄fk =
1

Ne

Ne∑
i=1

zfk
(i)

Pf
k =

1

Ne − 1
(zfk − z̄

f
k )(zfk − z̄

f
k )T ,

Analysis

Kk = Pf
kH

T (HPf
kH

T + R)−1

zak
(i) = zfk

(i)
+ Kk

[
y
(i)
k −O(zfk

(i)
)

]
,

(2.107)

where y(i)k are instances of randomly perturbated observation generated y(i)k = yo + ε
(i)
k . Once the

iteration is performed, the state estimate is computed according to equation (2.106), to check if the
convergence criterion has been met. Once this optimization step has been performed, the Euclidean
distance ‖yo −H(m̄a

k)‖
2 should be reduced. The proposition in Iglesias et al. (2013a) is then followed

by several demonstrations that show

• The solution to the EKI is strictly equivalent to the least-squares problem’ solution under linear
and Gaussian assumptions.

• The EKI is a derivative-free, iterative minimization technique.

• The EKI is able to tackle non-linear inverse problems.
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Note that the original paper did not thoroughly investigate the EKI capacities in terms of uncertainty
estimation. It seems, however, that despite being able to yield an accurate state estimate, the uncertainty
estimation is biased, as the ensemble members steadily collapse toward the solution in the misfit space,
losing statistical information (Iglesias et al., 2013b; Chada et al., 2018). Nonetheless, as with the MLEF,
I believe this type of method requires careful investigation, as it may be a solution to FWI lack of
systematic uncertainty estimation methods.

In this section, I have mainly talked about the advantages of ensemble Kalman filtering methods
and focused on their theoretical foundations to underline the characteristics they share with numerical
optimization. It is now due time to discuss their limiting factors and drawbacks.

2.3 Limits of EnKF methods

The statistical DA tools that we have presented up to now are all variants or generalization of the BLUE
to specific problems. While the KF generalizes the BLUE for linear dynamical problems, the ensemble
methods introduce a generalization for large scale problems, yielding an exact solution for the linear
Gaussian case. They also allow for weakly non-linear forecast and observation operators, but in this case,
their state estimate is no-longer optimal and does not yield the BLUE solution (Le Gland et al., 2009).

As they are all tied to the BLUE, these tools are strictly limited, in theory, to Gaussian forecast and
measurement errors. In that sense, they are bound to explore a subspace A of the solution space Ω, the
same way local optimization methods are limited by quadratic assumptions(see Chapter 1). Hence, the
first significant limitation of EnKFs is that they are not fit to quantify uncertainty in the non-Gaussian
case (though their success in NWP would tend to advocate otherwise). Despite their intrinsic statistical
nature, ensemble DA methods are closer to local optimization approaches than from global optimization
methods.

The second limitation of ensemble methods lies in their low-rank approximations. While the
ensemble representation is very advantageous to carry computations over the ensemble subspace, small
ensembles are bound to generate errors and biases in EnKF applications. When an ensemble is too small
to represent the system in a statistically meaningful manner, we say it is affected by undersampling.

2.3.1 Undersampling characterization

One of the primary challenges of any ensemble DA method is to ensure that the ensemble stays
statistically meaningful over cycles while Ne � n. In that context, maintaining a representative
ensemble becomes challenging, and the filter might be affected by undersampling (Guzzi, 2015).

I have stated earlier that the forecast error was generally poorly known, and therefore is often
neglected in practical applications. This causes a general tendency to underestimate the forecast error in
DA systems, and this problem is exacerbated when the ensemble is too small (Furrer and Bengtsson,
2007). Indeed, while the forecast errors are underestimated cycle after cycle, artificial confidence is
placed in the forecast. Moreover, because the Kalman gain is given as a ratio of forecast error over
measurement error, this tends to severely bias the filter. This overconfidence in the forecast means that
the observations are neglected during the analysis, and the analysis update is likely not to represent the
system accurately. Undersampling is also responsible for spurious correlation terms appearing in the
off-diagonal terms of the covariance matrix as can be seen in Figure 2.6.
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Figure 2.6: Numerical example of undersampling. The first two panels are Gaussian covariances
estimated with respectively Ne = 30 and Ne = 200, for a problem with n = 200. The true covariance
is shown in the third panel for reference. In this case, undersampling is responsible for spurious terms
appearing on both diagonal and off-diagonal terms. Note that even with Ne = n the sampling is not
adequate to perfectly approximate the true covariance.

The obvious solution to solve the undersampling issue in EnKF approaches would be to increase
significantly the number of ensemble members, which is more often than not computationally impossible.
Unfortunately, as long as Ne � n, which is typically the case in ensemble filtering, ensembles are bound
to be undersampled, which in turns can cause three types of problems. These three common problems of
ensemble filtering are known as filter divergence, inbreeding, and spurious distant correlations.

2.3.2 Inbreeding

Inbreeding was first introduced by Houtekamer and Mitchel (1998) and describes an undersampling bias
associated with variance underestimation. Inbreeding often refers to the occurrences where the analysis
error covariance is underestimated during the analysis update. As mentioned previously, this is mostly
due to the underestimation of forecast error. By definition, the analysis error covariance should always
be smaller than the forecast error covariance (as it is given by Pa

e = (I −KH)Pf
e ) which becomes

problematic as it can be underestimated (Furrer and Bengtsson, 2007). Step after step, the forecast and
analysis error covariances are then reduced, which can result in the ensemble collapsing and losing all
statistical meaningfulness.

The subsequent imbalance caused by inbreeding will skew the analysis in favor of the forecast, as
forecast uncertainty get reduced, causing artificial overconfidence in the forecast step.

Inbreeding occurs when the ensemble subspace does not span the model subspace adequately to
represent the state estimation errors (Petrie, 2008). The smaller the ensemble is, the smaller its subspace
will be, which increases the chances of misrepresenting the system state. Another source of inbreeding
is found in EnKF formulations that perturb the analyzed observations (such as Evensen (1994) original
formulation). The sampling error caused by these perturbed observations increases the odds of inbreeding
in stochastic EnKFs (Whitaker and Hamill, 2002). For this reason, the choice of deterministic EnKFs
over the stochastic EnKF can be justified, as this rules-out one of the sources of inbreeding. In DA,
inbreeding is known to be responsible for filter divergence (Houtekamer and Mitchel, 1998).
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Figure 2.7: Numerical example of filter divergence on a 1-D KF. In this case, the filter divergence is
the result of overconfidence in the forecast. This overconfidence results in a cutback of the analysis
update, and observations are almost ignored. In this example, I purposely underestimated the process
noise matrix Q to demonstrate how it can affect the filter. In the case of the EnKF, this overconfidence
could come from inbreeding.

2.3.3 Filter divergence

As Lorenz (1963) demonstrated in his publication titled ”Deterministic Nonperiodic Flow,” which
introduced his famous attractor, small changes of initial conditions in a dynamic system model can lead
to instability of the solution. Therefore, when the analysis is strongly biased by inbreeding (or other
sources of error such as numerical rounding errors), the analysis state might be disconnected with real
system state. Subsequently, the filter becomes overconfident in an incorrect state estimate and becomes
unable to correct it with observations: the EnKF is reduced to a succession of model forecasts, that are
likely to diverge farther from the truth at each cycle. This is especially true for a chaotic dynamic model
such as the atmospheric models used in NWP.

While inbreeding is one of the primary sources of filter divergence, Hamill et al. (2001) suggested
that both variance underestimation and strong cross-covariance terms (off-diagonal of Pf

e ) could lead to
filter divergence. It also has been shown that biases in forecast error covariance tend to reduce the spread
of the ensemble after the analysis (van Leeuwen, 1999; Furrer and Bengtsson, 2007; Crystalng et al.,
2011). Note that, as filter divergence denotes a filter’s inability to produce meaningful state estimates, the
KF can also be subjected to divergence (Figure 2.7). This can happen when studying non-linear systems,
or when the forecast covariance matrix Pf has a high-condition number (Houtekamer and Zhang, 2016).

2.3.4 Spurious Correlation

The last type of bias that can be introduced by undersampling is known as spurious distant correlations.
We have shown an effect of this type of artifact in Figure 2.6, that arise because of sampling errors. The
correlations are said to be spurious when the forecast cross-covariance terms relate two parameters, while
we know there is no physical relationship between them, or while they are apart a significant distance.
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An example of such spurious correlation in NWP would be the forecast covariance linking together the
pressure field in Brazil, with temperature evolution in Tokyo (which are likely to be unrelated due to
their distance).

Spurious correlations are also defined as unphysical updates during the analysis, driven by long-
distance observations, or between variables that are known to be uncorrelated or decoupled (Anderson and
Anderson, 1999; Evensen, 2009; Petrie and Dance, 2010). Due to spurious correlations, any observation
has the potential to detrimentally impact state variables that are remote from the measurement point in
the state space. Typically, that problem arises when the spurious correlations in the forecast covariance
estimate are more significant than the true correlation links between the state parameters (Hamill
et al., 2001). Hamill et al. (2001) also show the apparent relation between ensemble size and spurious
correlations, as larger ensemble exhibit less sensitivity to sampling noise, and therefore are less impacted
by spurious correlation terms (see Figure 2.6). Sampling theory indicates that the spurious noise in Pf

e

(and Pa
e) is proportional to 1/Ne, which tends to indicate that adding ensemble members should quickly

mitigate the spurious correlation problem, and is consistent with Hamill et al. (2000)’s observations: as
with inbreeding, the effect of spurious correlations is strongly dependent on the size of the ensemble.

Because of their potential severe effects on ensemble analysis, spurious correlations and inbreeding
have been a hot topic of research since the advent of ensemble methods in DA, in an attempt to prevent
filter divergence in practical applications.

2.3.5 Solutions to undersampling

I introduced in this section, the two primary sources of filter divergence, which are inbreeding and
spurious distant correlations. These two biases have a very different effect on the state representation
and therefore call for different methods of mitigation.

Covariance inflation

As mentioned previously, inbreeding takes its origin in underestimation of covariance error in the
forecast, which then results in overconfidence in the forecast state. In order to mitigate inbreeding, one
can artificially increase the forecast error, to account for its almost certain underestimation. This method,
called covariance inflation, was introduced by Anderson and Anderson (1999). This technique artificially
”inflate” the forecast deviation to the mean (the distance between each ensemble members, encapsulated
in Mf ), by multiplying the forecast covariance with a constant factor r, slightly larger than 1.0. The
inflated perturbation matrix Mf

i is given by

Mf
i = r(mf − m̄f ), (2.108)

and thus the inflated ensemble, used in the analysis becomes

mf
i = m̄f + Mf

i . (2.109)

Note that for the ETKF, the multiplicative inflation can be conveniently implemented by modifying the
formulation of P̃a as

P̃a = TTT =

[
(Ne − 1)

r2
INe + (Yf )TR−1Yf

]−1
. (2.110)
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This formulation differs from the EnKF inflation, as the ensemble is inflated in the space spanned by the
observation perturbation matrix Yf . It also has the advantage of having a computational complexity in
O(Ne) rather than in O(n×Ne).

The value of r is usually chosen empirically or by trial and error: its optimal value is highly dependent
on the size of the ensemble (Hamill et al., 2000). While the optimal value cannot be expressed analytically,
the recommendations in the literature are calling for values between 1% and 7% inflation (Hamill et al.,
2000; Anderson, 2001; Whitaker and Hamill, 2002), with r varying depending on the implementation
of EnKF (Evensen’s formulation, the EnSRFs or other deterministic ensemble filters). Whitaker and
Hamill (2002)’ study also indicates that the choice of r might be highly dependent on the nature of the
dynamic forecast operator: some dynamical systems might be more sensitive to the accumulation of
errors, while some might have long error decay with time. Note also that a few methodologies have
proposed to tune the inflation parameter based on maximum likelihood estimation (Miyoshi, 2011a) or
based on Desrozier’s diagnostic (Desroziers et al., 2005; Li et al., 2009). A long-standing history of
applying multiplicative inflation factors to EnKF can be found in the literature (Anderson and Anderson,
1999; Hamill et al., 2001; Whitaker and Hamill, 2002; Oke et al., 2007; Anderson, 2007, 2009; Li et al.,
2009; Miyoshi, 2011a; Bocquet and Sakov, 2012).

Despite being the most prevalent method in the literature, multiplicative inflation is not the only
strategy available to deal with inbreeding. Instead of inflating the ensemble by a constant factor, it is
also possible to add additive-noise either before or after the analysis such that each ensemble members
become

mf (i) ← mf (i) + d(i). (2.111)

where d(i) are random vectors chosen so that d(i) ∼ N (0,D), with D being an approximation of the
process noise matrix Q, and← denotes the value replacement. More details are given in Mitchell and
Houtekamer (2000), and examples of applications can be found in Houtekamer et al. (2005); Hamill and
Whitaker (2005); Houtekamer and Mitchell (2005); Hamill and Whitaker (2011).

Both additive and multiplicative inflation have been implemented together as a ”hybrid” inflation
scheme by Zhang et al. (2004); Whitaker and Hamill (2012), where the ensemble is inflated following

Ma ← (1− r)Ma + rMf

or

σa ← (1− r)σa + rσf
(2.112)

where σa is the analysis ensemble standard-deviation, and σf is the forecast ensemble standard-deviation.
Note that in these hybrid inflation methods, the inflation is carried over the analysis ensemble rather
than on the forecast ensemble. A more extensive review of covariance inflation can be found in Luo
and Hoteit (2013), where the authors list a few more methodologies, having a different philosophy than
additive and multiplicative inflation methods that do not seems to be adopted to the same extent. While
covariance inflation methodologies tend to increase the stability of ensemble filtering methods, they do
not provide a solution to the second undersampling bias. To correct for spurious distant correlations, one
has to rely on localization methods.

Localization methods

Localization is a way to cut-off distant spurious correlation in the ensemble forecast covariance, according
to a specific state-space cut-off distance. This method allows considering smaller ensembles, even though
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we know undersampling will introduce strong spurious cross-covariance terms in the ensemble estimate
of Pf . The purpose of localization is to mask-out any unwanted distant-correlation terms in the forecast
covariance with either a taper function centered around the diagonal (covariance localization - CL), or
by excluding remote data from the parameter that is being updated during the analysis (local analysis -
LA). Instead of muting explicitly off-diagonal terms of the covariance matrix, the local analysis approach
implies that the analysis step is conducted sequentially, one state parameter at a time, accounting
exclusively for a few selected neighboring data. While these two approaches tackle the localization
problem very differently, Sakov and Bertino (2011) showed that both yield comparable results on ”weak”
assimilation (when R is sufficiently high, and the analysis variance reduction is not too drastic, i.e.,
when the system is far from optimality). The choice between CL and LA is much more a question of
scalability and ease of implementation rather than a question of performances, as both methods should
be equivalent in practical applications.

It has to be noted that, while both forms of localization can reduce the spatial domain of influence of
observation during the analysis, they only make sense if the observations are local. This is the case of
in-situ measurement (that are attributed to a certain point of the state space, or rather a group of points of
the state space). Non-local observation such as radiative transfer data (or waveform data in the context
of FWI) cannot benefit from localization, as they are often measured at the boundary of the state space:
a large chunk potentially influences them (if not all) of the state space and a ”localization distance” does
not make sense in this context.

Covariance localization

Introduced by Houtekamer and Mitchel (1998); Hamill et al. (2000); Whitaker and Hamill (2002), the
covariance localization method (also known as covariance filtering) ought to mask-out off-diagonal
correlation terms (that can be spurious or not) by taking its Hadamard product (Horn and Johnson, 2012)
with a local-support correlation matrix ρ (Fig 2.8). The filtered covariance is given by

Pl = ρ ◦Pe, (2.113)

where ◦ denotes the Hadamard product (an element-wise product between two matrices), and the
subscript l denotes the localized nature of the matrix. The correlation matrix is defined as a band of
non-zero values centered on the leading diagonal. The correlation coefficients are set to 1 at the diagonal,
and the coefficient values decay to 0 at a given distance of the diagonal (Petrie and Dance, 2010).

This correlation matrix is often built on the Gaspari-Cohn function (Gaspari and Cohn, 1999) which
is a 5th order piecewise rational function such that each line of ρ is given by

ρ(i) =
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(2.114)

where z is the euclidean distance between two state parameters or between an observation point and a state
parameter location, and c is the length scale defined as the localization radius (or filtering length scale).
It is defined such that when z > 2c the correlation terms vanish, and is problem-dependent. Equation
(2.114) yields a positive semidefinite matrix that conveniently approximates a Gaussian function, but
falls at zero at a finite distance.
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Figure 2.8: Numerical example of covariance localization over an ensemble covariance matrix Pe with
Ne = 30 (first panel). The localization is performed in the second panel, where a localization operator
ρ is applied directly to the ensemble covariance matrix through Hadamard’s product. The localization
operator is generally defined as a matrix containing correlation functions with local support centered
around the diagonal. In our ideal case, ρ was set to be a Gaussian function which decay corresponds to
the true covariance matrix P (third panel).

Implementation wise, the Hadamard product is generally carried over the Kalman gain computation
such that the localized Kalman gain Kl is given by

Kl =
[
(ρ ◦Pf

e )HT
] [

H(ρ ◦Pf
e )HT + R

]−1
. (2.115)

Given that ρ has a regular structure and when the observation operator H is linear, it is much more
efficient to consider the localized Kalman gain as

Kl =
[
ρ ◦ (Pf

eH
T )
] [
ρ ◦ (HPf

eH
T ) + R

]−1
, (2.116)

which is how Houtekamer and Mitchell (2001) chose to implement the Hadamard product.

The choice of the filtering length scale is particularly important in ensuring the stability of the
filter. While the spurious correlation should be tapered-out of the covariance matrix, the true physical
correlations of the system must be preserved. If the filtering length scale is too long, the localization will
do a poor job at removing unwanted terms, and spurious correlation will remain in the covariance matrix.
On the other hand, if the filtering length scale is set too short, meaningful correlation information might
be removed from the system and not accounted for during the analysis. Defining the optimal length scale
is, unfortunately, mostly based on trial and error.

Additionally, performing the localization through the Hadamard product has the benefit of increasing
the rank of the covariance (Hamill et al., 2001; Oke et al., 2007), which increases the number of directions
spanned by the ensemble subspace beyond Ne − 1. By increasing the effective ensemble size, it is
expected that the analysis will yield better results (Oke et al., 2007). Finally reducing most entries of
Pf
e to zeros also results in making the covariance matrix highly sparse, which allows the use of sparse

matrix solvers and increase the computational efficiency of the analysis step (Lorenc, 2003).

However, this localization technique is formulated with explicit covariance matrices manipulations
and therefore is not appliable to schemes such as the ETKF, where manipulations of matrices square
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Figure 2.9: Effect of the Local Analysis on the ensemble covariance matrix. The ith line of the localized
covariance matrix is equivalent to the taper function applied to the ensemble covariance Pe.

roots are preferred. While Petrie (2008); Petrie and Dance (2010) have attempted to formulate an
approximation of the Hadamard product for the ETKF by expressing the localization as

ρρT ◦Pe = ρρT ◦ 1

Ne − 1
MMT ≈ 1

Ne − 1
(ρ ◦M)(ρ ◦M)T , (2.117)

this approximation has proven to yield poor results. To this day, no one has been able to express the
localization of the ETKF in terms of the Hadamard product.

2.3.5.1 Local analysis

LA is the second prevalent method in localization and has been introduced by Evensen (2003); Anderson
(2003); Ott et al. (2004). It relies on performing the analysis sequentially, one state parameter at a
time, by selecting only neighboring observation points around the analyzed parameter (Fig. 2.9). The
advantage of LA is that it is not scheme-dependent as CL, and has been implemented in the ETKF (Ott
et al., 2004; Harlim and Hunt, 2005; Hunt et al., 2007), which has been granted the name LETKF by
Hunt et al. (2007) for ”Local” ETKF.

The analysis of the LEKTF is based on the equations of the regular ETKF, except that yo, ȳf and
Yf are truncated to include observation in a local region around a grid point, while m̄f and Mf are
truncated to include only the neighboring parameters. Harlim and Hunt (2005) underline the importance
of the consistency between analyzed parameters and recommend that physically close state parameters
should be analyzed with a similar set of observations. If measurements are dense over the state-space,
observations for each state parameters should overlap sufficiently to ensure a consistent analysis: it
should not introduce discontinuities in the analysis state estimate. To further ensure smoothness of the
analysis state, the effect of observations over the state-space is tapered, enforcing a decay to zero as the
distance from the observation point grows. Hunt et al. (2007) remarked that this could be achieved by
applying a correlation function to the inverse of the measurement noise matrix such that

R−1l = ρ ◦R−1. (2.118)

This has the effect of smoothly increasing the uncertainty over the local region defined by the function ρ
until the uncertainty is set to infinity over a certain distance (from which there is no effect during the
analysis).
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As with the inflation parameters, localization (be it CL or LA) still requires manual tuning, and its
effects on EnKFs optimality have often been neglected in practical applications (Sakov and Bertino,
2011). Nonetheless, localization is now commonly used at an operational level in NWP and is still an
active topic of research (Bocquet, 2016; Bishop et al., 2017; Bocquet and Farchi, 2019), with an emphasis
on localizing remote sensing observations, that are inherently non-local. Though the perspective of
applying localization on non-local observations is an exciting prospect, it is difficult to say if these
methods will have uses outside of the NWP and atmospheric sciences fields.

Conclusion

In this chapter, I gave an overview of the popular statistical DA methods. I introduced the theory from
the ground-up, and the EnKF and some of its interesting variants were discussed. Apart from practicality
issues (undersampling mitigations), most of this chapter has been focused on the BLUE and variational
forms of the EnKFs: we have seen that when the conditions are right, these methods’ analysis yield the
solution to an inverse problem in which we try to reduce the least-squares distance between observed
and forecast data.

The purpose of this chapter was both to introduce DA theory, and to underline the connexions
between DA and local optimization methods. Now that these connexions have been shown, we have
some reasons to believe that ensemble DA methods are an adapted option to bring systematic uncertainty
estimation in geophysical imaging, and particularly to FWI applications. In the next chapter, I will
evaluate the possibilities that we have established to pair DA and FWI. This includes the various options
to define the model and observation spaces, but also in defining the forecasting operator for a tomographic
(and therefore static) problem, or on the type of sequential approaches that can be set-up to ensure the
stability of such a mixed tool. As when building a KF for a specific problem, we will see there are many
filter parameterization that might be adequate to solve our problem.
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Combining DA and FWI
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With the introduction of both FWI and DA’s theories and the apparent links between the two
frameworks (united by the BLUE formulation), we can introduce possible ways of combining DA an
FWI to produce uncertainty estimation. While I have presented some of the most popular DA tools
in Chapter 2, I wish to keep the DA parameterization general: once the problem has been formulated
(by defining the state vector, the observations, the dynamical and observations operators), the means of
solving the problem are interchangeable.

Following these DA parameterization propositions, I will review the practical implementation of
the ETKF coupled with FWI, and discuss the importance of the initial ensemble building within this
formulation.

Notations

In this chapter, we re-consider the FWI tomographic problem and re-introduce the following notations:

• n is the number of degrees of freedom (or model parameters), d is the length of the observation
vector, and l is the number of gridpoints on which the forward modeling is discretized.

• m ∈ Rn is the subsurface model with n parameters. Note that n does not necessarily denote the
number l of modeling gridpoints.

• dobs ∈ Rd is the vector containing the observed data used in the FWI optimization problem.
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• dcal ∈ Rd is the vector containing the synthetic data used in the FWI optimization problem.

• u ∈ Rl is a vector containing the propagating wavefield, obtained by solving the wave equation
for the model m. Note that in the frequency domain, u ∈ Cl instead.

• M : Rn → Rl (M : Rn → Cl for the frequency domain equivalent) is a generic non-linear
forward problem operator (withM for modeling). Given a source term s, it allows to express and
compute the wavefield as u =M−1(m)s.

• H : Rn → Rd (H : Rn → Cd for the frequency domain equivalent) is the FWI forward problem
operator defined in equation (1.2). WhileM yields the wavefield in the entire domain,H gives
synthetic seismograms at receiver location such thatH(m) = dcal(m).

• E : Rl → Rd (E : Cl → Cd for the frequency domain case) is the linear extraction operator that
gives dcal = Eu, by extracting the values of the wavefield at the receiver locations.

• Ii : Rn → Rn is the FWI non-linear operator. Applied to the model mk−1, this opperator yields
Ii(mk−1, dobs,k) = mk where mk is the optimized model after i non-linear inversion iterations.

3.1 Proposition 1 - A dynamic formulation

Earlier in Chapter 2, we saw that DA was designed to study the evolution of dynamic systems, by
generalizing the BLUE to time-dependent problems. This property of DA could prevent us from applying
its framework to FWI, as tomographic imaging is a ”static” problem: from a collection of recorded
seismic data, the subsurface image is built, without any kind of time-dependency. Even though there are
special cases (georessource pumping sites, geothermal plants, or active seismic faults), in which physical
properties can change within a short timespan, these changes in medium properties are generally not fast
enough to consider the construction of a tomographic image as a time-dependent problem.

For this reason, we may instead parameterize our DA system based on the dynamic part of the
FWI workflow: the wavefield propagation in the medium. Because the wavefield’s propagation in
the subsurface is formulated as a time-dependent problem (when considering the time-domain wave
equation), we can define a DA problem centered on forecasting the wavefield evolution through time.
Doing so, we may consider the following parameterization:

• The state vector u ∈ Rl, contains the wavefield at a given timestep, discretized over l gridpoints.

• yo = dobs ∈ Rd. Most of the time, the only observations available in FWI are wavefield data,
which defines our data assimilation observation vector.

• H = E. The linear observation operator corresponds to the extraction operator, responsible for
extracting the values of the wavefield at the receiver locations.

• The forecast is defined as F(u) =M−1(m)s, corresponding to a step of the numerical integration
scheme that compute the wavefield’s propagation given the model m.

This way, the forecast step corresponds to propagating the wavefield from a timestep to the next: it
tries to ”predict” the true wavefield from the current subsurface model. The predicted wavefield would
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then be corrected during the analysis, from the discrepancies between the observation vector and the
forecasted wavefield uf .

The associated misfit functional in terms of the BLUE is given by

C(u) =
1

2
(yo −Hu)TR−1(yo −Hu) +

1

2
(u− uf )T (Pf )−1(u− uf ). (3.1)

which is equivalent to solving the following minimization problem

C(u) = min
u

1

2
‖yo −Hu‖2 +

1

2

∥∥∥u− uf∥∥∥2. (3.2)

The analysis would yield an ”optimal” wavefield, lying in between dcal and dobs. Note that even
though the forecast uncertainty Pf is closely tied to the model uncertainty (as the wavefield is pa-
rameterized by the medium’s properties), this connection would be hard to establish. Therefore, this
formulation solely allows estimating the wavefield’s uncertainty and would be unable to inform us about
the subsurface model parameters and uncertainties.

This ”time dependent” DA-FWI formulation does not match with our goal of providing uncertainty
estimation on the tomographic images.

3.2 Proposition 2 - Extending the state-space: The WRI analog

To obtain information on the subsurface model m, a solution might be to consider an augmented state-
space, containing both the wavefield and subsurface model. This formulation is conceptually very close
to the Wavefield Reconstruction Inversion (WRI, van Leeuwen and Herrmann, 2013), from the FWI
literature. WRI is an original take on the FWI problem, which tries to find a wavefield that minimizes
the least-squares misfit for both the observed data and the forward operator F parameterized by the
subsurface model (the wave equation is an added constraint to the minimization problem).

We can, therefore, formulate the DA-FWI problem as

• z =

[
m
u

]
, with z ∈ Rn+l, is the joint model-wavefield state space.

• yo = dobs

• H =

[
0 0
0 E

]
, with H : Rn+l → Rd The observation operator extracts values of the wavefield at

receiver locations.

• F(z) =

[
Im 0
0 M−1(m)s

]
, with F : Rn+l → Rn+l where the forecast operator is also a step of

the numerical integration scheme that compute the wavefield’s propagation given the model m
and Im is the Identity.

This formulation is equivalent to solving the following minimization problem

C(z) = min
z

1

2
‖yo −Hz‖2 +

1

2

∥∥∥z − zf∥∥∥2. (3.3)
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This time, we ought to find the augmented state-vector that minimize the data misfit, while accounting
for a prior regularization term (expressed as a function of the extended space z). Thanks to the extended
space, the uncertainty estimation would be given both in terms of model uncertainty and wavefield
uncertainty. This would also allow accounting for the cross-covariance terms between the model and the
physical field (how the variations in the model result in variation in the wavefield, and vice-versa).

While this proposition is certainly more advantageous than the previous one in terms of uncertainty
characterization, it might face challenges in regards of the optimization side of things: if the initial model
m0 is too far from the true model (in the least-squares sense), the non-linearities of the FWI cost function
might prevent to reach the global minimum of the cost function with this parameterization. However,
iterative DA methods such that the MLEF (2.2.5) might alleviate the sensitivity to non-linearities.

3.3 Proposition 3 - Extending the state-space: The EKI analog

Instead of a regularization based on the entire wavefield, we could also derive a variant of the previous
scheme based on the observables. We can express the DA problem as follows,

• z =

[
m
dcal

]
, with z ∈ Rn+d, is the joint model-wavefield state space.

• F(z) =

[
Im 0
0 H(m)

]
, with F : Rn+d → Rn+d where the forecast operator plays a role similar

to the artificial dynamics in the EKI and computes synthetic observations from the model m.

• yo = dobs

• H =

[
0 0
0 Id

]
, with H : Rn+d → Rd and Id is the identity matrix with d entries.

This formulation comes-down to solving the following minimization problem

C(z) = min
z

1

2
‖yo −Hz‖2 +

1

2

∥∥∥z − zf∥∥∥2, (3.4)

which is almost equivalent to Proposition 2, albeit the difference in observation operator.

The interest of this formulation is that it corresponds precisely to the EKI (as presented in 2.2.6).
The forward operator would be used to generate the artificial dynamics, and by considering perturbed
observations, we could perform the EKI iterative minimization scheme. Formulating a DA problem this
way should allow investigating the solution space thanks to the ensemble of perturbed observations while
benefiting from the iterative nature of the EKI. However, the convergence rate and the sensitivity toward
non-linear regimes of this method have yet to be tested.

3.4 Proposition 4 - Extending the state-space: adding adjoint

While I focused on adjoint-free parameterization so far, it is possible to formulate the problem to
benefit from conventional FWI adjoint formulation. This should, in theory, yield better results in
terms of optimization, as the FWI adjoint-based optimization would ensure fast convergence rates,
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and stability. Moreover, using quasi-Newton methods within the DA scheme would allow us to use
Hessian-preconditioning to retrieve better-optimized models.

To stay in the extended space paradigm, we consider the following DA-FWI formulation

• z =

[
m
u

]
, with z ∈ Rn+x, is the joint model-wavefield state space.

• F(z) =

[
Ii(m0) 0

0 M−1(mi)s

]
, with F : Rn+x → Rn+x. The forecast step is twofold: we first

compute an optimized model mi with respect to dobs, and then the wavefield is computed in mi

(solution of the tomographic problem).

• yo = dobs

• H =

[
0 0
0 E

]
, with H : Rn+l → Rd As in proposition 2, the observation operator extracts values

of the wavefield at receiver locations.

While similar to Proposition 2, this formulation differs from the inclusion of the FWI process within
the DA scheme. The advantage over the other propositions is that the adjoint-based FWI should speed
up the convergence of the model estimate. The uncertainty estimation would be given in terms of both
wavefield uncertainty, and uncertainty of the FWI solution, at the expense of a large solution space (as
with the other extended state-space propositions).

To alleviate the complexity of this extended-space adjoint formulation, we can go back to a simpler
state-space.

3.5 Proposition 5 - A simple adjoint scheme

The last proposition I wish to present is formulated with the tomographic model at its core. Because we
ultimately want to quantify the uncertainty of optimized models, we propose to define the state vector
solely as the subsurface model. This way, we can benefit from the adjoint-based FWI advantages and
reduce the memory requirements of the extended space.

The uncertainty produced by this method will be measuring the quality of the adjoint-based FWI
solution, making this approach similar to the local uncertainty estimation methods presented in 1.2.2.
The filter parameterization is given as follow:

• The state vector is defined as a subsurface model m ∈ Rn.

• F(m) = Ii(m0), with F : Rn → Rn. During the forecast, we now solely solve the FWI problem
with respect to dobs.

• yo = dobs

• H = H(m), withH : Rn → Rd. The observation operator comes down to computing dcal from
the subsurface model m. Note that this is the only non-linear observation operator, out of all the
five proposition.
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with a misfit function defined as

C(m) =
1

2
(yo −H(m))TR−1(yo −H(m)) +

1

2
(m−mf )T (Pf )−1(m−mf ), (3.5)

which has the same form as the Tikhonov-regularized FWI misfit function.

We now have to take into consideration that our state-space (subsurface model) does not evolve
with time; hence, we lack the dynamic axis required by the DA framework. To cope with this issue, we
propose to define a proxy for the dynamic axis, based on the FWI process itself.

3.5.1 FWI as a dynamic problem: defining a dynamic proxy

While it might seem counter-intuitive, we propose to consider the FWI process itself, as a dynamic
system. To back this proposition, we can draw parallels between the forward map used in ”classical” DA
problems and our tomographic operator:

• From the initial conditions (initial model), FWI yields an update of the physical parameters (the
model ”evolves” with each iteration).

• Each inversion iteration becomes the initial conditions to the next iteration (analogous to time
integration schemes in forward-modeling engines).

• It is a fully deterministic process.

Therefore, provided an adequate dynamic axis can be defined, any mapping (be it forward or inverse)
could potentially play the role of the forecasting operator.

The frequency continuation strategy

In the case of FWI, the most obvious choice for this dynamic axis would be to consider the hierarchy in
modeling/inversion frequencies. It is common practice in FWI to consider increasingly high-frequency
data, starting from the lowest frequency possible. This frequency-continuation strategy (also known as
the multi-scale approach) has been highlighted by the work of Bunks et al. (1995) and is commonly
employed to mitigate cycle-skipping artifacts.

Cycle-skipping is a common FWI artifact that occurs when oscillating seismic signals are shifted
from more than half a period (Fig 3.1): an ambiguity arises when matching a synthetic arrival with its
counterpart in the observed signal (this corresponds to a local minimum of the misfit function). We
typically see this type of artifact arising when the initial model cannot represent the basic kinematics of
the wave propagation through the medium (underestimated velocities, for instance).

As it can be seen in Figure 3.2, the lower frequency considered, the more the misfit function becomes
convex (Bunks et al., 1995): in the low-frequency regime, the signal’s period is longer, reducing the
possible ambiguity between phases. Thanks to this property, we can follow the frequency hierarchy, to
design a dynamic axis proxy for our DA-FWI scheme, following the multi-scale approach.

Thus, our FWI system evolves along an axis of frequency continuity, starting from the lowest to the
highest frequency. Doing so, FWI becomes a dynamic process on its own, responsible for the evolution
of subsurface models according to the increasing data/modeling frequency.

Out of the five propositions, we believe this last formulation is the most interesting for initial
numerical tests. It gives uncertainty in terms of the model parameters, which is the goal of our research
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Figure 3.1: Illustration of the cycle-skipping artifact in FWI. The solid black line represents a monochro-
matic seismogram of period T as a function of time. The upper dashed line represents the modeled
monochromatic seismograms with a time delay greater than T/2. In this case, FWI will update the
model such that the n+ 1th cycle of the modeled seismograms will match the nth cycle of the observed
seismogram, leading to an erroneous model. The bottom example will not produce cycle-skipping
because the time delay is less than T/2. From Virieux and Operto (2009).

while allowing us to use efficient quasi-Newton solvers during the forecasting stage. Its formulation
makes it easily implementable, and working with this simple state-space rather than with an extended
space alleviates possible memory overburden. In the next subsection, I will explain how we can pair this
parameterization with the ETKF, presented in 2.2.4.

3.5.2 The ETKF-FWI scheme

As I have stated earlier in Chapter 2, the ensemble DA scheme we have chosen for this study is the ETKF.
Its straightforward implementation and efficiency, coupled with our last parameterization proposition,
makes it a very simple scheme, from which we performed numerical experiments to investigate the
potential of ensemble DA for uncertainty estimation in FWI.

Our ETKF-FWI scheme is defined as follows,

1. Define an optimal starting model m0, as the best starting model available.

2. Define the K ordered steps of the dynamic axis in frequency continuation as k = 1, 2, . . . ,K.
Note that k can contain either a single frequencies or a frequency group.

3. Generate an initial ensemble such that m ∼ N (m0, P0), with P0 being the prior model covariance
matrix and m containing Ne ensemble members.

4. For each k until K is reached:
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Figure 3.2: Illustration of the misfit-function dependency on the data-frequency content. When low-
frequency data are considered, the misfit-function is smoother and contains few local minima. When the
data frequency increase, the misfit-function gets more local minimum and is less convex. Modified from
Bunks et al. (1995).

(a) Compute the forecast ensemble by solving mf
k

(i)
= Fi(mk−1

(i), dobs,k), by minimizing
the least-squares distance to the observed data dobs,k, corresponding to the frequency or
frequency group k. Note that the forecast is set to perform an arbitrary number i of non-linear
inversion iterations.

(b) Compute the forecast observation dfcal
(i)

by solving the forward problem as dfcal
(i)

=

H(mf
k

(i)
)

(c) Compute the analysis ensemble, following the ETKF analysis scheme. The analysis ensemble
is obtained by solving a minimization problem over the ensemble subspace S ∈ RNe , which
cost is negligible compared to the rest of the scheme.

From this formulation, we can see that the forecasting step will be the computational bottleneck of
this scheme, as it requires to perform as many independent FWI iterations as we have ensemble members.
However, the independent nature of the forecast makes it an embarrassingly parallel problem, which
allows very efficient parallelization, provided we have access to computing resources that are sufficient
to fit all the FWI processes in memory. To alleviate the computational cost, we decided to work with
frequency-domain FWI, as it reduces the computational requirements dramatically, to solve the forward
modeling problem in 2-D. Therefore, we consider only time-harmonic monochromatic wavefield data as
our observations.

In the ETKF-FWI scheme, pictured in Figure 3.3, we have combined ensemble DA and the quasi-
Newton FWI methodology, into a framework that can produce both high-resolution tomographic models,
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frequency| | |

k − 1 k k + 1

ma
k−1 ×•

•

•••

dobs,k−1 ?

mf
k−1

×

••

•

•
•

dfcal,k−1

×

??

?

?

?

dobs,k ?

Forecast
FWI

mf
k

×
•
•

•

•

•

Observation
modeling

dfcal,k

×
?
?

?

?

?

ma
k ×•
•

•
•

•

Forecast
FWI

mf
k+1

×

•

•

•

•

•

dfcal,k+1

×

?

?

?

?

?

dobs,k+1 ?

ma
k+1 ×•

•

••

•

Observation
modeling

Figure 3.3: Schematic representation of the ETKF-FWI algorithm. Bullets represent subsurface models,
crosses denote ensemble means, stars denote observations, and ellipses represent ensemble covariances.
As previously, the blue color denotes the forecast state, the red denotes the analysis, green is for the
observed data, and grey for the forecast data. The dashed lines are indicative of the information used to
produce the analysis state.

and uncertainty estimation of the solution at the same time. Even though the total computational time
might seem to be daunting, the ETKF-FWI method we propose is fully scalable, which is a feature
lacking from the other local uncertainty analysis proposed in the literature.

The particularity of this scheme is that we essentially replaced the forward map by an inverse map,
in the forecasting step (Fig. 3.3), which sets this method apart from classical DA problems. Additionally,
because the analysis step is equivalent to an inverse problem, our scheme can be viewed as cycling
through two different inverse problems.

Note that the observed data for both the forecast and the analysis are set to be the same dobs,k data at
step k. This approach also deviates from common ETKF scheme where it is assumed to introduce new
information during the analysis rather than relying on previous data. However, because Ii is updating
the ensemble of models using dobs,k, the wavenumber content of these updates is closely tied to the
frequency content of dobs,k. The ensemble of optimized models obtained from dobs,k are likely to
lack the higher wavenumber content to explain or ”predict” higher frequency data dobs,k+1, and may
cause cycle-skipping to happen during the analysis. The ETKF-FWI can thus be broken down into two
successive minimization procedures, with respect to the same objective data:

• The forecast is a model-wise optimization, with a quasi-Newton solver. Each of the Ne minimiza-
tions is independent of the others.

• The analysis results in an ensemble-wise minimization. Contrarily to the forecast, the analysis
uses the information contained in the ensemble repartition, and the measurement uncertainty to
balance the forecast and observations.
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The model-wise optimization (forecast) is tasked with bringing together all the ensemble members
close to the global minimum (provided the ensemble is built adequately and all ensemble members are
sampling the same subset A). After the model-wise adjoint-based inversions, the analysis perform an
ensemble-wise inversion, rearranging the ensemble around the mean solution, ensuring coherency of the
solution and reducing the ensemble variance.

Finally, we justify the compatibility between the underlying assumptions of the ETKF and FWI by
the following: provided that all the ensemble members are located in A, the local convexity of the cost
function assumed to perform quasi-Newton optimization, is deemed a good first-order approximation of
the Gaussian probability density function required by the ETKF. Therefore, the initial ensemble must
be generated such that it will correctly sample the subset defined by the initial model m0 ∈ A. In the
next subsection, I discuss the implication of the ensemble repartition and the sampling strategies that are
involved in satisfying this Gaussian assumption.

3.5.3 ETKF-FWI sampling strategy

To ensure the ETKF-FWI scheme’ stability, the initial ensemble must sample adequately the subspace A
defined by the choice of the initial model m0: if m0 is bound to converge toward the minimum in A, we
must ensure that the whole ensemble converges toward this same minimum.

Because of the hypothesis underlying the ETKF, we must draw an initial population that has a
Gaussian repartition. To ensure that we are sampling A, the initial ensemble mean should be m0 such
that the ensemble can be modeled as m0 ∼ N (m0,P0). Thus, the initial ensemble can be built as

m
(i)
0 = m0 + η(i), (3.6)

with η(i) being zero-mean multivariate gaussian perturbations, defined as η(i) ∈ N (0,P0) with i =
1, 2, . . . , Ne. We are left with defining the initial covariance.

As we generally lack information regarding subsurfaces’ physical properties, we could be tempted to
choose the initial covariance matrix such that the initial ensemble sample as much of the solution space
as possible, akin to global optimization methods. However, due to FWI non-uniqueness, and the nature
of our forecasting operator, this might cause the ensemble to split over several local minima, as illustrated
in Figure 3.4. Taking the misfit function presented in Chapter 1, 10 random samples were drawn (red
dots) following an arbitrary Gaussian repartition centered on an arbitrary initial point m0 = (-1.2,1).
After minimization, each ensemble member converges toward their respective closest local minimum
(blue dots). If outliers are present in the initial repartition, we sample several minima of the misfit,
effectively splitting the ensemble into several basins of attractions. Consequently, we see the occurrence
of two biases:

• Because the ensemble is sampling several local minimum, the repartition of the ensemble becomes
multimodal, which violates the Gaussian hypothesis of the ETKF.

• As the ensemble is splitted, the mean of the ensemble (black cross) does not correspond to an
approximation of the MMSE (the minimum at (−1.2, 1)).

Note that the severity of these biases is heavily dependent on the ”topography” of the misfit function. If
the misfit function is strongly non-convex, the odds of sampling several local minima (and thus splitting
the ensemble and biasing the ensemble mean) are increasing.

80



3.5 Proposition 5 - A simple adjoint scheme

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x2

Before optimization
After optimization
Ensemble mean

2500

5000

7500

10000

12500

15000

17500

(m
)

Figure 3.4: Changes in repartition under an inverse mapping forecast (as in the ETKF-FWI scheme). Ten
samples are drawn (red) from a Gaussian distribution with mean (-1.58,0) and arbitrary large variances.
Optimization paths are denoted with dashed grey lines and optimized model by blue dots. The ensemble
mean after inversion is denoted by the black cross. In such a case where outliers are present in the initial
repartition, the optimized ensemble mean is bound to be biased.

To mitigate these biases, we can either minimize the influence of outliers by increasing the number
of ensemble members (such that most of the samples will be drawn within the subset A, as in Figure
3.5) or by reducing the spread of the ensemble such as in Figure 3.6, reducing the odds of outliers being
sampled outside of A. While increasing the ensemble size slightly mitigates the sampling bias, it is not a
satisfying solution: increasing the ensemble size results in a computing overburden while still producing
a biased mean estimate and an ensemble splitting. The results may also largely vary if the function
is strongly non-convex. Therefore, reducing the initial variance of P0 to better match the extent of A
seems to be a better solution, as it allows sampling the correct misfit subset.

While it would be difficult to define the appropriate variances that fit the local subsetA in an arbitrary
inversion problem (especially so as the number of degrees of freedom gets substantially big), we can
take advantage of FWI problem formulation to do so: as cycle-skipping is mostly responsible for the
non-convexity of the cost function, we can generate an ensemble contained within A by generating
model-perturbations that do not generate cycle-skipping with respect to the lowest frequency considered.

Additionally, we have to make sure that the wavenumber content of the initial perturbations matches
the local resolution imposed by the FWI resolution power for a given frequency band (Devaney, 1984;
Wu and Toksöz, 1987).

With these constraints in mind, we define the generation of the initial ensemble as follows: Each
ensemble member is built by taking an initial model m0 deemed suited for convergence, to which we add
a perturbation. Perturbations are generated by convolution of zero-mean, uniformly distributed random
vector ψ(i) (with i = 1, 2, . . . , Ne) with a non-stationary Gaussian function G which correlation length
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Figure 3.5: Changes in repartition under an inverse mapping forecast (as in the ETKF-FWI scheme).
The random sampling was kept identical with Figure 3.4, except that 100 samples were drawn. While the
position of the mean is less biased, increasing the number of samples also increases the odds of sampling
the wrong local subset.
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Figure 3.6: Changes in repartition under an inverse mapping forecast (as in the ETKF-FWI scheme). By
changing the sampling distribution (reducing the variances of P0) we reduce the odds of sampling the
wrong local subset. In this example, the 100 ensemble members are sampling the desired subset A and
the ensemble mean corresponds to the minimum.
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Subsurface uncertainty Adjoint-free Iterative Extended state-space
Proposition 1 7 3 7 7

Proposition 2 3 3 7 3

Proposition 3 3 3 3 3

Proposition 4 3 7 7 3

Proposition 5 3 7 7 7

Table 3.1: Summary of Propositions 1 to 5.

and amplitude are varying according to the local velocity in m0, such that

m
(i)
0 = m0 + Gψ(i), i = 1, 2, . . . , Ne. (3.7)

Gψ(i) produces smooth perturbations which wavenumber is half of the wavefields’ wavelength,
corresponding to the maximum spatial frequency that can be recovered (Wu and Toksöz, 1987). The
initial ensemble is then inspected with an Eikonal solver, to ensure that the initial population of models
will not allow cycle skipping at our starting frequency, that could be provoked by too dramatic initial
perturbations. Even though this test only allows assessing the first arrival cycle skipping, it is deemed
sufficient as a first-order diagnosis of the initial ensemble quality. To further ensure favorable initial
conditions, we verify that the rank of the initial ensemble is equal to Ne.

This way, we make sure that the initial sampling is adequate with respect to our starting model, and
the subset A we wish to sample. From there, we start the cycle of forecast and analysis steps, following
the frequency continuation axis, until the highest frequency is reached.

Conclusion

In this chapter, we have seen that there can be several ways of combining DA and FWI. This is especially
true when defining an arbitrary dynamic axis based on hierarchical approaches. An emphasis was
put on Proposition 5, as it is the parameterization we adopted for subsequent numerical experiments
on both synthetic benchmark and field-data experiments. We picked this scheme because of its ease
of implementation and simple formulation, which allowed us to start experimenting with the joint
DA-FWI formulation quickly. While we cannot claim that Proposition 5 is the optimal choice to produce
uncertainty estimation in FWI, it provided us with numerous insights and results that make for substantial
advances in this attempt at bridging DA and FWI together.

The other propositions are nonetheless interesting, especially so the extended-space formulations
that are analogous to the WRI and EKI. Even though these have not been implemented and tested on
practical cases, I believe they are still worth investigating, as the extended formulation might improve
results’ stability (by improving the misfit-convexity) or reduce the computational cost (thanks to the
adjoint-free formulation fo the EKI). The basic properties of each method have been summed up in Table
3.1.

From this summary, we see that Proposition 1 can be ruled out, as it is unable to inform us directly
on the subsurface parameters uncertainty. However, the other characteristics such as ”adjoint-free” are
only indicative (being adjoint free can be viewed as an advantage in terms of implementation, but might
also be a disadvantage in terms of convergence rate and stability), such that propositions 2,3 and 4 are
still relevant.
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Note that if we were to include additional observables to the problem (like well-log data, for instance),
we could introduce additional parameterization to account for these new pieces of information.

In the next chapters, I will present the numerical experiments in which the ETKF-FWI has been
used to produce uncertainty estimation. Chapter 4 will be focused on the monoparameter synthetic-
benchmark, while Chapter 5 will present the results obtained on a field-data experiment, both in mono
and multiparameter FWI.
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Chapter 4

Synthetic application of the ETKF-FWI
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In precedent chapters, we have presented both the FWI and the DA theories and proposed a few
ways of bridging the two methodologies into a unified framework. From the different parameterization
propositions, we identified the possibility of combining the ETKF and the quasi-Newton FWI framework
as a frequency-dependent process.

In this chapter, I will first present the technicalities involved in solving the numerical FWI problem.
Then the synthetic benchmark, along with the ETKF-FWI filter parameterization, will be presented,
followed by inversion results and uncertainty estimation. Finally, I will discuss the implications of
undersampling in our ETKF-FWI schemes and how we attempted to mitigate its biases.

4.1 Solving the FWI problem

We have seen in Chapter 1 that an accurate numerical solver is required to compute the incident and
adjoint wavefields, in order to build the FWI gradient. As stated previously, we will solely focus on
solving the 2-D frequency domain, visco-acoustic wave equation for our numerical tests. In that case,
computing the wavefield comes down to solving a linear system of the form Bu = s.

In our implementation of the ETKF-FWI, we solve this linear system with the open-source TOY2DAC
code developed in the SEISCOPE Consortium. TOY2DAC’s forward modeling engine is based on a
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(a) (b)

Figure 4.1: Sketch representation of the sparse impedance matrices B(ω,m) in finite-difference setting.
The panel a) represent the matrix structure with the mixed finite-difference stencil proposed in (Hustedt
et al., 2004), containing 9 × n non-zero entries. The panel b) illustrate the matrix structure under a
”parsimonious” fourth-order finite-difference stencil, with 13× n non-zero entries. Reproduced from
(Hustedt et al., 2004)

direct LU (for Lower-Upper) solver (Duff and Reid, 1983; Liu, 1992; Amestoy et al., 2000), which relies
on the decomposition of the sparse impedance matrix B (see Figure 4.1) into lower L and upper U
triangular matrices,

Bu = (LU)u = L(Uu) = s. (4.1)

The monochromatic stationary wavefield u is given by forward and backward substitution of a triangular
set of equations

Ly = s

Uu = y
(4.2)

This formulation is particularly interesting, as it allows quick computation of the wavefield for
multiple sources once the decomposition of B is stored (Marfurt, 1984). Note that even though the direct
solver allows some significant computational cost reduction compared to 2-D time-domain modeling, it
is not the case for 3-D applications. Due to the complexity of the forward and backward substitution
being linearly linked with the size of the discretization space, it becomes a limiting factor for 3-D
frequency-domain full-waveform modeling, as the number of grid points l is expected to grow rapidly
(Virieux and Operto, 2009).

The TOY2DAC forward modeling solver implementation relies on an optimized finite-difference
discretization strategy with a compact stencil providing accuracy, equivalent to fourth-order methods
(Hustedt et al., 2004; Operto et al., 2009). The LU decomposition required within this direct solver is
based on the MUMPS sparse solver (MUMPS team, 2017), which has been designed to decompose large
sparse matrices efficiently and is thus particularly adapted for FWI applications as we typically have to
deal with large discretized domains.

The other interest of this formulation is that once the matrix decomposition has been stored, it can
be used to compute both the direct and the adjoint wavefields. We can thus use the LU-decomposed
impedance matrix twice, thanks to the adjoint formulation of the gradient, which is computationally
efficient.
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Under the ajoint-state formalism, the gradient can be computed in two ways, depending on the
expression for the source term of the backpropagated wavefield v. It can either be based on the conjugate
of the data misfit and corresponds to time-reversed residuals. Or we can use the self-adjoint nature of the
wave-equation and replace [(B−1)T δd∗] by [(B−1)T∗δd] in equation 1.31, where (B−1)T∗ is the adjoint
forward operator. Instead of propagating the time-reversed data misfit through the forward operator, the
data misfit is directly the source of the adjoint forward operator (a ”time-reversed” wave equation). In
any case, both formulations can be considered to formulate the gradient as they are equivalent, and both
allow to compute G without building the Jacobian matrix explicitly.

From the computation of the gradient, based on the adjoint-state method, the local optimization
scheme used to solve the FWI problem is the l-BFGS scheme, implemented in SEISCOPE optimization
tool-box (Métivier and Brossier, 2016). This second-order quasi-Newton method provides a simple and
efficient inversion scheme, perfectly suited for the computationally intensive experiments we ought to
perform.

Finally, provided the observed data dobs and a starting model m0 are available, we can solve the FWI
problem and iteratively compute an optimized model.

4.2 ETKF-FWI on the Marmousi II synthetic benchmark

In this section, I will first present the synthetic benchmark, before presenting the ETKF-FWI application
in which it is involved, and the results we obtained from our scheme.

4.2.1 Synthetic benchmark setup

The synthetic benchmark we use in this numerical experiment is the Marmousi II synthetic model (Martin
et al., 2006). The model’s domain width and depth are respectively x = 16.025km and z = 3.250km
with vertical and horizontal resolutions of dx = dz = 25m, for a total of n = 83300 degrees of
freedom. The true model mtrue ∈ Rn used to simulate the observed data is pictured in Figure 4.2 along
with the starting model m0 ∈ Rn, obtained by smoothing the true model with an isotropic Gaussian
kernel. Note that the 500m water-depth is considered to be known, such that the water-seabed interface
does not have to be smoothed. In this FWI setting, we ought to minimize the least-squares distance
C(m) = ‖dcal(m0)− dobs(mtrue)‖2

Data are simulated using a fixed spread surface acquisition configuration, with 144 sources and
640 receivers evenly spaced, to mimic marine acquisition geometry, resulting in an observation vector
dobs(mtrue) ∈ Cd with d = 92160 entries for each mono-frequency data. The total number of discrete
data is equal to 92160× nω where nω is the number of considered frequencies. In our case, we define
the FWI workflow based on the successive inversion of nω = 15 mono-frequency complex-valued data
from 3 Hz to 10 Hz, with a 0.5 Hz increment between each inversion. This FWI workflow will serve as a
basis for our ETKF-FWI application.

To avoid inverse crime, a complex Gaussian random noise was added to the synthetic observed data
(Eikrem et al., 2019):

dnoisy = d+
‖d‖√

r ∗ E(‖w‖2)
w (4.3)
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Figure 4.2: Numerical experiment setting. Top: True Marmousi II model. A red line denotes the
acquisition footprint at the surface. Bottom: A smoothed version of the true model, used as a starting
model m0.

with dnoisy being the noisy signal, d is the original noise-free signal, ‖.‖ denotes the Euclidean norm
and E the expectation. The vector w ∈ Cd is defined as

w = v1 + iv2, (4.4)

where v1, v2 ∈ Rd are vectors of normally distributed random numbers and r is defined as the signal to
noise ratio, such that

r =
‖d‖2

‖w‖2
. (4.5)

In the following experiments, we set up r = 8 as our reference noise value through all the successive
inversion. Even though in field-data applications, we expect the noise repartition to be non-uniform
(high-frequency data typically have a better SNR than low-frequency data), we kept the noise value fixed
for the sake of simplicity.

4.2.2 The ETKF-FWI setting

Now that the synthetic FWI has been defined, we can set-up the ETKF-FWI according to the scheme
presented in 3.5.2.

Ensemble generation: In this context, the initial model m0, becomes the mean of our initial
ensemble, which members are built according to equation 3.7. As said in Chapter 3, the generation of
the initial ensemble requires to satisfy both the resolution power of FWI at the lowest frequency (3 Hz)
and must not generate first arrival cycle-skipping. An example of velocity perturbations meeting these
criterions are shown in Figure 4.3.
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Figure 4.3: Example of initial perturbation for the synthetic Marmousi II experiment.

Defining the forecast: As the ETKF-FWI dynamic axis is defined to follow the frequency continua-
tion strategy, we chose to define K = 15 ETKF-FWI cycles, as we have nω = 15 monochromatic data.
In each of the cycles, the forecast operator In is set to perform n = 10 minimization iterations with
the l-BFGS optimization scheme, on each of the Ne velocity models, with mono-frequency synthetic
calculated dcal,k ∈ Cd and noisy observed data dobs,k ∈ Cd at frequency k with k = 1, 2, . . . ,K. The
cost of the methodology is thus linearly linked with the number of ensemble members and non-linear
FWI iterations. In this instance, the number of forward modeling is Ne × 10× 2, as both the incident
and adjoint wavefields are computed at each iteration.

Computing the forecast data: Once the forecast state is obtained (an ensemble of optimized initial
models), we compute the forecast data at the frequency k with observation operatorH. This generates
the ensemble of synthetic data, computed in the forecast ensemble. Finally, the analysis is performed,
which updates the ensemble mean, and reduces the ensemble variance.

Balancing forecast and observations: Recalling that the two factors controlling the analysis are
the forecast covariance matrix Pf

e,k defined by the forecasted ensemble, and the measurement noise
matrix R, it appears necessary to correctly set R to ensure that the analysis successfully balances the
forecast ensemble and the observations. In the synthetic case, as the noise source in the observations is
perfectly known, we can set-up R accordingly:

R = Idσ
2 = Id

[
‖d‖2

r ∗ E(‖w‖2)

]
(4.6)

where Id is an identity matrix of size d and σ is the standard deviation of the observation noise. By
considering R as a scaled identity, we consider that the noise vectors added to each receiver data are
uncorrelated: this assumption comes from the lack of information about possible correlated measurement
errors in seismic acquisitions. While the benefits of taking correlated noise structures into account have
been highlighted (Stewart et al., 2008; Weston et al., 2014), it is not possible in our case. Note that if
we could estimate the off-diagonal terms of R, the computation of R−1 during the analysis step would
become computationally challenging.

4.2.3 ETKF-FWI application with 600 ensemble members.

We start with a favorable case: the ensemble size is chosen to be arbitrarily large, to mitigate the possible
undersampling effects. Thus, we generate an ensemble with Ne = 600 ensemble members.
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Figure 4.4: Initial ensemble mean and variance. The ensemble mean (top) corresponds to the mean
velocity map. The ensemble variance (bottom) denotes the initial uncertainty, associated with the
ensemble generation.

Ensemble generation and first cycle In order to explain what is occurring during each cycle, I will
first present the initial ensemble along with the first forecast and its analysis. The initial ensemble mean
and variance are displayed in Figure 4.4.

As mentioned previously, the initial ensemble mean corresponds to the smoothed model m0. Recall-
ing that the perturbations used to generate the ensemble are modeled as η(i) ∼ N (0, P0), we can indeed
expect the initial ensemble mean to be m0. The initial variance (diagonal of P0) has been set to be
nearly homogeneous across the domain to reflect our lack of initial knowledge regarding the subsurface
structures.

Following the ensemble generation, the ensemble forecast is computed by applying the FWI operator

In, which minimizes the least-squares distance C(m)(i) =
∥∥∥dcal(m(i)

0 )− dobs,1
∥∥∥2. The forecast mean

and the forecast variance (diagonal of Pf
e,1) are displayed in Figure 4.5.

The forecast ensemble mean differs from the initial ensemble mean: it contains more features of the
true model, especially in the shallow part of the domain. This change is due to the convergence of the
ensemble members toward their closest local minima (as every model is being optimized with respect to
the observations).

In the variance map, we observe a reduction of variance in shallow areas (where most of the model
update take place), but also a significant increase along sharp velocity contrasts (mainly at 1.5km depth).
Because we cannot ensure that all of the Ne models will resolve the interface within the same number of
iterations, the variance might increase in this specific area of the model. Thus, observing this type of
behavior on sharp discontinuities corresponds to our expectations, as these features are generally hard to
recover in FWI. This first forecast variance map allows us to identify the features displaying a higher
degree of uncertainty.
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Finally, after the forecast step, the analysis is performed, with respect to the same objective data
dobs,1. The analysis ensemble mean and variances are displayed in Figure. 4.7.
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Figure 4.5: First forecast mean (top) and variance (bottom). Some features of the true model are being
included in the mean model, as the ensemble progresses toward the closest minimum of the misfit
function. In the variance map, we can see that some features, primarily sharp velocity contrasts, are
displaying an increase of variance.
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Figure 4.6: First analysis mean (top) and variance (bottom). We can see significant decrease in variance
in key areas, notably on shallow reflectors.
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The most striking changes are visible in the variance map; notably, the high uncertainty zones in
the forecast variance have been drastically reduced. This emphasizes the role of the analysis, which is
essential to rebalance the ensemble around the optimal mean (in the least-squares sense) and lower the
variance of the forecast ensemble. It allows controlling the ensemble’ spread all along with the cycles,
mitigating the risks of the ensemble splitting over several minima. Naturally, the ensemble mean has
also been updated by the analysis. While the changes are subtle (slightly sharper velocity contrasts), it
is interesting to note that most of the changes have occurred along with high variance reduction areas.
A map of the velocity update from the analysis step is displayed in Figure 4.7. We can see a clear
connection between the changes in variance and the velocity update.
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Figure 4.7: Velocity update of the first analysis step. The changes in velocity from the analysis are
consistent with the variance reduction zones.

Results We have seen in detail how the forecast and analysis affect the ensemble of velocity models
during the first cycle. We now directly jump to the results after the 15 cycles, from 3 Hz to 10 Hz. The
final ensemble mean (and hence the final parameter estimate) and the final variance map are displayed in
Figure 4.8.

The ETKF-FWI parameter estimate tends to a regular FWI result: most of the features of the true
model have been correctly recovered, such that the ensemble mean can be considered to be a standard
inversion result. Note that the ETKF-FWI solution is also lacking the resolving power at depth, as it can
be expected due to the surface acquisition and the way waves propagate through the subsurface. When
the initial ensemble is designed appropriately, its ensemble members will converge toward the global
solution along with the ETKF-FWI cycles.

The added value of the ETKF-FWI approach thus lies in the evaluation of the posterior covariance
matrix, which individual lines and diagonal are easily accessible, provided the ensemble has been stored.
The ensemble covariance matrix allows estimating the uncertainty and resolution information of the
solution, which is the main objective of this method. In figure 4.8, for instance, the final variance map
allows identifying the prevalent uncertainty zones in the final model. To precisely locate ”uncertain”
features, local variance peaks have been plotted on both maps. Variance peaks were extracted with a
maximum filter of radius 275m. The maximum filter dilates the variance map, and create local zones of
homogeneous values. Peaks (or local maxima) are defined as parameters located where the variance map
and the output of the maximum filter are equal.

In this example, we can see that most of the measured variance peaks are consistently located along
interfaces where high-velocity layers are overlaying lower velocity layers. We might associate high
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4.2 ETKF-FWI on the Marmousi II synthetic benchmark

Figure 4.8: Final ensemble mean (top) and variance (bottom). Red dots denotes local maximum variance
peaks in both maps.

variance at interfaces with the band-limited context of our application: band-limitation is expected to
limit the ability of the optimization scheme to recover sharp discontinuities, which will tend to smooth
the interfaces because of the lack of high-frequency content. Another possible source of variability in
interface recovering might be the inherent velocity-depth ambiguity in reflection tomography (Yilmaz,
1993).

Additionally, we can observe high variance values toward the depth and lateral limits of the physical
domain, where poor illumination is expected. In this case, where sources and receivers are located at the
surface, the geometrical spreading of the wavefield prevents the sampling of the sides and bottom of the
medium, hence the higher relative uncertainty.

Individual lines of the covariance matrix can also be computed to evaluate how parameters are linked
with each other. However, unlike absolute variance values that can be put in perspective when compared
with the initial variance, absolute covariances are more challenging to interpret. Thus, we propose to
compute the lines of the correlation matrix instead of the covariance matrix.

The correlation matrix is a dimensionless operator that contain correlation coefficients from−1 to +1
(Feller, 2008). When the correlation coefficients tend to +1, it reflects a strong positive link between two
parameters, implying that they share similar physical properties and are evolving similarly. Conversely,
a negative correlation coefficient of −1 denotes a strong link but expresses an opposite behavior between
parameters. Finally, a correlation coefficient of 0 implies the absence of a physical connection between
parameters. To compute the correlation matrix, we first need to define D as a diagonal matrix containing
the variance terms of P. The correlation matrix is then given by,

C = (D)−1/2P(D)−1/2. (4.7)

C is thus a dimensionless, normalized version of the covariance matrix, which diagonal terms are all
equal to 1 (correlation of a parameter with itself). In the following, we evaluate several correlation maps,
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Figure 4.9: Velocity map (top) and correlation map for the velocity parameter located at x = 15.75km
and z = 2km in the initial ensemble. The circular shape of the positive correlation zone is directly a
result of the initial sampling.
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Figure 4.10: Velocity map (top) and correlation map (botom) for the velocity parameter located at
x = 15.75km and z = 2km in the final ensemble.

to investigate how recovered parameters are linked with their surroundings. We chose for reference a
parameter outside of the optimal illumination zone, close to the lateral limit of the model. We evaluate
how the local resolution changes from the initial ensemble (Fig. 4.9) to the final ensemble (Fig. 4.10).

In the initial ensemble (Fig. 4.9), the positive correlation zone around the parameter at position
x = 15.75km and z = 2km is solely defined by the correlation length of the initial perturbations. It is

94



4.2 ETKF-FWI on the Marmousi II synthetic benchmark

0

1

2

3

0 2 4 6 8 10 12 14 16
Distance (km)

0

1

2

3

De
pt

h 
(k

m
)

1500
2000
2500
3000
3500
4000
4500

Ve
lo

cit
y 

(m
/s

)

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

Co
rre

la
tio

n 
co

ef
.

Figure 4.11: Velocity map (top) and correlation map (botom) for the velocity parameter located at
x = 10.25km and z = 1.75km in the final ensemble.

thus expected to observe a circular positive correlation zone around the chosen parameter. In the final
ensemble, however, for the same parameter, the correlation map is almost identical (Fig. 4.10), meaning
the local resolution has not been improved. This is due to the poor illumination in the lateral limits of the
domain, which implies that this parameter can only be weakly constrained by the data.

In the following, we chose three other parameters to produce the following correlation maps (Fig.
4.11,4.12 and 4.13). The parameter picked to produce Figure 4.13 is located inside a small structure
within the tilted blocks of the Marmousi model. This has a strong impact on the correlation map, as the
high positive correlation zone around the parameter is mostly contained within this small unit section.
Note that, contrarily to the example in Figure 4.10, the span of the positive correlation zone has been
reduced and is bounded the surrounding structure. This result is somehow expected as the velocity
parameters inside the same geological unit should share the same physical properties; it is thus logical
that a strong correlation link is found within the unit. Note also that weaker, distant positive correlations
structure are present on this map with other high-velocity layers. Negative correlations are also visible
in the close vicinity of this unit, as the whole structure close to the parameter influences its recovered
velocity.

The third example, in Figure 4.12 has been chosen because it lies precisely on the boundary between
a low-velocity layer and a high-velocity layer. In that case, the positive correlations are stretched over
the interface, which is also expected in this context. Indeed, as rocks along the interface should be of the
same nature, they should share the same physical properties. In this case, the vertical resolution is largely
superior to the lateral resolution. Note that this parameter is also positively correlated with the overlaying
interface at z = 1.7km depth. This might indicate that both velocity contrasts are interdependent, or
that an ambiguity exists between them in the data. We can also observe what can be associated with
finite-frequency artifacts that translate to a change of correlation polarity in the vicinity of the evaluated
parameter.

The final example (Fig. 4.13), has been picked to highlight the finite-frequency oscillations in the
correlation maps. This parameter has been selected in the upper part of the medium, close to its lateral
limit, and we can expect that it has been sampled by a limited number of up-going waves. Thus, the
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Figure 4.12: Velocity map (top) and correlation map (botom) for the velocity parameter located at
x = 5.6km and z = 2.1km in the final ensemble.

Figure 4.13: Velocity map (top) and correlation map (botom) for the velocity parameter located at
x = 15.5km and z = 1.5km in the final ensemble. Dashed lignes denote the polarity transition in the
correlation map, highlighting the finite-frequency effects.

polarity of the finite-frequency effect in the vicinity of this parameter is no more horizontal, as seen in
Figure 4.12, but is tilted upward due to an incomplete illumination. We have drawn the sign transitions of
these oscillations with dashed black lines on the correlation map, to highlight the possible link between
this effect and the point-spread function of the parameter, caused by band-limited data.
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4.3 Investigating undersampling

We have seen in the previous results, that the ETKF-FWI can provide both a parameter estimates, deemed
as a satisfying FWI solution, along with uncertainty estimation, both in terms of variance and correlation
between the physical parameters. However, the ensemble size of Ne = 600, despite seeming to be
a favorable case, generates a greate computational overhead. It is thus of interest to investigate how
the filter behaves when the ensemble size is reduced, as we expect to face undersampling biases, as
introduced in 2.3.1. In this section, we will be comparing the results from the test at Ne = 600 with
smaller ensembles defined as Ne = [20, 100].

4.3.1 Parameter estimate

We first evaluate the impact of ensemble size over the state estimate. To that extent, we generate smaller
ensembles by randomly selecting pre-computed initial perturbations, from our previous Ne = 600 case.
Doing so, we make sure that our three ETKF-FWI tests are built on very similar starting ensembles. To
ensure that our comparison is meaningful, the ETKF-FWI is run with the exact same settings as in the
previous section, the only difference being the ensemble size (and thus the computational cost). The
results of the three tests are displayed in Figure 4.14.

From these results, it seems that the ensemble size has no visible influence over the quality of the
reconstructed model. All three test cases lead to consistent parameter estimation, as all results are fairly
visually comparable. This outcome might seem surprising, given that we expected undersampling to
occur (and perhaps filter divergence could have happened). However, because our forecast operator is
solving an optimization problem rather than a forward problem, it seems that the ensemble mean is
clear of any drifting or divergence effect, commonly encountered in typical dynamic EnKF applications.
Indeed, even with small ensembles, if they have been appropriately generated, all the ensemble members
should converge toward the same solution of the optimization problem, preventing any unwanted
divergence effects.

To complete this analysis, we have computed the root-mean-square-error (RMSE) values of the
ensemble final means, with the true model as a reference:

RMSE =

√√√√ 1

n

n∑
i=1

(mn,true − m̄a
n)2, (4.8)

where mn,true is the nth parameter of true velocity model, and m̄a
n is the nth parameter of the final

ensemble mean. Values of RMSE reduction between the initial model m0 and final ensemble means
are displayed in Table 4.1: RMSE reduction is not affected by the ensemble size and all parameters
estimates are nearly identical, which is consistent with the results observed in Figure 4.14.

Table 4.1: Normalized root-mean-square model error (RMSE) reduction with respect to the initial model
for various ensemble sizes. The RMSE values are computed between the final ensemble mean and the
true model. The RMSE reduction is computed with the initial model RMSE as a reference.

Ne 20 30 40 50 60 80 100 200 300 600
RMSE reduction 15.4% 15.4% 15.6% 15.0% 15.2% 15.9% 15.7% 15.6% 15.3% 15.6%
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Figure 4.14: Final analyzed ensemble means for ensemble sizes Ne = 600, 100, 20 after 15 ETKF-FWI
cycles from 3Hz to 10Hz.

4.3.2 Variance approximation

We now look at the ensemble repartition to evaluate how undersampling may affect the results of our
uncertainty estimation scheme. As a matter of reference, we first present the three initial variance maps
in Figure 4.15. In this figure, we can see that the initial repartition is already affected by sampling biases.
While the initial variance map for Ne = 600 is nearly homogeneous, the map for the Ne = 20 ensemble
has significant variations of amplitude, purely due to the insufficient sampling (as it has been presented
earlier in Figure 2.6).

The final variance maps after 15 ETKF-FWI cycles for the three test cases are plotted in Figure 4.17.
Contrarily to the state parameter estimate, we observe a substantial lack of result consistency regarding
the ensemble size. The various ensemble size tested reveals that the ensemble covariance is strongly
affected by undersampling, as we expected. In this instance, undersampling seems to be responsible for
variance underestimation.

Assuming that the test with ensemble Ne = 600 is the least sensitive to undersampling biases, we
define it as our reference result to make several observations. The Ne = 20 case displayed in Figure
4.15 exhibit a severe underestimation of the variance values over the whole domain. In the deeper part of
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Figure 4.15: Initial ensemble variance maps for ensemble sizes Ne = 600, 100, 20.

the domain, we also observe non-physical oscillatory behavior, resulting from the poor initial variance
approximation. In theNe = 100 case, these oscillations are not visible, thanks to a better initial sampling.
The variance values are nonetheless slightly underestimated. The qualitative aspect of the variance map
is at least preserved, as opposed to the Ne = 20 case.

To better understand the results of Figure 4.15 and go beyond simple qualitative comparison, we
evaluate absolute variance values from a set of ETKF-FWI realizations for Ne =

[
20, 600

]
. We evaluate

the underestimation of variance by computing the mean variance value for each variance map. We plot
the averaged variance against ensemble size in Figure 4.16. Crosses denote the ensemble sizes used to
generate this curve.

As it stands, the trend in absolute variance values seems to be consistent with the variance un-
derestimation observed in Figure 4.17. It is also worth noting that variance estimates behave almost
asymptotically, which means we can hope to find a compromise between too small and too big ensem-
bles. Although, it seems complicated to estimate this ”optimal” ensemble size in advance, nor it is
practical to evaluate it by trial and error. We could instead mitigate variance underestimation by using
multiplicative-inflation (2.3.5), provided an adequate inflation factor can be chosen.
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Figure 4.16: Average variance plotted against ensemble size.
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Figure 4.17: Initial ensemble variance maps for ensemble sizes Ne = 600, 100, 20.
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4.3.3 Correlation approximation

Additionally, we compute the correlation maps for the parameters presented in Figures 4.11,4.12 and
4.13, to evaluate the effects of undersampling on the off-diagonal terms of the covariance matrix. The
results for the three parameters are plotted in Figures 4.18,4.19 and 4.20. Again, we consider the result
at Ne = 600 to be the reference case, as it should be less affected by undersampling biases. Note that
even though the off-diagonal covariance terms might be underestimated, correlation maps allow a fair
comparison, as the correlation matrix is a normalized version of the covariance.
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Figure 4.18: Velocity map (top) and correlation map (botom) for the velocity parameter located at
x = 10.25km and z = 1.75km in the final ensemble, for the three test cases.
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Figure 4.19: Velocity map (top) and correlation map (botom) for the velocity parameter located at
x = 5.6km and z = 2.1km in the final ensemble, for the three test cases.

On both the Ne = 20 and Ne = 100 cases, we observe undersampling biases, which are manifested
by the appearance of spurious correlation terms in the correlation maps. The Ne = 100 case allows a
good approximation of the referenc case, which is consistent with the undersampling curve presented in
Figure 4.16.

On the other hand, the Ne = 20 case suffer from serious undersampling biases: spurious correlations
are well visible in the whole domain, and their amplitudes are not decaying along with the distance from
the inspected parameter, as in the Ne = 100 and the reference cases.

However, it seems that despite the strong undersampling biases, short-range correlation terms are
somehow preserved. Thus, even though the Ne = 20 is displaying severe undersampling, we might be
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Figure 4.20: Velocity map (top) and correlation map (botom) for the velocity parameter located at
x = 15.5km and z = 1.5km in the final ensemble, for the three test cases.

able to extract local structural information, such as dipping angles or thickness of geological units and
”local resolution” from these biased correlation maps.

I have mentioned in Chapter 2 that spurious distant correlation could be corrected with the use of
Covariance Localization (2.3.5) or Local Analysis (2.3.5.1). In our case, CL via a Hadamard product
seems unrealistic, as building large covariance matrices to filter-out unwanted off-diagonal terms would
be computationally prohibitive. LA does not appear to be a satisfying solution either, due to the non-local
nature of our observations: recorded signal travels through a significant part of the medium, and each
parameter along the way directly influence the recorded signal. It would thus be difficult to design an
appropriate local domain and perform local analysis without losing meaningful correlation terms arising
from our observation operatorH(m).
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4.4 Mitigating undersampling

Now that the previous tests have highlighted undersampling biases, we may attempt to mitigate them
with methods from the DA literature. Providing solutions to mitigate undersampling would improve the
ETKF-FWI outcomes for smaller ensembles and thus yield satisfying solutions at a lower computational
cost.

I have mentioned previously that neither CL nor LA is easily applicable due to the size of our
problem and the nature of our observations. Therefore, we will solely focus on tackling inbreeding
biases with multiplicative inflation in order to mitigate variance underestimation. To do so, we have
replicated the previous comparative study, with several inflation factors, in order to evaluate the effect of
multiplicative inflation on our ETKF-FWI outcomes.

To applly multiplicative inflation, we artificially inflate the forecasted ensemble according to

Mf
i = r(mf − m̄f ), (4.9)

where r is an inflation factor. We performed several tests with r = [1.005, 1.01, 1.015, 1.02] (recalling
that inflation factors suggested in the DA litterature are ranging from 1% to 7%).

Inflation is performed before the observation operator is applied to the ensemble members to
compute forecast data. The analysis is then computed following the exact same scheme as in the previous
test. Multiplicative inflation is thus easily implementable and does not add any significant computing
operations.

To visualize the effect of the inflation factor over the ensemble, we first compute mean variance
curves of the inflated ensembles, as in Figure 4.16. The results of this comparative inflation test are
presented in Figure 4.21.

It appears that multiplicative inflation successfully increases the final variance values amongst all
ensemble size, and its effect is more significant on larger ensembles. From this plot, it seems that the
ensemble of size Ne = 50 with a multiplicative inflation factor of r = 1.02 should result in variance
estimates close to the reference case (denoted by the black dashed line in Figure 4.21). We compare the
reference variance map with the Ne = 50 case with, and without multiplicative inflation in Figure 4.22.

Figure 4.21: Average variance plotted against ensemble size for several multiplcative inflation values.
The black dashed line represent the ”optimal” reference case obtained with Ne = 600 and without
multiplicative inflation.

104



4.4 Mitigating undersampling

0

1

2

3

0

1

2

3 Ne = 600, r = 1.0

0

1

2

3 Ne = 50, r = 1.0

0 2 4 6 8 10 12 14 16
Distance (km)

0

1

2

3

De
pt

h 
(k

m
)

Ne = 50, r = 1.02

1500
2000
2500
3000
3500
4000
4500

Ve
lo

cit
y 

(m
/s

)

0

200

400

600

800

1000

1200

1400

Va
ria

nc
e 

(m
2 /s

2 )

Figure 4.22: Comparison of variance maps on the Ne = 50 case, with and without inflation. The
Ne = 600 case and the mean model are included for reference. With multiplicative inflation, the
final variance map is close to the reference case, despite the original Ne = 50 case being severely
undersampled.

As predicted by the variance curve in Figure 4.21, the ETKF-FWI with ensemble size Ne = 50 and
multiplicative inflation parameter r = 1.02, allows us to improve the outcome of the filter, compared with
the case without inflation. Significant improvements are visible at major interfaces, where the variance
has been correctly estimated. Variance has also been increased in the deeper domain, highlighting deep
structures, which better fits the reference case variance map.

To further inspect the effect of multiplicative inflation on estimating the covariance matrix, we also
look at correlation maps with and without inflation. While spurious correlations are generally corrected
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Figure 4.23: Comparison of correlation maps on the Ne = 50 case, with and without inflation. The
Ne = 600 case and the mean model are included for reference. Black arrows in the bottom panel are
highlighting features that have been improved in the result with multiplicative inflation.

with localization methods, we ought to verify if the improved variance estimation, allows retrieving
better correlation maps (as the variance is involved in correlation computation). Results are displayed in
Figure 4.23.

We can see in Figure 4.23 that improving the variance estimate with multiplicative inflation yields
slight improvements in the correlation maps. Notably, we can observe a reduction of amplitude in
the shallow region, away from the parameter. We have highlighted features which recovery has been
improved by multiplicative inflation by black arrows. We also computed correlation maps comparisons
for the previously tested parameters in Figure 4.24 and 4.25.

106



4.4 Mitigating undersampling

Figure 4.24: Comparison of correlation maps on the Ne = 50 case, with and without inflation. The
Ne = 600 case and the mean model are included for reference. Black arrows in the bottom panel are
highlighting features that have been improved in the result with multiplicative inflation.

While we observe some slight improvements over the case without inflation, all three cases are still
exhibiting strong spurious correlations terms that are not corrected by inflation (as expected).

Finally, note that in this favorable case, the inflation parameter has been chosen a-posteriori after
an extensive series of tests with varying ensemble size and inflation parameters. In practice, the
application of multiplicative inflation would be troublesome, as we would be left with determining r
purely arbitrarily or by trials and errors. Therefore, despite showing promising results, we cannot expect
to apply multiplicative inflation in practical applications.
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Figure 4.25: Comparison of correlation maps on the Ne = 50 case, with and without inflation. The
Ne = 600 case and the mean model are included for reference. Black arrows in the bottom panel are
highlighting features that have been improved in the result with multiplicative inflation.

Conclusion

In this chapter, we have presented a complete application of the ETKF-FWI on the Marmousi II synthetic
benchmark. We have shown that the ETKF-FWI can yield a satisfying parameter estimate along with
uncertainty estimation. We have also highlighted the importance of the analysis step in maintaining
coherency and reducing uncertainty along the ETKF-FWI cycles. We have discussed how uncertainty
information could be extracted from the diagonal and lines of the covariance matrix, provided the final
ensemble is stored.

108



4.4 Mitigating undersampling

Variance maps provide a direct qualitative uncertainty assessment of the solution by indicating which
parameters in the medium have a relatively high variance. We have seen that in this particular setting,
uncertainty seems to be dominated by the geometrical spreading effect, and structural uncertainty: higher
variance tends to be located at depth and on the lateral limits of the domain, and on sharp velocity
contrasts. These observations are in agreement with our understanding of FWI’s properties, regarding
parameter recovery and illumination. Mind that the quantitative variance estimate and hence, our
uncertainty estimation is limited by several factors:

• It is directly tied to our initial variance, from which it can only be compared.

• It is limited by the finite-frequency wave propagation involved in our forecast, hence uncertainty
is dependent on how waves ”see” the medium

• It provides information on the misfit function solely in the vicinity of the proposed solution, as we
rely on a local optimization scheme.

Thus, we chose to address mainly qualitative uncertainty assessment.

We have also been able to exploit off-diagonal terms of the covariance matrix by computing their
correlation counterpart, as suggested by Tarantola (2005). Correlation maps appear to be a good proxy
for resolution analysis, as they indicate how parameters are linked with their surroundings. So far, the
results we have observed in correlation maps are in agreement with our theoretical expectations (strong
positive correlations between parameters in the same unit, for instance).

Following these preliminary results, we were able to investigate and characterize how undersampling
can affect ETKF-FWI outcomes. This investigation leads us to think that state estimation should be
devoid of undersampling biases. This could be explained by the inverse nature of our forecasting
operator that tends to bring the ensemble members together and avoid possible ensemble divergence.
Undersampling is more serious when it comes to uncertainty estimation, as a small ensemble may lead
to an unreliable uncertainty measurement. Variance underestimation thus makes quantitative uncertainty
estimation complicated, as we are likely to underestimate uncertainty in most cases.

Finally, we successfully mitigated variance underestimation by implementing a multiplicative
inflation procedure within our ETKF-FWI scheme. Although inflation has effectively reduced this
undersampling bias, it is not a satisfactory solution to our problem. Indeed, adjusting the inflation
parameter to the ensemble size would probably involve trial and error, which makes it improper to be a
reliable solution in our case.

To complete this thesis work, I ought to present a second ETKF-FWI application. Thus, the
next chapter will be dedicated to field-data seismic exploration FWI application to demonstrate the
applicability of the ETKF-FWI scheme, in a less favorable case.
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Field data application of the ETKF-FWI
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To complement the synthetic benchmarks detailed in Chapter 4, I wish to present a field-data
application, to demonstrate the feasibility of our method on real cases. The results in this chapter
owe much to the data processing work of Zhou (2016); Zhou et al. (2018), which greatly simplified
setting up the following experiments.

The interests in applying our ETKF-FWI scheme to a field-dataset are multiples. For instance, it
makes it possible to evaluate the sensitivity of the ETKF-FWI scheme to complex noise structures. It
also allows assessing its robustness regarding complex inverse problems, as we will be accounting for
visco-acoustic and anisotropic effects presents in the data. Finally, we will also evaluate the scheme
capacity to deal with the inversion of multiple subsurface physical parameters (P-wave velocity and
density) and to measure multi-parameters crosstalks.

Most of this final chapter is based on the following publication:
J. Thurin, R. Brossier, L. Métivier, Ensemble-based uncertainty estimation in full waveform inversion,
Geophysical Journal International, Volume 219, Issue 3, December 2019, Pages 1613–1635.

5.1 The Valhall oil field dataset and ETKF-FWI parameterization

Field-data setting and domain parameterization: The region of interest of this exploration field-
data experiment is the Valhall oil field, located in the southern Norwegian North sea, 300 km
southwest of the city of Stavanger (Fig. 5.1), within the Central Graben area (Munns, 1985; Leonard
and Munns, 1987; Barkved et al., 2010; Sirgue et al., 2010). It features 2.4 km of Tertiary succession
overlaying two Upper Cretaceous oil-bearing chalk formations. The Tertiary overburden contains a
low-velocity, gas-charged shale formation (referred to as a ”gas-cloud” in previous studies), which
severely distorts seismic acquisition (Munns, 1985) and makes seismic imaging challenging.
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Figure 5.1: Location of the Valhall oil field in the Norwegian North sea. Distance from Stavanger
has been drawn with a dashed line and is approximately 300 km.

The Valhall oil field is located in a shallow water environment (70m water column), and benefited
from a deployment of thirteen, four-component Ocean Bottom Cables (OBC) in the frame of the
Valhall Life of Field Seismic project (Barkved et al., 2003). On top of its impressive instrumentation,
the advantage of this case study is that it has been well documented and FWI has already proven
to be successfull with both 2-D (Prieux et al., 2013a,b; Gholami et al., 2013; Zhou et al., 2018)
and 3-D datasets (Sirgue et al., 2010; Operto et al., 2015; Operto and Miniussi, 2018). For our
experiment, we consider a 2-D section with a domain width and depth of respectively x = 16.725km
and z = 5.025km with a vertical and horizontal resolutions of dx = dz = 25m, for a total of
l = 134469 discrete grid points. We recall that in the monoparameter case, the number of grid points
l is equal to the number of degrees of freedom n.

Observations properties: The dataset is composed of 4 components OBC recordings. From the
full acquisition which contains 50, 824 shots for 2320 receivers, we extract a 2D line containing 192
sources and 315 receivers (which makes each frequency data vector composed of 60480 entries), the
same as the one used by (Zhou et al., 2018) and corresponds to the ”Cable 13” in this study. The total
number of discrete data is equal to 60480 × nω . OBC receivers are evenly spaced (50 m) and lie
fixed on the seabed (70 m depth). The selected sources are also evenly spaced (50 m) at a constant 5
m depth. In this application, we only exploit the hydrophone out of the 4 components recordings.

Defining the forecast: The ETKF-FWI scheme follows the same setup as in Chapter 4. To
ensure the best-case scenario result, we work with an ensemble of Ne = 600 members, as the
application size is of the same order of magnitude as the synthetic test case. We choose to work with
K = 6 ordered groups of frequencies ranging from 3.56 Hz to 7.01 Hz (Table 5.1). This frequency
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Freq. 1 (Hz) Freq. 2 (Hz) Freq. 3 (Hz) Freq. 4 (Hz)
k = 1 3.567913 3.937008 4.306102
k = 2 4.060039 4.429133 4.798228
k = 3 4.552165 4.921259 5.290354
k = 4 5.044291 5.413385 5.782480
k = 5 5.536417 5.905511 6.274606
k = 6 5.536417 5.905511 6.397637 7.012795

Table 5.1: Table of the frequency groups used in Zhou et al. (2018). These frequencies are used in
our frequency continuation strategy and thus define our dynamic axis proxy.

3 4 5 6 7 8
Frequency (Hz)

100

101

102

103

SN
R

Figure 5.2: Estimated signal to noise ratio plotted against frequency.

selection strategy has been suggested in preliminary work conducted by Zhou et al. (2018) on this
dataset and has proven to be adequate for this specific application. Using frequency groups rather
than mono-frequency data ensures that each inversion cycle relies on redundant information, which
helps to mitigate the impact of noise and inter-parameters cross-talk for multi-parameter FWI. This
brings the amount of mono-frequency data pieces of each ETKF-FWI cycle to nω = 17. In each
of the cycles, the forecast operator In is set to perform n = 10 minimization iterations with a
preconditioned l-BFGS optimization scheme.

Defining the measurement noise matrix: Following the successful application in Chapter 4,
we also define the measurement noise matrix R as a scaled Identity matrix. We computed each of the
monochromatic data noise variances, from measured SNR values (Fig 5.2) in the dataset, according
to equation 4.3. As we are working with frequency groups rather than monochromatic data, the
measurement noise matrix is block-diagonal, each block of R corresponding to a monochromatic
data variance.

In the following, we first present a monoparameter inversion test, analogous to the synthetic bench-
mark. The initial velocity model m0 obtained with reflection tomography, along with the ensemble
initial variance map, are displayed in Figure 5.3.
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Figure 5.3: Top : Initial ensemble mean velocity model m0. Acquisition is denoted by a red line at the
surface. Bottom : Initial variance map for Ne = 600.

5.1.1 P-wave velocity reconstruction

The final ensemble mean and the final variance map are displayed in Figure 5.4. As expected from
the previous experiment, the final mean model provides a net increase in resolution and tends to a
conventional FWI solution.

Layered structures are well defined in the top half of the domain, and from this result, we can identify
what can be interpreted as hydrocarbon-charged units overlaying the anticline structure. The deep layered
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Figure 5.4: Final ensemble mean (top) and final variance map (bottom) for Ne = 600, after 6 ETKF-FWI
cycles between 3.56 Hz to 7.01 Hz.
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Figure 5.5: Velocity map (top) and correlation map (botom) for the velocity parameter located at
x = 8.75km and z = 2.0km in the final ensemble.

structures are not as sharp as the top section because of the strong impedance contrast between the upper
and lower units of the medium. The strong P-wave velocity contrast between the upper and lower domain
is expected to reduce the illumination power in the deeper part of the model, along with the geometrical
spreading effect.

While the initial variance (Fig. 5.3) is relatively homogeneous in the entire domain (the water depth
is not perturbed), the final variance displays the same two tendencies as in the synthetic case. The first
order uncertainty structure is dominated by the geometrical spreading and the sharp velocity contrast
between the upper and lower units at 2.5 km depth. Second to that are the variance values imposed by
the reflectors estimated in the solution. Note that we use a non-linear colorscale to underline uncertainty
associated with reflectors.

To repeat the procedure detailed in the synthetic application and evaluate how the variance aligns with
the velocity structure, we compute maximum peak locations in the final variance map. The search radius
has been reduced to 150 m because of the smoothness of the variance map. Despite the map smoothness
and the thin layered structure in the final velocity model, we can confirm that local uncertainty maxima
are preferentially located along structure discontinuities.

In the following, we chose four parameters to produce correlation maps computed in the final
ensemble, following the same procedure detailed in Chapter 4 (Fig. 5.5,5.6,5.7 and 5.8).

The parameter chosen in Figure 5.5 corresponds to one of the hydrocarbon layer recovered at
the center of the model. We chose this specific parameter for its key location in the medium, as the
hydrocarbon layers are amongst the sharpest features we were able to recover in the final model. As
in the synthetic test case, we observe positive correlations, aligned with the velocity structure. The
amplitude of correlation structures decays rapidly with the distance, meaning the layer in which the
parameter lies in is well constrained.

The parameter chosen in Figure 5.6 lie underneath a shallow (approximately 500m deep) velocity
layer. It displays the same type of behavior as the previous parameter, as correlations are decaying with
distance, and the positive correlation is aligned with the velocity structure of the reconstructed mean
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Figure 5.6: Velocity map (top) and correlation map (botom) for the velocity parameter located at
x = 8.5km and z = 0.525km in the final ensemble.
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Figure 5.7: Velocity map (top) and correlation map (botom) for the velocity parameter located at
x = 13.35km and z = 2.75km in the final ensemble.

model.

The parameter in Figure 5.7 has been chosen to illustrate the partitioning between the upper (low-
velocity) and lower (high-velocity) domains. This point lies at the limit of the illuminated domain and
has thus a poor spatial resolution (large positive correlation spot around the parameter). However, despite
this low resolution, we can see that there is a clear upper limit to the correlation zone, at the velocity
transition zone (at approximately z = 2.7km). This is coherent to observations made in Chapter 4: the
parameters sharing the same type of lithologic properties are expected to be positively correlated, hence
the partitioning between the upper-lower domains of the model.
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Figure 5.8: Velocity map (top) and correlation map (botom) for the velocity parameter located at
x = 2.5km and z = 1.5km in the final ensemble. Dashed lignes denote the polarity transition in the
correlation map, highlighting the finite-frequency oscillations effects.

The last parameter (Fig. 5.8) has been picked to show the occurrence of finite-frequency oscillations
on this field-data application. Similarly, as in Figure 4.13, black dashed lines have been drawn to
highlight this effect. The polarization( orientation) of the oscillations once again corresponds roughly to
the trajectory of the body-waves that are sampling the shallow lateral bounds of the domain.

Finally, we compare the velocity model obtained from our ensemble approach to a classical FWI
result in Figure 5.9.

At first glance, we can verify that the ETKF-FWI does produce a parameter estimate, close to a
standard FWI solution. We can, however, notice that the resolution of the mean ETKF-FWI is slightly
higher and the velocity contrasts between layers appear sharper in the ETKF-FWI result, both in the
shallow and deep parts of the model. This might be due to the effect of the analysis step, which provides
a correction from the estimated covariance matrix. This could have an effect similar to the one of
a preconditioner which approximates the inverse Hessian operator. This is further discussed in the
following multiparameter application.

We emphasize that the quality of these results is strongly linked to the initial ensemble parameteriza-
tion. Modifying the initial perturbations correlation length or amplitude will result in a different outcome,
or might cause instabilities if incorrectly chosen.

5.1.2 P-wave velocity and density reconstruction

In the following, we present preliminary multiparameter inversion results to show the potential of the
method for uncertainty estimation in this context. Multiparameter FWI is known as a challenging
problem, especially because of the presence of cross-talks between parameters (Operto et al., 2013).
Recovering information about the uncertainty linked to these cross-talks is thus crucial, and might be
an important benefice from strategies such as the ETKF-FWI scheme presented here. We modify the
system state vector such that the columns of the ensembles contain both the velocity parameter Vp and
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Figure 5.9: Comparison of monoparameter ETKF-FWI (top) and FWI (bottom) results with similar
inversion setup (inversion parameters, regularization, acquisition geometry and data frequency groups).

the density ρ instead of the velocity alone

m
(i)
Vp ,ρ

=

(
Vp
ρ

)
. (5.1)

Considering the joint state m(i)
Vp ,ρ

makes it possible to take the changes of density during the forecast
optimization steps into account when the analysis is performed. Note that the extension of the state
vector also implies an extension of the state covariance matrix. It is expected that the cross-talk terms
between Vp and ρ (off-diagonal blocks of the covariance matrix) will play a role in the Kalman Gain
estimate.

The initial density perturbations are derived from the initial perturbed velocity model according to
Gardner’s empirical relationship (in soil only) (Gardner et al., 1974)

ρ = 0.31V 0.25
p . (5.2)

This way, initial ensemble members’ velocity and density perturbations are physically linked.

The starting ensemble mean veloctiy and density models are displayed in Figure 5.10. The ETKF-
FWI scheme is applied following the same setup as detailed for the monoparameter test, except for
the forecast that now includes inversion of the density parameter alongside the inverted velocity. The
parameter estimation after 6 ETKF-FWI cycles are shown in Figure 5.11.

The recovered velocity model is almost identical to the velocity estimate from the monoparameter
case. As for the density inversion, the horizontally layered structures observed in the velocity map, are
closely matching the density estimate. A lower density is seen in the central area where hydrocarbon
charged layers are expected to be located.
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Figure 5.10: Top : Initial ensemble mean velocity model m0,Vp . Bottom : Initial ensemble mean density
model m0,ρ
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Figure 5.11: Top : Final ensemble mean velocity model mVp . Bottom : Final ensemble mean density
model mρ
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Figure 5.12: Diagonal elements of the initial joint-covariance matrix, plotted in the physical domain
arranged according to their respective position in the block matrix. Top left: P-wave velocity variance in
m2/s2. Bottom right: density variance in kg2/m6. Bottom left and top right: Vp , ρ cross-covariance
maps in kg/(s.m2).

The joint covariance matrix for the multiparameter case contains four blocks. Its structure is defined
by

P[Vp ,ρ] =

[
PVpVp PVp ρ

PρVp Pρρ

]
, (5.3)

where PVpVp and Pρρ are the variance matrices of the marginal distribution of Vp and ρ respectively,
and PVp ρ and PρVp are the cross-covariance blocks. Note that since PVp ,ρ is symmetric, we have
PρVp = PT

Vp ρ
by definition. The PVpVp block is expected to yield results similar to the covariance

matrix in the mono-parameter case, while the Pρρ block is its equivalent for the recovered density. The
cross-covariance blocks are instead a measure of the link between the two parameters, and therefore
makes it possible to quantify the inversion cross-talk between velocity and density. Starting with the
parameter’s uncertainty and cross-talk, we extract the four diagonal elements of the block joint-covariance
matrix and plot them as variance and cross-covariance maps in Figures 5.12 and 5.13.

The initial variance maps are displayed in Figure 5.12. The initial velocity variance distribution tends
to the monoparameter case starting distribution, while the initial density variance map is very different.
This is a result of the use of Gardner’s law to produce the initial density models from perturbed velocity.
The cross-covariance maps are symmetric and appear to be a combination of both velocity and density
variances.

The final variance maps are displayed in Figure 5.13. As in the previous results, the geometrical
spreading effect is the prevalent source of uncertainty in the velocity reconstruction, while structural
uncertainty is the dominant effect in the density variance map. Although the geometrical spreading is
not directly visible in the density variance map, the higher variance values are located in the deeper
region of the model nonetheless. The cross-covariance maps seem to indicate that the cross-talk between
parameters is strongly linked to their respective uncertainties. The differences between the velocity
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Figure 5.13: Diagonal elements of the posterior joint-covariance matrix, plotted in the physical domain
arranged according to their respective position in the block matrix.

variance map and the density variance map can be linked to wave propagation theory. The prevalence
of the geometrical spreading effect can be associated to the higher sensitivity of the body-waves to
velocity perturbations, while the structural uncertainty in the density map could be explained by the
higher sensitivity of short-offset reflected-arrivals toward density changes.

Added to the diagonal elements of the block-covariance matrix, individual parameters resolution
and cross-talk terms of the block-correlation matrix are evaluated. This is achieved by extracting four
corresponding lines out of the different blocks and mapping the correlation coefficients into the physical
domain. This procedure is the extension of the correlation maps computation of the previous applications,
to the block-diagonal structure. We choose arbitrarily a parameter located at z = 2.0 km; x = 9.6 km.
Its initial correlation maps are plotted in Figure 5.14 followed by its final correlation maps in Figure
5.15.

Although the initial correlations are identical in all blocks due to the models’ generation, the final
correlation patterns are entirely different in the final maps. There is a sharp difference of resolution
in velocity and density: velocity correlations are laterally oriented along the structure, while density
correlations are oriented along a vertical axis across the domain. The resolution information is coherent
with theoretical expectations as stated previously; velocity reconstruction is mostly constrained by diving
waves that can explain lateral ambiguity, while density is constrained by short offset reflections arrivals,
which can explain the higher vertical uncertainty.

Besides, correlation cross-talk maps allow evaluating the coupling effect between velocity and
density across the whole domain. In this case, the {Vp , ρ} and {ρ, Vp} correlations terms are weaker
than the {Vp , Vp} and {ρ, ρ} correlation terms. It means that for this parameter, velocity and density
are well decoupled (density reconstruction does not seem to be contaminated by velocity leakage during
the inversion).
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Figure 5.14: Off-diagonal elements of the initial joint-covariance matrix, plotted in the physical domain.
The covariance matrix lines considered correspond to the parameter located at z = 2.1 km; x = 9.6 km.
Top left: P-wave velocity correlation coefficient. Bottom right: density correlation coefficient. Bottom
left and top right: correlation cross-talk terms.
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Figure 5.15: Off-diagonal elements of the posterior joint-covariance matrix, plotted in the physical
domain. The covariance matrix lines considered correspond to the parameter located at z = 2.1 km;
x = 9.6 km. Top left: P-wave velocity correlation coefficient. Bottom right: density correlation
coefficient. Bottom left and top right: correlation cross-talk terms.
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Figure 5.16: Comparison of ETKF-FWI (top) and FWI (bottom) density estimate with similar inversion
setup (inversion parameters, regularization, acquisition geometry and data frequency groups).

Finally, we compare the estimated density, with an equivalent multiparameter FWI result, obtained
with a similar inversion setup (data selection and processing, number of minimization steps, initial
model) in Figure 5.16.

Contrarily to the velocity estimation, there are significant discrepancies between the density model
recovered by the ETKF-FWI and its FWI equivalent. The density in the hydrocarbon layers is lower
in the FWI estimate, while the ETKF-FWI result is characterized by a high wavenumber content and
sharper density contrasts.

Motivated by these significant differences, we evaluate the quality of both the ETKF-FWI and the
FWI solutions in the time-domain. To do so, we computed synthetic common-receiver gathers in both
the ETKF-FWI and the FWI solutions, along with the initial models for reference. We then compare
synthetics by evaluating their data-fit with the observed common receiver gather data in Figure 5.17.
Time-domain synthetic common-receiver gathers are plotted in color over the black-and-white observed
data after filtering with a 6 to 8 Hz band-pass filter.

On this visualization, synthetic blue arrivals should overlap white, observed arrivals, while red should
be overlapped by black arrivals (and therefore not be visible). The blue color is hence indicative of good
fit, while visible red is indicative of phases misalignment.

The FWI result (center) is significantly improving on the initial models (left), but the ETKF-FWI
result (right) is exhibiting an overall better data fit. Late arrival diving waves, as well as near offset
reflections, are improved (see red ellipses). It seems that the analysis step of the ETKF-FWI acts as
a Hessian-like preconditioning term, allowing a better convergence, which might enhance parameter
disambiguation.

While these preliminary results are a call for careful investigations, it seems that the analysis of
the joint-space allows for better convergence of the ETKF-FWI scheme, compared to the classical
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5.1 The Valhall oil field dataset and ETKF-FWI parameterization

Figure 5.17: Data fit evaluated on a common receiver gather between (from left to right), the initial
models, the FWI outcome, and the EKTF-FWI outcome. Blue arrivals denote a good data fit over
corresponding white arrivals. Red arrivals overlapping white arrivals are indicative of misaligned phases.
Major improvement areas granted by the ETKF-FWI results have been marked with red ellipses in all
three common-receiver gathers.

FWI. These results prompt us to investigate the possibilities of extension of the methodology beyond
mono-parameter inversion in future studies.

Conclusion

In this final chapter, we have presented a field-data application of the ETKF-FWI scheme. We were able
to reproduce the observations made on the synthetic benchmark while evaluating the well-posedness
of the filter when dealing with a more complex test-case. A multi-parameter application has also been
proposed to complement the monoparameter inversion case.

We were able to evaluate the multi-parameter cross-talks, in both the variance maps and in the
cross-correlation maps. We also have been able to underline the difference of uncertainty structure in
the velocity and density reconstruction and proposed an explanation based on their respective sensi-
tivity to different types of arrivals. Hence, body-waves, which are mostly responsible for the velocity
reconstruction, might explain the geometrical spreading observed in the velocity variance map. Density
reconstruction, however, is mostly governed by short-offset reflection arrivals, and hence, do not exhibit
geometrical spreading, nor finite-frequency oscillations in the correlation maps.
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Chapter 6

Conclusion and perspectives

Conclusion

The objective of this thesis has been to introduce a novel uncertainty estimation solution for FWI by
combining the FWI and ensemble DA theories under a unified framework. A literature review on
uncertainty estimation in FWI has been given in Chapter 1, along with a general theoretical introduction
of the FWI concept. DA theory and its pairing with FWI have been introduced in Chapters 2 and 3,
respectively, which allowed us to design our uncertainty estimation tool. In Chapters 4 and 5, we have
demonstrated that the ETKF can be paired with a frequency-domain FWI quasi-Newton solver, and
allows for uncertainty estimation of the tomographic solution. The resulting ETKF-FWI scheme can
produce a robust state estimation while allowing us to recast our inversion problem in a local Bayesian
framework. The results we have obtained so far are encouraging in several regards.

• Variance and correlation maps only require to store the ensemble to be computed, and they provide
a straightforward way of evaluating the quality of convergence, the correlation links, and tradeoffs
between parameters.

• The ETKF-FWI also allows integrating some form of data weighting terms in the whole tomo-
graphic process via the measurement noise matrix R. If R is appropriately set, the resulting
uncertainty takes into account the physical properties of assimilated data.

• Finally, the extension perspectives offered by the DA framework and the full scalability of the
method makes it a great candidate for uncertainty estimations.

This work also raised several questions regarding the application of the ETKF-FWI, that I want to
re-emphasize as concluding matters:

How much of a problem is undersampling ? Regarding undersampling, its effects seem not
too dramatic, as they do not affect the state estimate capabilities of the ETKF-FWI. We attribute this
robustness to the inversion scheme that acts as our forecast, which is not expected to spread-out the
ensemble members. The underestimation of variance and spurious correlations might be more of
an issue, as they have a direct impact on our ability to use and interpret the quantitative covariance
data. We have seen that variance underestimation could be solved with covariance matrix inflation, by
artificially increasing the forecast covariance by a factor r to mitigate overconfidence in the forecast.



However, due to the necessity of evaluating an appropriate inflation parameter through trials and errors,
its implementation in our case was limited.

We have also seen that our observation operator (wave equation modeling) is strongly non-local,
which prevents us from applying covariance localization or local analysis to mitigate spurious correlation
terms in the covariance matrix. Thus we propose to rely mostly on local covariance information, which
seems to be preserved most of the time (as seen in correlation maps) and appears to be a reliable
resolution proxy. Ultimately, the undersampling issues allowed us to address the validity of our low-rank
approximation and evaluate its associated biases. We think this specific point should be investigated in
any methodology proposal based on rank reduction or Hessian approximation, which is unfortunately
not always discussed in current propositions among the uncertainty estimation literature.

How to characterize prior uncertainty, and define the initial ensemble ? Good practices, when
it comes to initial ensemble building, may deserve entire research focus on its own. As it stands, we
have adopted a pragmatical approach to generate initial perturbations, but defining ”optimal” and how
an optimal initial ensemble should be built, is an open question. One might advocate for producing
higher variance initial ensembles, to allow further parameter exploration at the cost of stability and
convergence. Another option would be to align with the tests we have set up by limiting the spread
of the initial ensemble to ensure an optimal parameter estimation. To constrain a strict convergence,
one might even choose to add perturbation in limited portions of the model only, to limit the chances
of unphysical updates during the analysis. For instance, in our field-data test case, we could remove
perturbations in the lower half of the domain, constrained by a small portion of data. This would prevent
any unphysical updates driven by the data term during the analysis. With such questions, we think the
initial model building deserves a careful investigation, as the options mentioned above might be logical
choices depending on one’s goals.

How is the quantitative uncertainty estimate reliable? It has to be reminded that uncertainty
estimates are, at best, expressed both in terms of ”local optimization” uncertainty and in the frame of
finite-frequency wave propagation:

• Our method allows us to retrieve a local Bayesian solution to the tomographic problem. Therefore
we do not explore the full extent of the possible solution, but rather the solutions fitting in a
least-squares formalism, given the defined prior and the quality of observations.

• As the wave-propagation and the limited coverage act as a filter over the physical domain, it is
not possible to estimate the absolute uncertainty values of the physical parameters. We instead
think uncertainty should be expressed in terms of the optimal apparent macro-model as “seen” by
the waves, in similar ways as Capdeville and Métivier (2018) suggestion for down-scaling and
homogenization problems.

To get closer to absolute uncertainty estimation of the physical parameters, we think that calibrating
our local uncertainty estimate over well-log information might be a solution. Recalling that we only
obtain a filtered version of the model and its uncertainty estimation, it would require comparing our
posterior variance, with filtered log data, at the adequate frequencies (as seen by the waves) and scale the
covariance accordingly. This scaling solution could potentially mitigate the underestimation of variance
values caused by undersampling, as well as mitigating the effects of our choice of prior ensemble. This
solution would, however, be limited to crustal-scale exploration data, provided well-logs are available or
not too distant from the target area.

125



CONCLUSION AND PERSPECTIVES

Perspectives

While we have presented a comprehensive review of the ETKF-FWI capabilities, it is worth noting that
there are several avenues for extending this method.

Better undersampling mitigation: In this thesis, we have opted for a pragmatical approach to
mitigate variance underestimation, relying on multiplicative covariance inflation. This solution was,
unfortunately, impractical due to the difficulty of tuning the inflation parameter. Assessing how the
”ideal” r value changes depending on the case (subsurface complexity, domain size, model discretization,
acquisition design, for instance) might be a first step into resolving variance underestimation in the
ETKF-FWI. Hybrid inflation methods such as the one implemented by Whitaker and Hamill (2012)
could potentially be an interesting take on inflation as they are based on re-evaluating the analysis
ensemble rather than the forecast ensemble. In that case, one might be able to use well-log data to
calibrate the analysis ensemble variance, to ensure that in-situ measurements fit in the ensemble spread.

Another solution to overcome inbreeding issues might come from methods such as the finite-size
ensemble Kalman filter (Myrseth and Omre, 2010; Bocquet, 2011; Myrseth et al., 2013; Bocquet et al.,
2015), as it has been designed to eliminate the need for inflation in ensemble DA. Alternatively, schemes
relying on automatic/adaptive inflation such as Miyoshi (2011b) or Raanes et al. (2019) (the latter being
a reformulation of the finite-size EnKF) should also be interesting takes on the problem, allowing on-line
estimation of r . This would have the benefit of letting r evolve along with the dynamic axis, which
might be beneficial for our frequency-dependent dynamics.

Beyond frequency domain FWI: The methodology would also benefit from moving beyond the
frequency domain formalism into the time-domain FWI formalism, which is the current industry standard.
While a time-domain extension would require to tackle a sizeable computational cost (mainly related
to the cost of time-domain FWI), it could be the solution toward 3-D application, as FDFD modeling
in 3-D remains expensive compared to FDTD approaches. The dynamic axis could be redesigned to
mitigate the cost associated with time-domain FWI, based on data-managements strategies. Thus, instead
of solving the FWI problem with the complete dataset for each of the ETKF-FWI forecasts, we could
iterate through small subsets of data, according to a data-decimation strategy.

Apart from meeting industry standards, time-domain FWI would also allow us to consider time-based
localization in the medium. As it is possible to predict the evolution of the wavefront at any point in
time, we could exclude some parameters from the analysis based on the wavefront position. This should
prevent distant unphysical updates in parts of the medium that have not been sampled by the propagating
waves.

Multi-parameter inversions: Experimenting with other DA parameterization methods (such as
the alternative propositions in Chapter 3) might also give new insights on FWI uncertainty estimation.
We have seen, for instance, that propositions 2 and 3 could allow establishing links toward wavefield
reconstruction inversion (van Leeuwen and Herrmann, 2013) or the ensemble Kalman inverse (Iglesias
et al., 2013a). An analogous to WRI should result in a more convex misfit-function and reduce the
sensitivity to the initial model, which in turn should allow relaxing the constraints for the initial ensemble
generation. On the other hand, the adjoint-free EKI could potentially reduce the computational burden
of the ensemble-based uncertainty estimation method, provided it can converge sufficiently fast.

With alternative parameterization also comes the possibility to investigate multi-parameter FWI
further. We have seen in Chapter 5 that multi-parameter ETKF-FWI granted easy access to the cross-talk
terms between inversion parameters, which is currently a challenging issue in multi-parameter FWI. It
also seemed that extending the state space can lead to improvements in model recovery, as the forecast
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covariance might play a preconditioning role during the analysis. While the multi-parameter field-data
test leads us to this unexpected observation, investigations on this potential preconditioning effect should
be taken from the ground-up, with simpler synthetic models.

Joint inversion, time-lapse: Our joint DA-FWI scheme also offers the possibility to combine
geophysical exploration methodologies into a single inversion framework. By taking advantage of the
natural sensor fusion capabilities of DA tools, one might design a filter that combines different types of
geophysical data. In the context of georesources explorations, for example, one could integrate well-log
observations along with seismic data in the analysis to potentially improve inversion results. Adding
in-situ measurements in the analysis might also be the way to approach absolute quantitative uncertainty
assessments, which has yet to be achieved in the field of uncertainty estimation in FWI.

Data assimilation also offers a natural way of tracking the evolution of systems with time. We can
thus envision time-lapse or monitoring tomographic application, as it has already been proposed by
Eikrem et al. (2019). Applied to reservoir monitoring, it might allow combining 4-D FWI, well-log
time-series, and ground deformation into a complete monitoring solution.

Finally, note that the ETKF should be readily applicable to other tomographic problems, provided an
adequate dynamic axis can be defined.

Cost and Applicability

Our literature review showed that there is a need for high-dimension uncertainty estimation in FWI.
However, computational cost regarding uncertainty estimation tools is a real concern, as it adds-up with
the already expensive computational cost of FWI. We have shown in this study that the ETKF-FWI fitted
in this high-dimensionality paradigm, but it also takes advantage of an embarrassingly parallel problem
to achieve full-scalability. As a closure, we compare the computational cost of our method with other
uncertainty estimation methodologies in the literature.

First, we have not discussed how this methodology compares with global optimization approaches.
We have shown in 1.2.1 that global optimization methods can accommodate non-convexities of the
misfit function by sampling the entirety of the solution space, rather than sampling the cost function
around the solution as we performed in the ETKF-FWI. While these methods seem very appealing,
they have to rely on tricks to make this sampling possible and alleviate the curse of dimensionality
problem they would face otherwise. These approaches are thus either limited to small problems (with a
low number of unknown to sample) or rely on clever parameterizations (such as B-spline functions or
Voronoi tessellation) to reduce the size of the search space. Nonetheless, most of these methodologies
will require several thousands of samples (and thus as many partial-differential-equation (PDE) to solve),
which makes them challenging to use as up to now. They also tend to produce very coarse solutions to
the inverse problem (which nonetheless makes for great potential starting models for local uncertainty
estimation, as shown in Sajeva et al. (2017b)). The philosophy of local and global approaches differs, as
they propose to deal with very different but complementary aspects of uncertainty estimation.

We have seen in 1.2.2 that local approaches are based on rank-reduction methods. These approxima-
tions of the inverse Hessian operator in the vicinity of the solution, make sampling from the posterior
covariance matrix affordable. Their low-rank approximation of the inverse Hessian operator, require to
solve several forward and adjoint PDEs, typically several hundred to several thousand per frequencies
(for example, Bui-Thanh et al. (2013) is evaluating 1400 PDE to estimate the first 700 eigenvalues of
their global FWI application with hundreds of thousands of parameters). Fang et al. (2014) requires
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to solve approximately 6000 forward modeling problems, with their MCMC sampling to produce an
uncertainty estimate (with most of the cost coming from the sampling strategy). Zhu et al. (2016) is able
to produce an uncertainty estimation along with the solution of the inverse problem at the minimal cost of
144 PDE resolution thanks to the assumption made on the structure of the Hessian operator. Though this
cost is indeed reasonably low, it does not include the computational cost of the reverse time migration
they are using to precondition their sampling. Finally, the number of PDE solved to sample the posterior
covariance in Fang et al. (2018) proposition is the number of sources plus the number of receivers per
frequencies (not including the number of PDE to solve the inverse problem). Besides, this method
does seem to display challenging memories limitation as it requires to store the optimal wavefields in
memory for each frequency bands, which may become challenging for large scale 3D application. The
extension to uncertainty estimation of multi-parameter inversion also seems to be non-trivial in this
extended domain FWI application, as only recent publications are addressing the multi-parameter aspect
of wavefield reconstruction inversion (Aghamiry et al., 2019). Note also that the low-rank approximation
methods of the propositions mentioned above (such as randomized Singular-Value-Decomposition, or
Lanczos methods) are sequential by nature, which makes these uncertainty methods only as scalable as
their PDE solver can get.

In comparison, the cost of ETKF-FWI in our applications ranges from 5000 to 18000 PDE solve (for
the synthetic and field data cases, respectively), which might appear to be a daunting number (although
convergence tests have shown we could potentially consider smaller ensemble size). However, unlike
other methods, we are set to solve an embarrassingly parallel problem as all of our ensemble members
are evolving independently during the bulk of the computational time (forecast step), which makes
our problem not only scalable on the PDE solver but fully scalable on the ensemble size. Thanks to
this advantage, and because of the development of hardware capacities towards the exascale and the
current trend toward grid computation, we believe that the ETKF-FWI for uncertainty estimation can be
a valuable approach even for large-scale FWI problems, as it is currently the case for DA applications.
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